1
|
Quinn CF, Wilcox DE. Thermodynamic origin of the affinity, selectivity, and domain specificity of metallothionein for essential and toxic metal ions. Metallomics 2024; 16:mfae041. [PMID: 39289027 DOI: 10.1093/mtomcs/mfae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The small Cys-rich protein metallothionein (MT) binds several metal ions in clusters within two domains. While the affinity of MT for both toxic and essential metals has been well studied, the thermodynamics of this binding has not. We have used isothermal titration calorimetry measurements to quantify the change in enthalpy (ΔH) and change in entropy (ΔS) when metal ions bind to the two ubiquitous isoforms of MT. The seven Zn2+ that bind sequentially at pH 7.4 do so in two populations with different coordination thermodynamics, an initial four that bind randomly with individual tetra-thiolate coordination and a subsequent three that bind with bridging thiolate coordination to assemble the metal clusters. The high affinity of MT for both populations is due to a very favourable binding entropy that far outweighs an unfavourable binding enthalpy. This originates from a net enthalpic penalty for Zn2+ displacement of protons from the Cys thiols and a favourable entropic contribution from the displaced protons. The thermodynamics of other metal ions binding to MT were determined by their displacement of Zn2+ from Zn7MT and subtraction of the Zn2+-binding thermodynamics. Toxic Cd2+, Pb2+, and Ag+, and essential Cu+, also bind to MT with a very favourable binding entropy but a net binding enthalpy that becomes increasingly favourable as the metal ion becomes a softer Lewis acid. These thermodynamics are the origin of the high affinity, selectivity, and domain specificity of MT for these metal ions and the molecular basis for their in vivo binding competition.
Collapse
Affiliation(s)
- Colette F Quinn
- Department of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA
- Waters | Wyatt Technology Corporation, 6330 Hollister Avenue, Goleta, CA 93117, USA
| | - Dean E Wilcox
- Department of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
2
|
Mosna K, Jurczak K, Krężel A. Differentiated Zn(II) binding affinities in animal, plant, and bacterial metallothioneins define their zinc buffering capacity at physiological pZn. Metallomics 2023; 15:mfad061. [PMID: 37804185 PMCID: PMC10612145 DOI: 10.1093/mtomcs/mfad061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Metallothioneins (MTs) are small, Cys-rich proteins present in various but not all organisms, from bacteria to humans. They participate in zinc and copper metabolism, toxic metals detoxification, and protection against reactive species. Structurally, they contain one or multiple domains, capable of binding a variable number of metal ions. For experimental convenience, biochemical characterization of MTs is mainly performed on Cd(II)-loaded proteins, frequently omitting or limiting Zn(II) binding features and related functions. Here, by choosing 10 MTs with relatively well-characterized structures from animals, plants, and bacteria, we focused on poorly investigated Zn(II)-to-protein affinities, stability-structure relations, and the speciation of individual complexes. For that purpose, MTs were characterized in terms of stoichiometry, pH-dependent Zn(II) binding, and competition with chromogenic and fluorescent probes. To shed more light on protein folding and its relation with Zn(II) affinity, reactivity of variously Zn(II)-loaded MTs was studied by (5,5'-dithiobis(2-nitrobenzoic acid) oxidation in the presence of mild chelators. The results show that animal and plant MTs, despite their architectural differences, demonstrate the same affinities to Zn(II), varying from nano- to low picomolar range. Bacterial MTs bind Zn(II) more tightly but, importantly, with different affinities from low picomolar to low femtomolar range. The presence of weak, moderate, and tight zinc sites is related to the folding mechanisms and internal electrostatic interactions. Differentiated affinities of all MTs define their zinc buffering capacity required for Zn(II) donation and acceptance at various free Zn(II) concentrations (pZn levels). The data demonstrate critical roles of individual Zn(II)-depleted MT species in zinc buffering processes.
Collapse
Affiliation(s)
- Karolina Mosna
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Kinga Jurczak
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
3
|
Kerber O, Tran J, Misiaszek A, Chorążewska A, Bal W, Krężel A. Zn(II) to Ag(I) Swap in Rad50 Zinc Hook Domain Leads to Interprotein Complex Disruption through the Formation of Highly Stable Ag x(Cys) y Cores. Inorg Chem 2023; 62:4076-4087. [PMID: 36863010 PMCID: PMC10015552 DOI: 10.1021/acs.inorgchem.2c03767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The widespread application of silver nanoparticles in medicinal and daily life products increases the exposure to Ag(I) of thiol-rich biological environments, which help control the cellular metallome. A displacement of native metal cofactors from their cognate protein sites is a known phenomenon for carcinogenic and otherwise toxic metal ions. Here, we examined the interaction of Ag(I) with the peptide model of the interprotein zinc hook (Hk) domain of Rad50 protein from Pyrococcus furiosus, a key player in DNA double-strand break (DSB) repair. The binding of Ag(I) to 14 and 45 amino acid long peptide models of apo- and Zn(Hk)2 was experimentally investigated by UV-vis spectroscopy, circular dichroism, isothermal titration calorimetry, and mass spectrometry. The Ag(I) binding to the Hk domain was found to disrupt its structure via the replacement of the structural Zn(II) ion by multinuclear Agx(Cys)y complexes. The ITC analysis indicated that the formed Ag(I)-Hk species are at least 5 orders of magnitude stronger than the otherwise extremely stable native Zn(Hk)2 domain. These results show that Ag(I) ions may easily disrupt the interprotein zinc binding sites as an element of silver toxicity at the cellular level.
Collapse
Affiliation(s)
- Olga Kerber
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Józef Tran
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Alicja Misiaszek
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Aleksandra Chorążewska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
4
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
5
|
Płonka D, Kotuniak R, Dąbrowska K, Bal W. Electrospray-Induced Mass Spectrometry Is Not Suitable for Determination of Peptidic Cu(II) Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2766-2776. [PMID: 34738801 PMCID: PMC8640992 DOI: 10.1021/jasms.1c00206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The toolset of mass spectrometry (MS) is still expanding, and the number of metal ion complexes researched this way is growing. The Cu(II) ion forms particularly strong peptide complexes of biological interest which are frequent objects of MS studies, but quantitative aspects of some reported results are at odds with those of experiments performed in solution. Cu(II) complexes are usually characterized by fast ligand exchange rates, despite their high affinity, and we speculated that such kinetic lability could be responsible for the observed discrepancies. In order to resolve this issue, we selected peptides belonging to the ATCUN family characterized with high and thoroughly determined Cu(II) binding constants and re-estimated them using two ESI-MS techniques: standard conditions in combination with serial dilution experiments and very mild conditions for competition experiments. The sample acidification, which accompanies the electrospray formation, was simulated with the pH-jump stopped-flow technique. Our results indicate that ESI-MS should not be used for quantitative studies of Cu(II)-peptide complexes because the electrospray formation process compromises the entropic contribution to the complex stability, yielding underestimations of complex stability constants.
Collapse
|
6
|
Peris-Díaz M, Guran R, Domene C, de los Rios V, Zitka O, Adam V, Krężel A. An Integrated Mass Spectrometry and Molecular Dynamics Simulations Approach Reveals the Spatial Organization Impact of Metal-Binding Sites on the Stability of Metal-Depleted Metallothionein-2 Species. J Am Chem Soc 2021; 143:16486-16501. [PMID: 34477370 PMCID: PMC8517974 DOI: 10.1021/jacs.1c05495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/16/2022]
Abstract
Mammalian metallothioneins (MTs) are a group of cysteine-rich proteins that bind metal ions in two α- and β-domains and represent a major cellular Zn(II)/Cu(I) buffering system in the cell. At cellular free Zn(II) concentrations (10-11-10-9 M), MTs do not exist in fully loaded forms with seven Zn(II)-bound ions (Zn7MTs). Instead, MTs exist as partially metal-depleted species (Zn4-6MT) because their Zn(II) binding affinities are on the nano- to picomolar range comparable to the concentrations of cellular Zn(II). The mode of action of MTs remains poorly understood, and thus, the aim of this study is to characterize the mechanism of Zn(II) (un)binding to MTs, the thermodynamic properties of the Zn1-6MT2 species, and their mechanostability properties. To this end, native mass spectrometry (MS) and label-free quantitative bottom-up and top-down MS in combination with steered molecular dynamics simulations, well-tempered metadynamics (WT-MetaD), and parallel-bias WT-MetaD (amounting to 3.5 μs) were integrated to unravel the chemical coordination of Zn(II) in all Zn1-6MT2 species and to explain the differences in binding affinities of Zn(II) ions to MTs. Differences are found to be the result of the degree of water participation in MT (un)folding and the hyper-reactive character of Cys21 and Cys29 residues. The thermodynamics properties of Zn(II) (un)binding to MT2 are found to differ from those of Cd(II), justifying their distinctive roles. The potential of this integrated strategy in the investigation of numerous unexplored metalloproteins is attested by the results highlighted in the present study.
Collapse
Affiliation(s)
- Manuel
David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Roman Guran
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Vivian de los Rios
- Functional
Proteomics, Department of Cellular and Molecular Medicine and Proteomic
Facility, Centro de Investigaciones Biológicas
(CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ondrej Zitka
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
7
|
Wątły J, Łuczkowski M, Padjasek M, Krężel A. Phytochelatins as a Dynamic System for Cd(II) Buffering from the Micro- to Femtomolar Range. Inorg Chem 2021; 60:4657-4675. [PMID: 33736430 PMCID: PMC8041291 DOI: 10.1021/acs.inorgchem.0c03639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Indexed: 01/30/2023]
Abstract
Phytochelatins (PCs) are short Cys-rich peptides with repeating γ-Glu-Cys motifs found in plants, algae, certain fungi, and worms. Their biosynthesis has been found to be induced by heavy metals-both biogenic and toxic. Among all metal inducers, Cd(II) has been the most explored from a biological and chemical point of view. Although Cd(II)-induced PC biosynthesis has been widely examined, still little is known about the structure of Cd(II) complexes and their thermodynamic stability. Here, we systematically investigated glutathione (GSH) and PC2-PC6 systems, with regard to their complex stoichiometries and spectroscopic and thermodynamic properties. We paid special attention to the determination of stability constants using several complementary techniques. All peptides form CdL complexes, but CdL2 was found for GSH, PC2, and partially for PC3. Moreover, binuclear species CdxLy were identified for the series PC3-PC6 in an excess of Cd(II). Potentiometric and competition spectroscopic studies showed that the affinity of Cd(II) complexes increases from GSH to PC4 almost linearly from micromolar (log K7.4GSH = 5.93) to the femtomolar range (log K7.4PC4 = 13.39) and additional chain elongation does not increase the stability significantly. Data show that PCs form an efficient system which buffers free Cd(II) ions in the pico- to femtomolar range under cellular conditions, avoiding significant interference with Zn(II) complexes. Our study confirms that the favorable entropy change is the factor governing the elevation of phytochelatins' stability and illuminates the importance of the chelate effect in shifting the free Gibbs energy.
Collapse
Affiliation(s)
| | | | - Michał Padjasek
- Department of Chemical Biology, Faculty
of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty
of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
8
|
Peris-Díaz MD, Richtera L, Zitka O, Krężel A, Adam V. A chemometric-assisted voltammetric analysis of free and Zn(II)-loaded metallothionein-3 states. Bioelectrochemistry 2020; 134:107501. [PMID: 32229323 DOI: 10.1016/j.bioelechem.2020.107501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
We focused on the application of mass spectrometry and electrochemical methods combined with a chemometric analysis for the characterization of partially metallothionein-3 species. The results showed decreased Cat1 and Cat2 signals for the Zn(II)-loaded MT3 species with respect to the metal-free protein, which might be explained by the arrangement of tetrahedral metal-thiolate coordination environments and the formation of metal clusters. Moreover, there was a decrease in the Cat1 and Cat2 signals, and a plateau was reached with 4-5 Zn(II) ions that corresponded to the formation of the C-terminal α-domain. Regarding the Zn7-xMT3 complexes, we observed three different electrochemical behaviours for the Zn1-2MT3, Zn3-6MT3 and Zn7MT3 species. The difference for Zn1-2MT3 might be explained by the formation of independent ZnS4 cores in this stage that differ with respect to the formation of ZnxCysy clusters with an increased Zn(II) loading. The binding of the third Zn(II) ion to MT3 resulted in high sample heterogeneity due the co-existence of Zn3-6MT3. Finally, the Zn7MT3 protein showed a third type of behaviour. The fact that there were no free Cys residues might explain this phenomenon. Thus, this research identifies the major proteins responsible for zinc buffering in the cell.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic.
| |
Collapse
|
9
|
Kostyukevich Y, Vladimirov G, Stekolschikova E, Ivanov D, Yablokov A, Zherebker A, Sosnin S, Orlov A, Fedorov M, Khaitovich P, Nikolaev E. Hydrogen/Deuterium Exchange Aiding Compound Identification for LC-MS and MALDI Imaging Lipidomics. Anal Chem 2019; 91:13465-13474. [PMID: 31490663 DOI: 10.1021/acs.analchem.9b02461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We present a novel approach for the increasing reliability of compound identification for LC-MS and MALDI imaging lipidomics. Our approach is based on the characterization of compounds not only by the elution time, accurate mass, and fragmentation spectra but also by the number of labile hydrogens that can be measured using the hydrogen/deuterium (H/D) exchange approach. The number of labile hydrogens (those from -OH and -NH groups) serves as an additional structural descriptor used when performing a database search. For LC-MS experiment, the H/D exchange was performed in the heating capillary of the modified electrospray ionization (ESI) source, while for MALDI imaging, the exchange was performed in the ion funnel at 10 Torr pressure. It was observed that such an approach allowed one to achieve a considerable degree of deuteration, enough to unambiguously distinguish between different classes of lipids. The proposed analytical approach may be successfully used for the identification not only of lipids but also of peptides and metabolites. A special software for the automatic filtration of molecules based on the number of functional groups was also developed.
Collapse
Affiliation(s)
- Yury Kostyukevich
- Skolkovo Institute of Science and Technology , Novaya Street, 100 , Skolkovo 143025 , Russian Federation.,Moscow Institute of Physics and Technology , Dolgoprudnyi , Moscow Region 141700 , Russia
| | - Gleb Vladimirov
- Skolkovo Institute of Science and Technology , Novaya Street, 100 , Skolkovo 143025 , Russian Federation
| | - Elena Stekolschikova
- Skolkovo Institute of Science and Technology , Novaya Street, 100 , Skolkovo 143025 , Russian Federation
| | - Daniil Ivanov
- Moscow Institute of Physics and Technology , Dolgoprudnyi , Moscow Region 141700 , Russia.,Emanuel Institute of Biochemical Physics , Russian Academy of Sciences , Kosygina Street, 4 , Moscow 119334 , Russia
| | - Arthur Yablokov
- Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , Leninskij pr. 38 k.2 , Moscow 119334 , Russia
| | - Alexander Zherebker
- Skolkovo Institute of Science and Technology , Novaya Street, 100 , Skolkovo 143025 , Russian Federation
| | - Sergey Sosnin
- Skolkovo Institute of Science and Technology , Novaya Street, 100 , Skolkovo 143025 , Russian Federation
| | - Alexey Orlov
- Skolkovo Institute of Science and Technology , Novaya Street, 100 , Skolkovo 143025 , Russian Federation
| | - Maxim Fedorov
- Skolkovo Institute of Science and Technology , Novaya Street, 100 , Skolkovo 143025 , Russian Federation
| | - Philipp Khaitovich
- Skolkovo Institute of Science and Technology , Novaya Street, 100 , Skolkovo 143025 , Russian Federation
| | - Evgeny Nikolaev
- Skolkovo Institute of Science and Technology , Novaya Street, 100 , Skolkovo 143025 , Russian Federation
| |
Collapse
|
10
|
Kozin SA, Barykin EP, Mitkevich VA, Makarov AA. Anti-amyloid Therapy of Alzheimer's Disease: Current State and Prospects. BIOCHEMISTRY (MOSCOW) 2018; 83:1057-1067. [PMID: 30472944 DOI: 10.1134/s0006297918090079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug development for the treatment of Alzheimer's disease (AD) has been for a long time focused on agents that were expected to support endogenous β-amyloid (Aβ) in a monomeric state and destroy soluble Aβ oligomers and insoluble Aβ aggregates. However, this strategy has failed over the last 20 years and was eventually abandoned. In this review, we propose a new approach to the anti-amyloid AD therapy based on the latest achievements in understanding molecular causes of cerebral amyloidosis in AD animal models.
Collapse
Affiliation(s)
- S A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - E P Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - V A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - A A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
11
|
Affiliation(s)
- Yury Kostyukevich
- Skolkovo Institute of Science and Technology Novaya Street, 100, Skolkovo 143025, Russian Federation
- Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij prospekt 38 k.2, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia
| | - Eugene Nikolaev
- Skolkovo Institute of Science and Technology Novaya Street, 100, Skolkovo 143025, Russian Federation
- Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij prospekt 38 k.2, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia
| |
Collapse
|
12
|
Drozd A, Wojewska D, Peris-Díaz MD, Jakimowicz P, Krężel A. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2. Metallomics 2018; 10:595-613. [DOI: 10.1039/c7mt00332c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural insights into partially Zn(ii)-depleted MT2 species and their zinc buffering properties are presented and discussed.
Collapse
Affiliation(s)
- Agnieszka Drozd
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Dominika Wojewska
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Manuel David Peris-Díaz
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Piotr Jakimowicz
- Department of Protein Biotechnology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Artur Krężel
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
13
|
Kostyukevich YI, Kononikhin AS, Indeykina MI, Popov IA, Bocharov KV, Spassky AI, Kozin SA, Makarov AA, Nikolaev EN. Secondary structure of Aβ(1–16) complexes with zinc: A study in the gas phase using deuterium/hydrogen exchange and ultra-high-resolution mass spectrometry. Mol Biol 2017. [DOI: 10.1134/s0026893317030104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Zhdanova E, Kostyukevich Y, Nikolaev E. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:197-201. [PMID: 29028404 DOI: 10.1177/1469066717718369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.
Collapse
Affiliation(s)
- Ekaterina Zhdanova
- 1 Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- 2 Moscow Institute of Physics and Technology, Moscow Region, Russia
| | - Yury Kostyukevich
- 1 Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- 2 Moscow Institute of Physics and Technology, Moscow Region, Russia
- 3 Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- 4 Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Eugene Nikolaev
- 1 Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- 2 Moscow Institute of Physics and Technology, Moscow Region, Russia
- 3 Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- 4 Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
15
|
The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism. Int J Mol Sci 2017; 18:ijms18061237. [PMID: 28598392 PMCID: PMC5486060 DOI: 10.3390/ijms18061237] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 12/15/2022] Open
Abstract
Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs) and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn2+, the loading of exocytotic vesicles with zinc species, and the control of Zn2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn2+ and Cu+ match the biological requirements for controlling—binding and delivering—these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn2+ and Cu+. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.
Collapse
|
16
|
Kostyukevich Y, Kononikhin A, Popov I, Nikolaev E. Thermal dissociation of ions limits the degree of the gas-phase H/D exchange at the atmospheric pressure. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:204-209. [PMID: 28152260 DOI: 10.1002/jms.3917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
We present the application of the extended desolvating capillaries for increasing the degree of the gas-phase hydrogen/deuterium exchange reaction at atmospheric pressure. The use of the extended capillaries results in the increase of the time that ions spend in the high pressure region, what leads to the significant improvement of the efficiency of the reaction. For the small protein ubiquitin, it was observed that for the same temperature, the number of exchanges increases with the decrease of the charge state so that the lowest charge state can exchange twice the number of hydrogen than the highest one. With the increase of the temperature, the difference decreases, and eventually, the number of exchanges equalizes for all charge states. The value of this temperature and the corresponding number of exchanges depend on the geometric parameters of the capillary. Further increase of the temperature leads to the thermal dissociation of the protein ion. The observed b/y fragments are identical to those produced by collision-induced dissociation performed in the ion trap. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Y Kostyukevich
- Skolkovo Institute of Science and Technology, Novaya St., 100, Skolkovo, 143025, Russia
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38 k.2, 119334, Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia
| | - A Kononikhin
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38 k.2, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia
| | - I Popov
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia
| | - E Nikolaev
- Skolkovo Institute of Science and Technology, Novaya St., 100, Skolkovo, 143025, Russia
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38 k.2, 119334, Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia
| |
Collapse
|
17
|
Kostyukevich YI, Kononikhin AS, Popov IA, Bugrova AE, Starodubtseva NL, Nikolaev EN. Application of deuterium–hydrogen exchange to study the secondary structure of oligonucleotide ions in a gas phase. HIGH ENERGY CHEMISTRY 2016. [DOI: 10.1134/s0018143916060096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Gillig KJ. Gas-phase protein conformation/multimer ion formation by electrospray ion mobility-mass spectrometry: bovine insulin and ubiquitin. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150368. [PMID: 27644980 PMCID: PMC5031634 DOI: 10.1098/rsta.2015.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
Ion mobility-mass spectrometry (IMMS) is a very attractive method for studies in structural biology because of the ability of rapid isolation by nearly simultaneous m/z characterization and size separation, leading to an emergence of IMMS as a complimentary biochemical tool. Earlier, we developed a method based on varying the protein concentration in solution prior to electrospray ionization (ESI) with subsequent m/z selection and dissociation of protein multimers by IMMS of cytochrome c. The focus of this work will be to correctly distinguish truly different ion conformations formed by ESI versus homomultimeric complexes with the same m/z for well-studied proteins bovine ubiquitin and insulin. These proteins were chosen due to their large difference in solution phase structures: insulin tightly bound by disulfide linkages, and ubiquitin-a protein that may adopt a range of states from compact to extended. Our preliminary results, as with cytochrome c reveal false negatives for protein oligomer formation and false positives for protein conformational states. In addition, these results will be couched in terms of the need for quantification of IMMS analysis of proteins given the total area under IMMS peaks can also distinguish conformation versus aggregation as higher order oligomers have more mass per ion.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Kent J Gillig
- Genomics Research Center, Academia Sinica, 128 Academia Road, Nangang Section 2, Taipei 115, Taiwan, Republic of China
| |
Collapse
|
19
|
Kostyukevich Y, Yacovlev P, Kononikhin A, Popov I, Bugrova A, Starodubtzeva N, Nikolaev E. The use of H/D exchange for secondary structure characterization of supermetallized complexes of ubiquitin with cerium(III). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016040117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Evaporation of the charged droplets in the heating flow tube under atmospheric pressure: observation of the H/D exchange and supermetallization. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Amyloid-β containing isoaspartate 7 as potential biomarker and drug target in Alzheimer's disease. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Kostyukevich YI, Kononikhin AS, Popov IA, Indeykina MI, Nikolaev EN. Supermetallization of Substance P during electrospray ionization. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Kostyukevich Y, Zherebker A, Kononikhin A, Indeykina M, Popov I, Nikolaev E. Letter: Electron-capture dissociation and collision-induced dissociation fragmentation of the supermetallized complexes of Substance P with potassium, cesium and silver. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:91-95. [PMID: 27419902 DOI: 10.1255/ejms.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the investigation of the collision-induced dissociation (CID) and electron-capture dissociation (ECD) product fragmentations of the supermetallized complexes of Substance P and several monovalent metals. The supermetallization is the phenomenon of the formation of the complex ion peptide-metals in the gas phase when the peptide accepts an unexpectedly large number of metals. We have obtained and investigated complexes with the incorporation of up to four cesium (Cs), up to five potassium (K) and up to six silver (Ag) atoms. The current research reveals crucial changes in the complex behavior in the cases of different metals. It was observed that in CID spectra of complexes with Cs and K is dominated by the peak corresponding to the loss of metal cation while ECD gives a rich fragmentation. In the case of complexes with Ag, the loss of Ag(+) occurs in ECD while the CID shows a good fragmentation.
Collapse
Affiliation(s)
- Yury Kostyukevich
- Skolkovo Institute of Science and Technology Novaya St., 100, Skolkovo 143025 Russian Federation. Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russian Federation. Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russian Federation. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russian Federation..
| | - Alexander Zherebker
- Skolkovo Institute of Science and Technology Novaya St., 100, Skolkovo 143025 Russian Federation. Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russian Federation. Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1-3, 119991 Moscow, Russian Federation..
| | - Alexey Kononikhin
- Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russian Federation. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russian Federation.
| | - Maria Indeykina
- Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russian Federation. Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russian Federation. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russian Federation.
| | - Igor Popov
- Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russian Federation. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russian Federation.
| | - Eugene Nikolaev
- Skolkovo Institute of Science and Technology Novaya St., 100, Skolkovo 143025 Russian Federation. Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russian Federation. Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russian Federation. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russian Federation..
| |
Collapse
|
24
|
Kostyukevich Y, Kononikhin A, Kukaev E, Shiea J, Popov I, Nikolaev E. Letter: Supermetallization of peptides and proteins with tetravalent metal Th(IV). EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:39-42. [PMID: 26863074 DOI: 10.1255/ejms.1405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Supermetallization is the recently observed phenomenon of the formation of complex ions of peptide-metal in the gas phase when the peptide accepts an unexpectedly large number of metal atoms. It has been found that supermetallization takes place during electrospray ionization when charged droplets are evaporating at relatively high temperature (ca 400°C). In the present paper, we demonstrate supermetallized complexes of small protein ubiquitin and two peptides with Th(IV). We have observed complexes of ubiquitin with up to five thorium atoms, and attaching each Th(IV) requires the removal of four hydrogen atoms. To our knowledge, this is the first demonstration of gas-phase complexes of peptides and proteins with tetravalent metal atoms..
Collapse
Affiliation(s)
- Yury Kostyukevich
- Skolkovo Institute of Science and Technology Novaya St., 100, Skolkovo 143025 Russian Federation. Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russia. Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russia. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia..
| | - Alexey Kononikhin
- Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russia. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia..
| | - Eugene Kukaev
- Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russia. Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russia. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia..
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Igor Popov
- Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russia. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia..
| | - Eugene Nikolaev
- Skolkovo Institute of Science and Technology Novaya St., 100, Skolkovo 143025 Russian Federation. Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russia. Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russia. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia..
| |
Collapse
|
25
|
Rijs NJ, Weiske T, Schlangen M, Schwarz H. Effect of adduct formation with molecular nitrogen on the measured collisional cross sections of transition metal-1,10-phenanthroline complexes in traveling wave ion-mobility spectrometry: N2 is not always an "inert" buffer gas. Anal Chem 2015; 87:9769-76. [PMID: 26378338 DOI: 10.1021/acs.analchem.5b01985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The number of separations and analyses of molecular species using traveling wave ion-mobility spectrometry-mass spectrometry (TWIMS-MS) is increasing, including those extending the technique to analytes containing metal atoms. A critical aspect of such applications of TWIMS-MS is the validity of the collisional cross sections (CCSs) measured and whether they can be accurately calibrated against other ion-mobility spectrometry (IMS) techniques. Many metal containing species have potential reactivity toward molecular nitrogen, which is present in high concentration in the typical Synapt-G2 TWIMS cell. Here, we analyze the effect of nitrogen on the drift time of a series of cationic 1,10-phenanthroline complexes of the late transition metals, [(phen)M](+), (M = Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, and Hg) in order to understand potential deviations from expected drift time behaviors. These metal complexes were chosen for their metal open-coordination site and lack of rotameric species. The target species were generated via electrospray ionization (ESI), analyzed using TWIMS in N2 drift gas, and the observed drift time trends compared. Theoretically derived CCSs for all species (via both the projection approximation and trajectory method) were also compared. The results show that, indeed, for metal containing species in this size regime, reaction with molecular nitrogen has a dramatic effect on measured drift times and must not be ignored when comparing and interpreting TWIMS arrival time distributions. Density-functional theory (DFT) calculations are employed to analyze the periodic differences due to the metal's interaction with nitrogen (and background water) in detail.
Collapse
Affiliation(s)
- Nicole J Rijs
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Thomas Weiske
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Schlangen
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|