1
|
Bao Y, Guo N, Hu X, Di B, Liu Y, Sun H. Chemical Derivatization and Paper Spray Ionization Mass Spectrometry for Fast Screening of Retinoic Acid in Cosmetics. Molecules 2024; 29:4491. [PMID: 39339486 PMCID: PMC11434060 DOI: 10.3390/molecules29184491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As a prescription drug, retinoic acid is listed as a banned cosmetic additive in the EU and China regulations. Currently, spectrophotometric methods, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and HPLC-MS/MS, are commonly used for the determination of retinoic acid. As these conventional methods require complex pretreatment and are time-consuming, chemical derivatization combined with paper spray ionization mass spectrometry was developed for the fast detection of retinoic acid in cosmetics. N,N-dimethylpiperazine iodide (DMPI) was utilized as a derivatization reagent. Carboxylic acid in retinoic acid was derivatized to carry a positive charge and was subjected to mass spectrometry analysis. Results showed that compared with non-derivatized compounds, the detection limit was increased by about 50 times. The linearity in the range of 0.005-1 μg·mL-1 was good. The limit of detection (LOD) was 0.0013 μg·mL-1, and the limit of quantification (LOQ) was 0.0043 μg·mL-1. The recoveries of spiked samples were in the range of 95-105%, and the RSDs were below 5%. Derivatization and paper spray ionization MS render a quick, sensitive, and accurate method for the detection of retinoic acid in a complex matrix.
Collapse
Affiliation(s)
- Yuzhang Bao
- National Institutes for Food and Drug Control, Beijing 102629, China; (Y.B.); (N.G.); (X.H.)
- School of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 211100, China
| | - Ningzi Guo
- National Institutes for Food and Drug Control, Beijing 102629, China; (Y.B.); (N.G.); (X.H.)
| | - Xiaowen Hu
- National Institutes for Food and Drug Control, Beijing 102629, China; (Y.B.); (N.G.); (X.H.)
| | - Bin Di
- School of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 211100, China
| | - Yang Liu
- National Institutes for Food and Drug Control, Beijing 102629, China; (Y.B.); (N.G.); (X.H.)
| | - Huimin Sun
- National Institutes for Food and Drug Control, Beijing 102629, China; (Y.B.); (N.G.); (X.H.)
| |
Collapse
|
2
|
Shang Y, Meng X, Liu J, Song N, Zheng H, Han C, Ma Q. Applications of mass spectrometry in cosmetic analysis: An overview. J Chromatogr A 2023; 1705:464175. [PMID: 37406420 DOI: 10.1016/j.chroma.2023.464175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Mass spectrometry (MS) is a crucial tool in cosmetic analysis. It is widely used for ingredient screening, quality control, risk monitoring, authenticity verification, and efficacy evaluation. However, due to the diversity of cosmetic products and the rapid development of MS-based analytical methods, the relevant literature needs a more systematic collation of information on this subject to unravel the true potential of MS in cosmetic analysis. Herein, an overview of the role of MS in cosmetic analysis over the past two decades is presented. The currently used sample preparation methods, ionization techniques, and types of mass analyzers are demonstrated in detail. In addition, a brief perspective on the future development of MS for cosmetic analysis is provided.
Collapse
Affiliation(s)
- Yuhan Shang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xianshuang Meng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Juan Liu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Naining Song
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyan Zheng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Chao Han
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
3
|
Paper Spray Tandem Mass Spectrometry for Assessing Oleic, Linoleic and Linolenic Acid Content in Edible Vegetable Oils. SEPARATIONS 2023. [DOI: 10.3390/separations10010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oleic, linoleic and linolenic acids exert several beneficial effects on human health, some of which are also certified by recent European and U.S. regulations. The goal of the presented work was to develop an innovative methodology to evaluate their content in edible vegetable oils, in order to increase the value of oils from a nutraceutical perspective. The protocol is based on the use of paper spray ionization coupled with tandem mass spectrometry experiments, which allowed the recording of data very quickly and with high specificity. All investigated compounds gained a good linear relation (r2 higher than 0.98). Accuracy values are near 100% for all concentration levels examined, and the repeatability and reproducibility data result lower than 15%, highlighting the consistence of the methodology. The developed approach was successfully applied for the analysis of different real samples, and its robustness was confirmed by comparing the results obtained with those coming from the classical and official methodology.
Collapse
|
4
|
Nowak K, Jabłońska E, Garley M, Iwaniuk A, Radziwon P, Wołczyński S, Ratajczak-Wrona W. Investigation of estrogen-like effects of parabens on human neutrophils. ENVIRONMENTAL RESEARCH 2022; 214:113893. [PMID: 35839909 DOI: 10.1016/j.envres.2022.113893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the estrogen-like effects and mechanism of action most commonly used parabens: methyl- (MeP), ethyl- (EtP), propyl- (PrP) and butylparaben (BuP) in human neutrophils. Neutrophils were isolated from 50 blood donors, pre-incubated with antagonists of estrogen receptor α (ERα), ERβ and G-protein coupled estrogen receptor 1 (GPER), then incubated with MeP, EtP, PrP, BuP and 17β-estradiol (E2; 10 nM). Cytotoxic effect was evaluated by MTT test. Neutrophils apoptosis, necrosis and NETs formation were assessed in flow cytometry and confocal microscopy. The ability of the neutrophils for chemotaxis, phagocytosis, NADPH oxidase activity and generation of superoxide anion was assessed in Boyden's chamber, Park's method with latex, the NBT test, and reduction of cytochrome C, respectively. The total nitric oxide concentration was measured in neutrophils supernatants by the Griess reaction. The expression of cathepsin G, neutrophil elastase, proteinase 3, ERα, ERβ and GPER was assessed in Western blot method. In our research, parabens did not cause a cytotoxic effect on human neutrophils nor affect their lifespan. Parabens exposure did not change neutrophils functions (chemotaxis, phagocytosis, NETs formation and oxygen-dependent killing mechanism) and expression of estrogen receptors. Our results suggest that parabens do not cause estrogen receptor-mediated neutrophils-related effects at concentrations measured in the plasma of individuals using products preserved with parabens.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, Poland
| | | | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | |
Collapse
|
5
|
Direct wine profiling by mass spectrometry (MS): A comparison of different ambient MS approaches. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Mazzotti F, Bartella L, Talarico IR, Napoli A, Di Donna L. High-throughput determination of flavanone-O-glycosides in citrus beverages by paper spray tandem mass spectrometry. Food Chem 2021; 360:130060. [PMID: 34022518 DOI: 10.1016/j.foodchem.2021.130060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
A fast and accurate methodology for the quantification of the most abundant flavanone glycosides in citrus beverages has been developed. The approach relies on the use of paper spray mass spectrometry, which allows to record data in few minutes and without sample pre-treatment. The experiments have been carried out in Multiple Reaction Monitoring scan mode, in order to obtain the best specificity and sensitivity. The analytical parameters were all satisfactory. The results coming from the analysis of real samples were compared to the data obtained by the commonly used chromatographic method, proving the robustness of the proposed approach.
Collapse
Affiliation(s)
- Fabio Mazzotti
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy; QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy
| | - Lucia Bartella
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy; QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy.
| | - Ines Rosita Talarico
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy; QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy
| | - Leonardo Di Donna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy; QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
7
|
Rankin‐Turner S, Heaney LM. Applications of ambient ionization mass spectrometry in 2020: An annual review. ANALYTICAL SCIENCE ADVANCES 2021; 2:193-212. [PMID: 38716454 PMCID: PMC10989608 DOI: 10.1002/ansa.202000135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 06/26/2024]
Abstract
Recent developments in mass spectrometry (MS) analyses have seen a concerted effort to reduce the complexity of analytical workflows through the simplification (or removal) of sample preparation and the shortening of run-to-run analysis times. Ambient ionization mass spectrometry (AIMS) is an exemplar MS-based technology that has swiftly developed into a popular and powerful tool in analytical science. This increase in interest and demonstrable applications is down to its capacity to enable the rapid analysis of a diverse range of samples, typically in their native state or following a minimalistic sample preparation approach. The field of AIMS is constantly improving and expanding, with developments of powerful and novel techniques, improvements to existing instrumentation, and exciting new applications added with each year that passes. This annual review provides an overview of applications of AIMS techniques over the past year (2020), with a particular focus on the application of AIMS in a number of key fields of research including biomedical sciences, forensics and security, food sciences, the environment, and chemical synthesis. Novel ambient ionization techniques are introduced, including picolitre pressure-probe electrospray ionization and fiber spray ionization, in addition to modifications and improvements to existing techniques such as hand-held devices for ease of use, and USB-powered ion sources for on-site analysis. In all, the information provided in this review supports the view that AIMS has become a leading approach in MS-based analyses and that improvements to existing methods, alongside the development of novel approaches, will continue across the foreseeable future.
Collapse
Affiliation(s)
- Stephanie Rankin‐Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Liam M. Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| |
Collapse
|
8
|
Simultaneous Determination of Isothiazolinones and Parabens in Cosmetic Products Using Solid-Phase Extraction and Ultra-High Performance Liquid Chromatography/Diode Array Detector. Pharmaceuticals (Basel) 2020; 13:ph13110412. [PMID: 33266462 PMCID: PMC7700590 DOI: 10.3390/ph13110412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022] Open
Abstract
Isothiazolinones methylisothiazolinone (MI) and methylchloroisothiazolinone (MCI), and parabens methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) are the most common synthetic preservatives. They are all known to be potential skin allergens that lead to contact dermatitis. Thus, the identification of these unsafe chemicals in cosmetic products is of high importance. In the present study, solid-phase extraction (SPE) based on HyperSep reversed-phase C8/benzene sulfonic acid ion exchanger (HyperSep C8/BSAIE) and Sep-Pak C18 sorbents, and ultra-high performance liquid chromatography/diode array detector (UHPLC/DAD) were optimized for the simultaneous determination of MI, MCI, MP, EP, PP and BP in cosmetic products. HyperSep C8/BSAIE and UHPLC/DAD with the eluting solvent mixture (acetonitrile/methanol, 2:1, v/v) and detection wavelength (255 nm) were found to be the optimal conditions, respectively. The method illustrates the excellent linearity range (0.008–20 μg/mL) with coefficient of determination (R2, 0.997–0.999), limits of detection (LOD, 0.001–0.002 μg/mL), precision in terms of relative standard deviation (RSD < 3%, intra-day and <6%, inter-day) when examining a standard mixture at low (0.07 µg/mL), medium (3 µg/mL) and high (15 µg/mL) concentrations. A total of 31 cosmetic samples were studied, achieving concentrations (MI, not detected (nd)-0.89 µg/g), (MCI, nd-0.62 µg/g), (MP, nd-6.53 µg/g), (EP, nd-0.90 µg/g), (PP, nd-9.69 µg/g) and (BP, nd-17.80 µg/g). Recovery values ranged from 92.33 to 101.43% depending on the types of sample. To our knowledge, this is the first specific method which covers the theme and describes background amounts of such preservatives in cosmetics.
Collapse
|