1
|
Muramatsu W, Maryanovich M, Akiyama T, Karagiannis GS. Thymus ad astra, or spaceflight-induced thymic involution. Front Immunol 2025; 15:1534444. [PMID: 39926601 PMCID: PMC11802524 DOI: 10.3389/fimmu.2024.1534444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025] Open
Abstract
Spaceflight imposes a constellation of physiological challenges-cosmic radiation, microgravity, disrupted circadian rhythms, and psychosocial stress-that critically compromise astronaut health. Among the most vulnerable organs is the thymus, a cornerstone of immune system functionality, tasked with generating naive T cells essential for adaptive immunity. The thymus is particularly sensitive to spaceflight conditions, as its role in maintaining immune homeostasis is tightly regulated by a balance of systemic and local factors easily disrupted in space. Cosmic radiation, an omnipresent hazard beyond Earth's magnetosphere, accelerates DNA damage and cellular senescence in thymic epithelial cells, impairing thymopoiesis and increasing the risk of immune dysregulation. Microgravity and circadian rhythm disruption exacerbate this by altering immune cell migration patterns and stromal support, critical for T-cell development. Psychosocial stressors, including prolonged isolation and mission-induced anxiety, further compound thymic atrophy by elevating systemic glucocorticoid levels. Ground-based analogs simulating cosmic radiation and microgravity have been instrumental in elucidating mechanisms of thymic involution and its downstream effects on immunity. These models reveal that long-duration missions result in diminished naive T-cell output, leaving astronauts vulnerable to infections and possibly at high risk for developing neoplasia. Advances in countermeasures, such as pharmacological interventions targeting thymic regeneration and bioengineering approaches to protect thymic architecture, are emerging as vital strategies to preserve immune resilience during prolonged space exploration. Focusing on the thymus as a central hub of immune vulnerability underscores its pivotal role in spaceflight-induced health risks. Understanding these dynamics will not only enhance the safety of human space missions but also provide critical insights into thymus biology under extreme conditions.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| | - Taishin Akiyama
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - George S. Karagiannis
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States
- The Marilyn and Stanely M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| |
Collapse
|
2
|
Diak DM, Crucian BE, Nelman-Gonzalez M, Mehta SK. Saliva Diagnostics in Spaceflight Virology Studies-A Review. Viruses 2024; 16:1909. [PMID: 39772216 PMCID: PMC11680219 DOI: 10.3390/v16121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Many biological markers of normal and disease states can be detected in saliva. The benefits of saliva collection for research include being non-invasive, ease of frequent sample collection, saving time, and being cost-effective. A small volume (≈1 mL) of saliva is enough for these analyses that can be collected in just a few minutes. For "dry" saliva paper matrices, additional drying times (about 30 min) may be needed, but this can be performed at room temperature without the need for freezers and specialized equipment. Together, these make saliva an ideal choice of body fluid for many clinical studies from diagnosis to monitoring measurable biological substances in hospital settings, remote, and other general locations including disaster areas. For these reasons, we have been using saliva (dry as well as wet) from astronauts participating in short- and long-duration space missions for over two decades to conduct viral, stress, and immunological studies. We have also extended the use of saliva to space analogs including bed rest, Antarctica, and closed-chamber studies. Saliva is a biomarker-rich and easily accessible body fluid that could enable larger and faster public health screenings, earlier disease detection, and improved patient outcomes. This review summarizes our lessons learned from utilizing saliva in spaceflight research and highlights the advantages and disadvantages of saliva in clinical diagnostics.
Collapse
Affiliation(s)
- Douglass M. Diak
- Aegis Aerospace, Human Health and Performance Directorate, Houston, TX 77058, USA;
| | - Brian E. Crucian
- National Aeronautics and Space Administration (NASA) Johnson Space Center, Human Health and Performance Directorate, Houston, TX 77058, USA
| | | | - Satish K. Mehta
- JES Tech, Human Health and Performance Directorate, Houston, TX 77058, USA
| |
Collapse
|
3
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
4
|
Wadhwa A, Moreno-Villanueva M, Crucian B, Wu H. Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks. Immun Ageing 2024; 21:50. [PMID: 39033285 PMCID: PMC11264846 DOI: 10.1186/s12979-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.
Collapse
Affiliation(s)
- Anna Wadhwa
- Harvard Medical School, Boston, MA, 02115, USA.
- NASA Johnson Space Center, Houston, TX, 77058, USA.
| | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, 77058, USA
| |
Collapse
|
5
|
Chen HL, Chen CH, Hsieh WC, Huang YH, Hsu TJ, Tsai FJ, Cheng YC, Hsu CY. The risk of herpes zoster is positively associated with obesity, especially morbid obesity. Sci Rep 2024; 14:14330. [PMID: 38906945 PMCID: PMC11192763 DOI: 10.1038/s41598-024-65195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
This study aimed to investigate the association between obesity and herpes zoster (HZ) occurrence. This study used data covering 2 million people in Taiwan in 2000, which were obtained from the National Health Insurance Research Database. The cohort study observed aged 20-100 years with obesity from 2000 to 2017 (tracking to 2018). Obesity was indicated by the presence of two or more outpatient diagnoses or at least one admission record. And, obesity was categorized into non-morbid obesity and morbid obesity. Patients with HZ before the index date were excluded. The obesity cohort and control cohort were matched 1:1 according to age, sex, comorbidities, and index year. There were 18,855 patients in both the obesity and control cohorts. The obesity cohort [adjusted hazard ratio (aHR) 1.09] had a higher risk of HZ than the control cohort. Further analysis, the morbid obesity group (aHR 1.47), had a significantly higher risk of HZ than the non-morbid obesity group. Among the patients without any comorbidities, the patients with obesity had a significantly higher risk of developing HZ than the patients without obesity (aHR 1.18). Obese patients are at a higher risk of HZ development, especially in the patients with morbid obesity. Weight reduction is critical for preventing the onset of chronic diseases and decreasing the risk of HZ in patients with obesity.
Collapse
Affiliation(s)
- Hsiao-Lan Chen
- Division of Respiratory Therapy, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Chia-Hung Chen
- Department of Medical Education, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Medical Imaging, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Wen-Che Hsieh
- Department of Chinese Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Yu-Han Huang
- Management Office for Health Data, Clinical Trial Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Ju Hsu
- Management Office for Health Data, Clinical Trial Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yung-Chi Cheng
- Department of Medical Education, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Rehabilitation, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Chao-Yu Hsu
- Department of Medical Education, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
- Department of Artificial Intelligence and Healthcare Management, Central Taiwan University of Science and Technology, Taichung, Taiwan.
- Center for General Education, National Taichung University of Science and Technology, Taichung, Taiwan.
- Department of General Education, National Chin-Yi University of Technology, Taichung, Taiwan.
| |
Collapse
|
6
|
Tomsia M, Cieśla J, Śmieszek J, Florek S, Macionga A, Michalczyk K, Stygar D. Long-term space missions' effects on the human organism: what we do know and what requires further research. Front Physiol 2024; 15:1284644. [PMID: 38415007 PMCID: PMC10896920 DOI: 10.3389/fphys.2024.1284644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Space has always fascinated people. Many years have passed since the first spaceflight, and in addition to the enormous technological progress, the level of understanding of human physiology in space is also increasing. The presented paper aims to summarize the recent research findings on the influence of the space environment (microgravity, pressure differences, cosmic radiation, etc.) on the human body systems during short-term and long-term space missions. The review also presents the biggest challenges and problems that must be solved in order to extend safely the time of human stay in space. In the era of increasing engineering capabilities, plans to colonize other planets, and the growing interest in commercial space flights, the most topical issues of modern medicine seems to be understanding the effects of long-term stay in space, and finding solutions to minimize the harmful effects of the space environment on the human body.
Collapse
Affiliation(s)
- Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Śmieszek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Florek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Macionga
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Niemeyer CS, Traina-Dorge V, Doyle-Meyers L, Das A, Looper J, Mescher T, Feia B, Medina E, Nagel MA, Mahalingam R, Bubak AN. Simian varicella virus infection and reactivation in rhesus macaques trigger cytokine and Aβ40/42 alterations in serum and cerebrospinal fluid. J Neurovirol 2024; 30:86-99. [PMID: 38453879 DOI: 10.1007/s13365-024-01196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Simian varicella virus (SVV) produces peripheral inflammatory responses during varicella (primary infection) and zoster (reactivation) in rhesus macaques (RM). However, it is unclear if peripheral measures are accurate proxies for central nervous system (CNS) responses. Thus, we analyzed cytokine and Aβ42/Aβ40 changes in paired serum and cerebrospinal fluid (CSF) during the course of infection. During varicella and zoster, every RM had variable changes in serum and CSF cytokine and Aβ42/Aβ40 levels compared to pre-inoculation levels. Overall, peripheral infection appears to affect CNS cytokine and Aβ42/Aβ40 levels independent of serum responses, suggesting that peripheral disease may contribute to CNS disease.
Collapse
Affiliation(s)
- Christy S Niemeyer
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA
| | - Vicki Traina-Dorge
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Lara Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Jayme Looper
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Teresa Mescher
- Department of Psychiatry Behavioral Health and Wellness Program, University of Colorado School of Medicine, Aurora, Co, 80045, USA
| | - Brittany Feia
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA
| | - Eva Medina
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA
| | - Maria A Nagel
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Co, 80045, USA
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA
| | - Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA.
| |
Collapse
|
8
|
Yin Y, Yang J, Gao G, Zhou H, Chi B, Yang HY, Li J, Wang Y. Enhancing cell-scale performance via sustained release of the varicella-zoster virus antigen from a microneedle patch under simulated microgravity. Biomater Sci 2024; 12:763-775. [PMID: 38164004 DOI: 10.1039/d3bm01440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The immune system of astronauts might become weakened in the microgravity environment in space, and the dormant varicella-zoster virus (VZV) in the body might be reactivated, seriously affecting their work and safety. For working in orbit for the long term, there is currently no efficient and durable delivery system of general vaccines in a microgravity environment. Accordingly, based on the previous foundation, we designed, modified, and synthesized a biodegradable and biocompatible copolymer, polyethylene glycol-polysulfamethazine carbonate urethane (PEG-PSCU) that could be mainly adopted to fabricate a novel sustained-release microneedle (S-R MN) patch. Compared with conventional biodegradable microneedles, this S-R MN patch could not only efficiently encapsulate protein vaccines (varicella-zoster virus glycoprotein E, VZV gE) but also further prolong the release time of VZV gE in a simulated microgravity (SMG) environment. Eventually, we verified the activation of dendritic cells by VZV gE released from the S-R MN patch in an SMG environment and the positive bioeffect of activated dendritic cells on lymphocytes using an in vitro lymph node model. This study is of great significance for the exploration of long-term specific immune responses to the VZV in an SMG environment.
Collapse
Affiliation(s)
- Yue Yin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Junyuan Yang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Bowen Chi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
9
|
Weinberg A, Scott Schmid D, Leung J, Johnson MJ, Miao C, Levin MJ. Predictors of 5-Year Persistence of Antibody Responses to Zoster Vaccines. J Infect Dis 2023; 228:1367-1374. [PMID: 37141390 PMCID: PMC10640777 DOI: 10.1093/infdis/jiad132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Protection against herpes zoster is primarily conferred by cell-mediated immunity. However, anti-varicella-zoster virus (VZV) glycoprotein (anti-gp) antibody responses to zoster vaccine live (ZVL) are correlated with protection, suggesting a potential protective role for antibody. Detailed studies of antibody responses to the recombinant zoster vaccine (RZV) are provided. METHODS We compared enzyme-linked immunosorbent assay-measured anti-VZV glycoproteins (anti-gp) and glycoprotein E (anti-gE) antibody levels and avidity in 159 participants randomized to RZV (n = 80) or ZVL (n = 79) recipients over 5 years after vaccination and identified predictors of antibody persistence. RESULTS The comparison between vaccine groups showed higher anti-gE and anti-gp antibody levels after RZV than after ZVL over the 5-year study duration. RZV recipients also had higher anti-gE avidity for 5 years and higher anti-gp avidity in the first year after vaccination. Compared with prevaccination levels, RZV recipients maintained higher levels of anti-gE antibodies and avidity for 5 years, whereas ZVL recipients only maintained higher anti-gE avidity. Anti-gp antibody levels and avidity decreased to prevaccination levels or below beyond 1 year after vaccination in both groups. Independent predictors of persistence of antibody levels and avidity included vaccine type, prevaccination and peak antibody levels and avidity, prevaccination and peak cell-mediated immunity, and age. Sex or prior ZVL administration did not affect persistence. CONCLUSIONS Antibody responses and avidity were higher and more persistent in RZV than in ZVL recipients. The effect of age on antibody persistence in RZV recipients is novel.
Collapse
Affiliation(s)
- Adriana Weinberg
- Department of Pediatrics, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pathology, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - D Scott Schmid
- Viral Vaccine Preventable Diseases Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica Leung
- Viral Vaccine Preventable Diseases Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael J Johnson
- Department of Pediatrics, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Congrong Miao
- Viral Vaccine Preventable Diseases Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Myron J Levin
- Department of Pediatrics, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Trubl G, Stedman KM, Bywaters KF, Matula EE, Sommers P, Roux S, Merino N, Yin J, Kaelber JT, Avila-Herrera A, Johnson PA, Johnson JC, Borges S, Weber PK, Pett-Ridge J, Boston PJ. Astrovirology: how viruses enhance our understanding of life in the Universe. INTERNATIONAL JOURNAL OF ASTROBIOLOGY 2023; 22:247-271. [PMID: 38046673 PMCID: PMC10691837 DOI: 10.1017/s1473550423000058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.
Collapse
Affiliation(s)
- Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth M. Stedman
- Center for Life in Extreme Environments, Department of Biology, Portland State University, Portland, OR, USA
| | | | | | | | - Simon Roux
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Nancy Merino
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Aram Avila-Herrera
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter Anto Johnson
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Peter K. Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | | |
Collapse
|
11
|
Zheng M, Charvat J, Zwart SR, Mehta SK, Crucian BE, Smith SM, He J, Piermarocchi C, Mias GI. Time-resolved molecular measurements reveal changes in astronauts during spaceflight. Front Physiol 2023; 14:1219221. [PMID: 37520819 PMCID: PMC10376710 DOI: 10.3389/fphys.2023.1219221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
From the early days of spaceflight to current missions, astronauts continue to be exposed to multiple hazards that affect human health, including low gravity, high radiation, isolation during long-duration missions, a closed environment and distance from Earth. Their effects can lead to adverse physiological changes and necessitate countermeasure development and/or longitudinal monitoring. A time-resolved analysis of biological signals can detect and better characterize potential adverse events during spaceflight, ideally preventing them and maintaining astronauts' wellness. Here we provide a time-resolved assessment of the impact of spaceflight on multiple astronauts (n = 27) by studying multiple biochemical and immune measurements before, during, and after long-duration orbital spaceflight. We reveal space-associated changes of astronauts' physiology on both the individual level and across astronauts, including associations with bone resorption and kidney function, as well as immune-system dysregulation.
Collapse
Affiliation(s)
- Minzhang Zheng
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Sara R. Zwart
- University of Texas Medical Branch, Galveston, TX, United States
| | | | | | | | - Jin He
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Carlo Piermarocchi
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Jacob P, Oertlin C, Baselet B, Westerberg LS, Frippiat JP, Baatout S. Next generation of astronauts or ESA astronaut 2.0 concept and spotlight on immunity. NPJ Microgravity 2023; 9:51. [PMID: 37380641 DOI: 10.1038/s41526-023-00294-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
Although we have sent humans into space for more than 50 years, crucial questions regarding immune response in space conditions remain unanswered. There are many complex interactions between the immune system and other physiological systems in the human body. This makes it difficult to study the combined long-term effects of space stressors such as radiation and microgravity. In particular, exposure to microgravity and cosmic radiation may produce changes in the performance of the immune system at the cellular and molecular levels and in the major physiological systems of the body. Consequently, abnormal immune responses induced in the space environment may have serious health consequences, especially in future long-term space missions. In particular, radiation-induced immune effects pose significant health challenges for long-duration space exploration missions with potential risks to reduce the organism's ability to respond to injuries, infections, and vaccines, and predispose astronauts to the onset of chronic diseases (e.g., immunosuppression, cardiovascular and metabolic diseases, gut dysbiosis). Other deleterious effects encountered by radiation may include cancer and premature aging, induced by dysregulated redox and metabolic processes, microbiota, immune cell function, endotoxin, and pro-inflammatory signal production1,2. In this review, we summarize and highlight the current understanding of the effects of microgravity and radiation on the immune system and discuss knowledge gaps that future studies should address.
Collapse
Affiliation(s)
- Pauline Jacob
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christian Oertlin
- Karolinska Institutet, Department of Microbiology Tumor and Cell biology, Stockholm, SE-17177, Sweden
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Lisa S Westerberg
- Karolinska Institutet, Department of Microbiology Tumor and Cell biology, Stockholm, SE-17177, Sweden
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
- Department of Molecular Biotechnology, Gent University, Gent, Belgium.
| |
Collapse
|
13
|
Zheng M, Charvat J, Zwart SR, Mehta S, Crucian BE, Smith SM, He J, Piermarocchi C, Mias GI. Time-resolved molecular measurements reveal changes in astronauts during spaceflight. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.530234. [PMID: 36993537 PMCID: PMC10055136 DOI: 10.1101/2023.03.17.530234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
From the early days of spaceflight to current missions, astronauts continue to be exposed to multiple hazards that affect human health, including low gravity, high radiation, isolation during long-duration missions, a closed environment and distance from Earth. Their effects can lead to adverse physiological changes and necessitate countermeasure development and/or longitudinal monitoring. A time-resolved analysis of biological signals can detect and better characterize potential adverse events during spaceflight, ideally preventing them and maintaining astronauts' wellness. Here we provide a time-resolved assessment of the impact of spaceflight on multiple astronauts (n=27) by studying multiple biochemical and immune measurements before, during, and after long-duration orbital spaceflight. We reveal space-associated changes of astronauts' physiology on both the individual level and across astronauts, including associations with bone resorption and kidney function, as well as immune-system dysregulation.
Collapse
|
14
|
Wang CA, Chen CH, Hsieh WC, Hsu TJ, Hsu CY, Cheng YC, Hsu CY. Risk of Herpes Zoster in Patients with Pulmonary Tuberculosis-A Population-Based Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2656. [PMID: 36768020 PMCID: PMC9916360 DOI: 10.3390/ijerph20032656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Pulmonary tuberculosis (TB), a global health problem, is typically caused by the bacterium Mycobacterium tuberculosis. Herpes zoster (HZ) is caused by the reactivation of the varicella-zoster virus (VZV). The reactivation of VZV can be caused by stress. We investigated whether pulmonary TB increases the risk of HZ development. METHODS This study used data that sampled a population of 2 million people in 2000 from the National Health Insurance Research Database. This cohort study observed Taiwanese patients aged 20-100 years with pulmonary TB from 2000 to 2017 (tracked to 2018). Pulmonary TB was defined as having two or more outpatient diagnoses or at least one admission record. To address potential bias caused by confounding factors, the control cohort and pulmonary TB cohort were matched 1:1 by age, gender, index year, and comorbidities. Patients with HZ before the index date were excluded. RESULTS A total of 30,805 patients were in the pulmonary TB and control cohorts. The incidence rate of HZ in pulmonary TB and control cohorts were 12.00 and 9.66 per 1000 person-years, respectively. The risk of HZ in the pulmonary TB cohort (adjusted hazard ratios = 1.23; 95% confidence interval = 1.16-1.30) was significantly higher than that of in control cohort. Among patients without comorbidities, the patients with TB were 1.28-fold more likely to have HZ than those without TB. CONCLUSION Patients with TB should be well treated to avoid the potential risk of HZ occurrence. Although we identified the association between pulmonary TB and HZ, further studies are needed to confirm the result.
Collapse
Affiliation(s)
- Chih-An Wang
- Division of Respiratory Therapy, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan
| | - Chia-Hung Chen
- Department of Medical Education, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan
- Department of Medical Imaging, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan
| | - Wen-Che Hsieh
- Department of Chinese Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan
| | - Tzu-Ju Hsu
- Management Office for Health Data, Clinical Trial Research Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Chung-Y. Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Yung-Chi Cheng
- Department of Medical Education, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan
- Department of Rehabilitation, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan
| | - Chao-Yu Hsu
- Department of Medical Education, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan
- Department of Artificial Intelligence and Healthcare Management, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
- Center for General Education, National Taichung University of Science and Technology, Taichung 404, Taiwan
- Department of General Education, National Chin-Yi University of Technology, Taichung 411, Taiwan
| |
Collapse
|
15
|
Nguyen CN, Urquieta E. Contemporary review of dermatologic conditions in space flight and future implications for long-duration exploration missions. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:147-156. [PMID: 36682824 DOI: 10.1016/j.lssr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Future planned exploration missions to outer space will almost surely require the longest periods of continuous space exposure by the human body yet. As the most external organ, the skin seems the most vulnerable to injury. Therefore, discussion of the dermatological implications of such extended-duration missions is critical. OBJECTIVES In order to help future missions understand the risks of spaceflight on the human skin, this review aims to consolidate data from the current literature pertaining to the space environment and its physiologic effects on skin, describe all reported dermatologic manifestations in spaceflight, and extrapolate this information to longer-duration mission. METHODS AND MATERIALS The authors searched PubMed and Google Scholar using keywords and Mesh terms. The publications that were found to be relevant to the objectives were included and described. RESULTS The space environment causes changes in the skin at the cellular level by thinning the epidermis, altering wound healing, and dysregulating the immune system. Clinically, dermatological conditions represented the most common medical issues occurring in spaceflight. We predict that as exploration missions increase in duration, astronauts will experience further physiological changes and an increased rate and severity of adverse events. CONCLUSION Maximizing astronaut safety requires a continued knowledge of the human body's response to space, as well as consideration and prediction of future events. Dermatologic effects of space missions comprise the majority of health-related issues arising on missions to outer space, and these issues are likely to become more prominent with increasing time spent in space. Improvements in hygiene may mitigate some of these conditions.
Collapse
Affiliation(s)
| | - Emmanuel Urquieta
- Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine. Houston TX, United States; Translational Research Institute for Space Health, Houston, TX, United States
| |
Collapse
|
16
|
Hirayama J, Hattori A, Takahashi A, Furusawa Y, Tabuchi Y, Shibata M, Nagamatsu A, Yano S, Maruyama Y, Matsubara H, Sekiguchi T, Suzuki N. Physiological consequences of space flight, including abnormal bone metabolism, space radiation injury, and circadian clock dysregulation: Implications of melatonin use and regulation as a countermeasure. J Pineal Res 2023; 74:e12834. [PMID: 36203395 DOI: 10.1111/jpi.12834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.
Collapse
Affiliation(s)
- Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences & Division of Health Sciences, Graduate School of Sustainable Systems Science, Komatsu University, Komatsu, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Masahiro Shibata
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Noto-cho, Ishikawa, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| |
Collapse
|
17
|
Varicella Vaccine: a Molecular Variant That May Contribute to Attenuation. mBio 2022; 13:e0312022. [PMID: 36468883 PMCID: PMC9765671 DOI: 10.1128/mbio.03120-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Varicella was troublesome when varicella vaccine (vOka) was licensed in the United States. Varicella's yearly death toll was ~100, indirect costs were massive, and varicella threatened immunocompromised children. Since licensure, varicella has almost disappeared; nevertheless, vOka attenuation has lacked a molecular explanation. Sadaoka et al. (T. Sadaoka, D. P. Depledge, L. Rajbhandari, J. Breuer, et al., mBio 13:e0186422, 2022, https://doi.org/10.1128/mbio.01864-22), however, have now identified 6 core single nucleotide polymorphisms (SNPs), which singly or in combination may contribute to VOka attenuation; moreover, they found a predominant variant allele of vOka encoding the viral glycoprotein gB that results in glutamine instead of arginine at amino acid 699. This change impairs fusion activity and the ability of varicella-zoster virus (VZV) to infect human neurons from axon terminals. Molecular virological studies of vOka are reassuring in suggesting that reversion to virulence is unlikely and should also help assuage current fears about VZV vaccination and alleviate unanticipated future problems. The impressive work of Sadaoka et al. thus represents an auspicious advance in knowledge.
Collapse
|
18
|
Silent Reactivation of Varicella Zoster Virus in Pregnancy: Implications for Maintenance of Immunity to Varicella. Viruses 2022; 14:v14071438. [PMID: 35891418 PMCID: PMC9318610 DOI: 10.3390/v14071438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
We encountered two cases of varicella occurring in newborn infants. Because the time between birth and the onset of the illness was much shorter than the varicella incubation period, the cases suggested that the infection was maternally acquired, despite the fact that neither mother experienced clinical zoster. Thus, we tested the hypothesis that VZV frequently reactivates asymptomatically in late pregnancy. The appearance of DNA-encoding VZV genes in saliva was used as an indicator of reactivation. Saliva was collected from 5 women in the first and 14 women in the third trimesters of pregnancy and analyzed at two different sites, at one using nested PCR and at the other using quantitative PCR (qPCR). No VZV DNA was detected at either site in the saliva of women during the first trimester; however, VZV DNA was detected in the majority of samples of saliva (11/12 examined by nested PCR; 7/10 examined by qPCR) during the third trimester. These observations suggest that VZV reactivation occurs commonly during the third trimester of pregnancy. It is possible that this phenomenon, which remains in most patients below the clinical threshold, provides an endogenous boost to immunity and, thus, is beneficial.
Collapse
|
19
|
Blachowicz A, Romsdahl J, Chiang AJ, Masonjones S, Kalkum M, Stajich JE, Torok T, Wang CCC, Venkateswaran K. The International Space Station Environment Triggers Molecular Responses in Aspergillus niger. Front Microbiol 2022; 13:893071. [PMID: 35847112 PMCID: PMC9280654 DOI: 10.3389/fmicb.2022.893071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Due to immense phenotypic plasticity and adaptability, Aspergillus niger is a cosmopolitan fungus that thrives in versatile environments, including the International Space Station (ISS). This is the first report of genomic, proteomic, and metabolomic alterations observed in A. niger strain JSC-093350089 grown in a controlled experiment aboard the ISS. Whole-genome sequencing (WGS) revealed that ISS conditions, including microgravity and enhanced irradiation, triggered non-synonymous point mutations in specific regions, chromosomes VIII and XII of the JSC-093350089 genome when compared to the ground-grown control. Proteome analysis showed altered abundance of proteins involved in carbohydrate metabolism, stress response, and cellular amino acid and protein catabolic processes following growth aboard the ISS. Metabolome analysis further confirmed that space conditions altered molecular suite of ISS-grown A. niger JSC-093350089. After regrowing both strains on Earth, production of antioxidant—Pyranonigrin A was significantly induced in the ISS-flown, but not the ground control strain. In summary, the microgravity and enhanced irradiation triggered unique molecular responses in the A. niger JSC-093350089 suggesting adaptive responses.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jillian Romsdahl
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Abby J. Chiang
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Sawyer Masonjones
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Markus Kalkum
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Tamas Torok
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
- *Correspondence: Kasthuri Venkateswaran,
| |
Collapse
|
20
|
von Hofsten J, Bergström T, Zetterberg M. Absence of Herpesvirus DNA in Aqueous Humor from Asymptomatic Subjects. Clin Ophthalmol 2022; 16:959-962. [PMID: 35386612 PMCID: PMC8977772 DOI: 10.2147/opth.s358964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To assess herpesvirus DNA detection in aqueous humor from a cohort of asymptomatic Scandinavian patients undergoing elective cataract surgery. Patients and Methods Prospective case series. Aqueous samples were obtained from 30 patients undergoing elective cataract surgery. Polymerase chain reaction (PCR) analysis for herpes simplex virus 1 (HSV1), herpes simplex virus 2 (HSV2), cytomegalovirus (CMV), Epstein Barr virus (EBV) was performed. Toxoplasma was added to the analysis due to its role as pathogen with ocular latency. Results Mean age of participants was 75.3 years. Sixteen subjects (53%) had ocular comorbidities. Five subjects (17%) had endothelial dysfunction without known hereditary pattern. None of the samples were positive for herpesviruses or toxoplasma. Conclusion None of the aqueous samples were positive, suggesting shedding does not frequently occur in the aqueous humor of asymptomatic patients.
Collapse
Affiliation(s)
- Joanna von Hofsten
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden.,Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, SE- 301 85, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-413 46, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden.,Department of Ophthalmology, Sahlgrenska University Hospital, Mölndal, SE-431 30, Sweden
| |
Collapse
|
21
|
Hsieh WC, Chen CH, Cheng YC, Yu TS, Hsu CY, Ke DS, Lin CM, Hsu CY. The Risk of Herpes Zoster in Women with Polycystic Ovary Syndrome: A Retrospective Population-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053094. [PMID: 35270787 PMCID: PMC8909925 DOI: 10.3390/ijerph19053094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Background: The association between polycystic ovary syndrome (PCOS) and the risk of herpes zoster (HZ) remains unclear. This study investigated the risk of HZ in women with PCOS. Methods: This study used data from the Longitudinal Generation Tracking Database (LGTD 2005) which contains the information of 2 million randomly selected from National Health Insurance beneficiaries. Patients who received a diagnosis of PCOS between 2000 and 2017 were included in the PCOS cohort. Patients who were not diagnosed as having PCOS were randomly selected from the LGTD 2005 and included in the control cohort. Patients who were aged <20 years and had a history of HZ before the index date were excluded. Patients who were in both the cohorts were matched at a ratio of 1:1 through propensity score matching based on age, comorbidities, and medication. The primary outcome was the diagnosis of HZ. Results: A total of 20,142 patients were included in each case and control cohorts. The incidence rates of HZ in the PCOS and control cohorts were 3.92 and 3.17 per 1000 person-years, respectively. The PCOS cohort had a significantly higher risk of HZ than did the control cohort (adjusted hazard ratios [aHR] = 1.26). Among the patients aged 30−39 years, those with PCOS had a significantly higher risk of HZ than did those without PCOS (aHR = 1.31). Among the patients without any comorbidities, those with PCOS had a significantly higher risk of HZ (aHR = 1.26) than did those without PCOS. Conclusion: PCOS is associated with the risk of HZ, especially in young women. The risk of HZ should be addressed while treating patients with PCOS. An HZ vaccine is recommended for these patients.
Collapse
Affiliation(s)
- Wen-Che Hsieh
- Department of Chinese Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan;
| | - Chia-Hung Chen
- Department of Medical Education, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan; (C.-H.C.); (Y.-C.C.)
- Department of Medical Imaging, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan
| | - Yung-Chi Cheng
- Department of Medical Education, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan; (C.-H.C.); (Y.-C.C.)
- Department of Rehabilitation, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan
| | - Teng-Shun Yu
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan;
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chung Y. Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
| | - Der-Shin Ke
- Department of Neurology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan;
| | - Chih-Ming Lin
- Department of Laboratory Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan
- Correspondence: (C.-M.L.); (C.-Y.H.)
| | - Chao-Yu Hsu
- Department of Medical Education, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan; (C.-H.C.); (Y.-C.C.)
- Department of Optometry/Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
- Center for General Education, National Taichung University of Science and Technology, Taichung 404, Taiwan
- Department of General Education, National Chin-Yi University of Technology, Taichung 411, Taiwan
- Correspondence: (C.-M.L.); (C.-Y.H.)
| |
Collapse
|
22
|
Munasinghe BM, Fernando UPM, Mathurageethan M, Sritharan D. Reactivation of varicella-zoster virus following mRNA COVID-19 vaccination in a patient with moderately differentiated adenocarcinoma of rectum: A case report. SAGE Open Med Case Rep 2022; 10:2050313X221077737. [PMID: 35237441 PMCID: PMC8882941 DOI: 10.1177/2050313x221077737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Herpes zoster which is the reactivation of varicella-zoster virus, a pathogenic human
alpha-herpes virus, following primary infection or chicken pox, is known to occur
especially in advanced age and in the immunocompromised among other predisposing factors.
COVID-19 vaccination-induced immunomodulation is a novel scenario, hypothesized to be a
result of shifting of T-lymphocyte population towards vaccine-induced naïve CD8+ subset,
offsetting the balance of varicella-zoster virus responsive T-helper cells, thereby
defecting the cell-mediated immunity which suppresses the latent varicella-zoster virus.
The exact mechanism, however, is still elusive. Herein, we discuss a case of reactivation
of varicella-zoster virus following BNT162b2 mRNA COVID-19 vaccine in an elderly female on
oral medication for long-term diabetes and hypertension with good control who has
undergone local radiotherapy for an underlying adenocarcinoma of rectum awaiting surgical
resection, highlighting the key features of pathogenesis of the disease in relation to
COVID-19 vaccination with a pertinent survey of the literature. This case report
highlights the importance of differentiating vaccine-related cutaneous reactions with
clinically more significant adverse events, early specific therapy thus preventing poorer
acute and chronic outcomes.
Collapse
Affiliation(s)
| | - UPM Fernando
- National Blood Transfusion Service, Colombo, Sri Lanka
| | | | | |
Collapse
|
23
|
Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? ASTROBIOLOGY 2022; 22:210-224. [PMID: 34981957 PMCID: PMC8861927 DOI: 10.1089/ast.2021.0009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Viruses constitute a significant part of the human microbiome, so wherever humans go, viruses are brought with them, even on space missions. In this mini review, we focus on the International Space Station (ISS) as the only current human habitat in space that has a diverse range of viral genera that infect microorganisms from bacteria to eukaryotes. Thus, we have reviewed the literature on the physical conditions of space habitats that have an impact on both virus transmissibility and interaction with their host, which include UV radiation, ionizing radiation, humidity, and microgravity. Also, we briefly comment on the practices used on space missions that reduce virus spread, that is, use of antimicrobial surfaces, spacecraft sterilization practices, and air filtration. Finally, we turn our attention to the health threats that viruses pose to space travel. Overall, even though efforts are taken to ensure safe conditions during human space travel, for example, preflight quarantines of astronauts, we reflect on the potential risks humans might be exposed to and how those risks might be aggravated in extraterrestrial habitats.
Collapse
Affiliation(s)
- Bruno Pavletić
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Runzheimer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Siems
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Stella Koch
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Marta Cortesão
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ana Ramos-Nascimento
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
- Address correspondence to: Ralf Moeller, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, Linder Hoehe, Building 24, Room 104, D-51147 Köln, Germany
| |
Collapse
|
24
|
Prikhodchenko NG. Varicella-pox virus infection: features of the course, clinical manifestations, complications, and possibilities for prevention. TERAPEVT ARKH 2021; 93:1401-1406. [DOI: 10.26442/00403660.2021.11.201192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
Varicella zoster virus (VZV) is a pathogenic human herpes virus that causes chickenpox as a primary infection, after which it persists for a long time and latently in the peripheral ganglia. Decades later, the virus can reactivate spontaneously, or after exposure to a number of triggering factors, causing herpes zoster (shingles). The reasons for the long-term persistence of VZV are gradually being revealed, but some issues remain unknown at the moment. Chickenpox and its complications are especially difficult in immunocompromised patients, but they are often found in people without risk factors. The most frequent and important complication of VZV reactivation is postherpetic neuralgia; encephalitis, segmental motor weakness and myelopathy, cranial neuropathies, and gastrointestinal complications often develop. The only scientifically proven effective and affordable way of mass prevention at the moment is vaccination. Chickenpox vaccines are safe and effective in preventing morbidity and mortality associated with the disease.
Collapse
|
25
|
Abstract
Michiaki Takahashi developed the live attenuated varicella vaccine in 1974 . This was the first, and is still the only, herpesvirus vaccine. Early studies showed promise, but the vaccine was rigorously tested on immunosuppressed patients because of their high risk of fatal varicella; vaccination proved to be lifesaving. Subsequently, the vaccine was found to be safe and effective in healthy children. Eventually, varicella vaccine became a component of measles mumps rubella vaccine, 2 doses of which are administered in the USA to ~90% of children. The incidence of varicella has dropped dramatically in the USA since vaccine-licensure in 1995. Varicella vaccine is also associated with a decreased incidence of zoster and is protective for susceptible adults. Today, immunocompromised individuals are protected against varicella due to vaccine-induced herd immunity. Latent infection with varicella zoster virus occurs after vaccination; however, the vaccine strain is impaired for its ability to reactivate.
Collapse
Affiliation(s)
- Anne A Gershon
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Michael D Gershon
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | |
Collapse
|
26
|
Lee KH, Choi S, Kwon JS, Kim SH, Park SY. Varicella zoster virus (VZV)-specific immunity and subclinical VZV reactivation in patients with autoimmune diseases. Korean J Intern Med 2021; 36:992-1000. [PMID: 34126665 PMCID: PMC8273822 DOI: 10.3904/kjim.2020.672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/AIMS The risk of herpes zoster (HZ) is increased in patients with autoimmune diseases (AID), probably due to immunosuppressive therapy. METHODS This prospective cross-sectional study investigated varicella zoster virus (VZV)-specific immunity in relation to subclinical VZV reactivation in 48 AID patients and 48 healthy controls (HCs). We assessed humoral immunity (serum VZV immunoglobulin g [IgG], IgA, and IgM) and cell-mediated immunity (interferon-γ [IFNγ]-releasing assay) to VZV as well as salivary VZV DNA status. Subclinical VZV reactivation was confirmed by detecting VZV DNA in saliva or VZV IgM in serum in the absence of typical HZ symptoms. RESULTS Median IgA levels were higher in the AID group than in the HC group, while VZV IgG and IgM levels were comparable between the groups. AID patients showed fewer IFNγ spot-forming cells (SFCs) upon VZV stimulation than HCs (58.2 vs. 122.0 SFCs/106 peripheral blood mononuclear cells [PBMCs], p < 0.0001). Subclinical VZV reactivation was more frequent in AID patients than in HCs (12.5% vs. 0%, p = 0.01). AID patients with VZV reactivation received prednisolone more frequently and at a higher dose than AID patients without reactivation. VZV-specific IFNγ SFCs were significantly lower in patients with VZV reactivation among AID patients (26.3 vs. 62.6 SFCs/106 PBMCs, p < 0.0001). CONCLUSION Results suggest that poor cellular response against VZV might cause clinical and subclinical reactivation of VZV in AID patients.
Collapse
Affiliation(s)
- Kwang-Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang,
Korea
| | - Sungim Choi
- Division of Infectious Diseases, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang,
Korea
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Seong Yeon Park
- Division of Infectious Diseases, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang,
Korea
| |
Collapse
|
27
|
Gillard P, Povey M, Carryn S. Clinically- versus serologically-identified varicella: A hidden infection burden. A ten-year follow-up from a randomized study in varicella-endemic countries. Hum Vaccin Immunother 2021; 17:3747-3756. [PMID: 34181506 PMCID: PMC8437481 DOI: 10.1080/21645515.2021.1932217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Varicella-zoster virus (VZV) infections cause a substantial disease burden, which is underestimated due to incomplete reporting data and lack of serological surveillance. In this post-hoc analysis of a randomized, Phase IIIb clinical trial (NCT00226499) with a ten-year follow-up period, we report anti-VZV antibody levels and persistence in non-vaccinated children, as a varicella infection estimate in ten European countries with endemic varicella. The present analysis specifically focuses on clinical and serological data from the control group, which included 827 healthy participants aged 12–22 months who received two doses of measles-mumps-rubella (MMR) vaccine. The per-protocol cohort included 744 children for whom varicella occurrence was evaluated by clinical definitions, epidemiological links and PCR test outcomes. Anti-VZV antibody levels were assessed by ELISA. The primary objective of this analysis was to correlate varicella occurrence with anti-VZV antibody levels. Varicella was confirmed in 47% of MMR recipients. Among participants without reported varicella, the percentage of anti-VZV seropositive children increased to 75% and average anti-VZV antibody concentrations increased to 250 mIU/mL at year ten after vaccination, suggesting infection or exposure. An eight-fold increase in anti-VZV antibody concentrations between two consecutive visits, which is also observed after confirmed varicella, was detected in 37% of these participants during the follow-up period. About one-third of children not vaccinated against varicella and not diagnosed with varicella developed an anti-VZV immune response, suggesting subclinical varicella occurrence. Longitudinal studies combining serology and disease incidence are necessary to reliably estimate total varicella burden of infection.
Collapse
|
28
|
Ra SH, Kwon JS, Kim JY, Cha HH, Lee HJ, Jung J, Kim MJ, Chong YP, Lee SO, Choi SH, Kim YS, Kim WY, Kim SH. Frequency of putative enteric zoster diagnosed using saliva samples in patients with abdominal pain: a prospective study. Infect Dis (Lond) 2021; 53:713-718. [PMID: 33830871 DOI: 10.1080/23744235.2021.1908593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Varicella-zoster virus (VZV) infects and establishes latency in neurons in the ganglia of the cranial nerve, dorsal root and enteric ganglia. VZV reactivation in enteric neurons (enteric zoster) can cause non-specific abdominal pain and/or serious gastrointestinal dysfunction without cutaneous manifestations. Detection of VZV DNA in saliva may be useful for identifying enteric zoster. We evaluated the frequency of putative enteric zoster based on the presence of salivary VZV DNA in patients with acute abdominal pain. METHODS Adult patients who visited the emergency room due to moderate to severe acute abdominal pain were prospectively enrolled at a tertiary hospital between May 2019 and November 2019. Abdominopelvic computed tomography (APCT) was performed in all patients. We also evaluated the presence of salivary VZV DNA in patients with confirmed coronavirus disease-19 (COVID-19) who were under stressful conditions. Saliva samples were collected from all studied patients. Enteric zoster was suspected based on the presence of salivary VZV DNA, detected using real-time polymerase chain reaction (PCR). RESULTS Fifty patients with moderate to severe abdominal pain were enrolled. Five of 50 patients exhibited positive VZV-DNA PCR results. APCT revealed that among these five patients, two had pancreatic head cancer, two had small bowel obstruction after intra-abdominal surgery, and one had no remarkable findings. However, all 14 patients with COVID-19 showed negative salivary VZV-DNA PCR results. CONCLUSIONS Approximately 10% of patients with moderate to severe acute abdominal pain showed positivity for salivary VZV DNA. Further studies are warranted on whether antiviral therapy based on salivary VZV-DNA PCR results may relieve abdominal pain in the studied patient population. TRIAL REGISTRATION clinicaltrial.gov, number NCT03862092.
Collapse
Affiliation(s)
- Sang Hyun Ra
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye-Hee Cha
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun-Jung Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Young Kim
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Abstract
PURPOSE Several diseases have been identified as stressful factors for herpes zoster (HZ) infection. In this study, we investigated the risk of HZ infection in men with varicocele. METHODS We enlisted the data of patients with newly diagnosed varicocele between 2000 and 2012 from the Taiwanese National Health Insurance Research Database as case cohort. Four control patients were matched as per age and index year to a case patient. HZ diagnosis was the primary end point, and the follow-up period was considered as the time interval from the index date to the main outcome, withdrawal from the National Health Insurance program, or end of the study (31 December 2013). RESULTS In total, 8720 patients were recruited (1744 with varicocele and 6976 controls); the overall mean age was 36 years. Majority (85%) of the participants were 20-49 years old. HZ incidence was higher in patients with varicocele (5.60 per 1,000 person-years) than in the control group (4.01 per 1,000 person years). Patients with varicocele were 1.37 times more likely to develop HZ than the controls after adjustment. Compared with the control cohort, the adjusted hazards ratio (HR) of the varicocele cohort was higher in patients younger than 49 years old (adjusted HR = 1.60). CONCLUSION Men with varicocele had a higher risk of HZ development than those without varicocele, particularly those aged ≤49 years. Thus, stress from varicocele cannot be ignored in young men.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Department of Medical Education, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan.,Department of Optometry, Central Taiwan University of Science and Technology, Taichung, Taiwan.,Center for General Education, National Taichung University of Science and Technology, Taichung, Taiwan.,Department of General Education, National Chin-Yi University of Technology, Taichung, Taiwan.,Rural Generalist Program Japan, GENEPRO, Asahi Shi, Japan
| | - Der-Shin Ke
- Department of Medical Education, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.,Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
30
|
Buchheim JI, Ghislin S, Ouzren N, Albuisson E, Vanet A, Matzel S, Ponomarev S, Rykova M, Choukér A, Frippiat JP. Plasticity of the human IgM repertoire in response to long-term spaceflight. FASEB J 2020; 34:16144-16162. [PMID: 33047384 DOI: 10.1096/fj.202001403rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Immune dysregulation is among the main adverse outcomes of spaceflight. Despite the crucial role of the antibody repertoire in host protection, the effects of spaceflight on the human antibody repertoire are unknown. Consequently, using high-throughput sequencing, we examined the IgM repertoire of five cosmonauts 25 days before launch, after 64 ± 11 and 129 ± 20 days spent on the International Space Station (ISS), and at 1, 7, and 30 days after landing. This is the first study of this kind in humans. Our data revealed that the IgM repertoire of the cosmonauts was different from that of control subjects (n = 4) prior to launch and that two out the five analyzed cosmonauts presented significant changes in their IgM repertoire during the mission. These modifications persisted up to 30 days after landing, likely affected the specificities of IgM binding sites, correlated with changes in the V(D)J recombination process responsible for creating antibody genes, and coincided with a higher stress response. These data confirm that the immune system of approximately half of the astronauts who spent 6 months on the ISS is sensitive to spaceflight conditions, and reveal individual responses indicating that personalized approaches should be implemented during future deep-space exploration missions that will be of unprecedented durations.
Collapse
Affiliation(s)
- Judith-Irina Buchheim
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Stéphanie Ghislin
- Stress Immunity Pathogens Laboratory, EA 7300 Faculty of Medicine, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Nassima Ouzren
- Stress Immunity Pathogens Laboratory, EA 7300 Faculty of Medicine, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Eliane Albuisson
- DRCI, MPI Department, Methodology Unit, Data Management and Statistics UMDS, Nancy University Hospital, Vandoeuvre-lès-Nancy, France
| | - Anne Vanet
- University of Paris, Paris, France.,Genoinformatics Center, Jacques Monod Institute, UMR7592, CNRS, Paris, France
| | - Sandra Matzel
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Sergey Ponomarev
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Marina Rykova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA 7300 Faculty of Medicine, Lorraine University, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
31
|
Urbaniak C, Wong S, Tighe S, Arumugam A, Liu B, Parker CW, Wood JM, Singh NK, Skorupa DJ, Peyton BM, Jenson R, Karouia F, Dragon J, Venkateswaran K. Validating an Automated Nucleic Acid Extraction Device for Omics in Space Using Whole Cell Microbial Reference Standards. Front Microbiol 2020; 11:1909. [PMID: 32973700 PMCID: PMC7472602 DOI: 10.3389/fmicb.2020.01909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
NASA has made great strides in the past five years to develop a suite of instruments for the International Space Station in order to perform molecular biology in space. However, a key piece of equipment that has been lacking is an instrument that can extract nucleic acids from an array of complex human and environmental samples. The Omics in Space team has developed the μTitan (simulated micro(μ) gravity tested instrument for automated nucleic acid) system capable of automated, streamlined, nucleic acid extraction that is adapted for use under microgravity. The μTitan system was validated using a whole cell microbial reference (WCMR) standard comprised of a suspension of nine bacterial strains, titrated to concentrations that would challenge the performance of the instrument, as well as to determine the detection limits for isolating DNA. Quantitative assessment of system performance was measured by comparing instrument input challenge dose vs recovery by Qubit spectrofluorometry, qPCR, Bioanalyzer, and Next Generation Sequencing. Overall, results indicate that the μTitan system performs equal to or greater than a similar commercially available, earth-based, automated nucleic acid extraction device. The μTitan system was also tested in Yellowstone National Park (YNP) with the WCMR, to mimic a remote setting, with limited resources. The performance of the device at YNP was comparable to that in a laboratory setting. Such a portable, field-deployable, nucleic extraction system will be valuable for environmental microbiology, as well as in health care diagnostics.
Collapse
Affiliation(s)
- Camilla Urbaniak
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Season Wong
- AI Biosciences, College Station, TX, United States
| | - Scott Tighe
- University of Vermont, Burlington, VT, United States
| | | | - Bo Liu
- AI Biosciences, College Station, TX, United States
| | - Ceth W Parker
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jason M Wood
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin K Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | | | | | | | - Fathi Karouia
- NASA Ames Research Center, Moffett Field, CA, United States
| | - Julie Dragon
- University of Vermont, Burlington, VT, United States
| | - Kasthuri Venkateswaran
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
32
|
Liu Z, Luo G, Du R, Sun W, Li J, Lan H, Chen P, Yuan X, Cao D, Li Y, Liu C, Liang S, Jin X, Yang R, Bi Y, Han Y, Cao P, Zhao W, Ling S, Li Y. Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes 2020; 11:807-819. [PMID: 31924114 PMCID: PMC7524348 DOI: 10.1080/19490976.2019.1710091] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Interaction between humans and the gut microbiota is important for human physiology. Here, the gut microbiota was analyzed via metagenomic sequencing, and the fluctuations in the gut microbiota under the conditions of spaceflight were characterized. The composition and function of the gut microbiota were substantially affected by spaceflight; however, individual specificity was uncompromised. We further confirmed the species fluctuations and functional genes from both missions. Resistance and virulence genes in the gut microbiota were affected by spaceflight, but the species attributions remained stable. Spaceflight markedly affected the composition and function of the human gut microbiota, implying that the human gut microbiota is sensitive to spaceflight.
Collapse
Affiliation(s)
- Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Gui Luo
- Department of Rheumatology, Chinese PLA General Hospital, Beijing, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Haiyun Lan
- Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Pu Chen
- Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dengchao Cao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shuai Liang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ping Cao
- Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Wei Zhao
- Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China,CONTACT Shukuan Ling Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China,Yingxian Li
| |
Collapse
|
33
|
Kunz HE, Makedonas G, Mehta SK, Tyring SK, Vangipuram R, Quiriarte H, Nelman-Gonzalez M, Pierson DL, Crucian BE. Zoster patients on earth and astronauts in space share similar immunologic profiles. LIFE SCIENCES IN SPACE RESEARCH 2020; 25:119-128. [PMID: 32414485 DOI: 10.1016/j.lssr.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND On long-duration spaceflight, most astronauts experience persistent immune dysregulation and the reactivation of latent herpesviruses, including varicella zoster virus (VZV). To understand the clinical risk of these perturbations to astronauts, we paralleled the immunology and virology work-up of astronauts to otherwise healthy terrestrial persons with acute herpes zoster. METHODS Blood samples from 42 zoster patients - confirmed positive by PCR for VZV DNA in saliva (range from 100 to >285 million copies/mL) were analyzed for peripheral leukocyte distribution, T cell function, and plasma cytokine profiles via multi-parametric flow cytometry and multiplex bead-based immune-array assays. Patient findings were compared to normal value ranges specific for each assay that were defined in-house previously from healthy adult test subjects. RESULTS Compared to the healthy adult ranges, the zoster patients possess (1) a higher proportion of constitutively activated T-cells, (2) a T-cell population skewed towards a more experienced maturation state, (3) depressed general T-cell function, and (4) a higher concentration of 20 of 22 measured plasma cytokines. DISCUSSION The pattern of immune dysregulation in zoster patients is similar to that of astronauts during spaceflight who shed VZV DNA in their saliva. Because future deep space exploration missions will be of an unprecedented duration, prolonged immune depression and chronic viral reactivation threaten to manifest overt disease in exploration class astronauts.
Collapse
Affiliation(s)
| | | | | | - Stephen K Tyring
- University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Ramya Vangipuram
- University of Texas Houston Health Sciences Center, Houston, TX, United States
| | | | | | - Duane L Pierson
- NASA Johnson Space Center, 2101 E NASA Pkwy, Houston, TX 77058, United States
| | - Brian E Crucian
- NASA Johnson Space Center, 2101 E NASA Pkwy, Houston, TX 77058, United States.
| |
Collapse
|
34
|
Ranjan V, Mishra A, Kesarwani A, Mohan KV, Lal SN, Puliyel J, Upadhyay P. Mother-to-Child Transfer of Reactivated Varicella-Zoster Virus DNA and Varicella-Zoster IgG in Pregnancy. Viral Immunol 2019; 33:72-76. [PMID: 31834852 DOI: 10.1089/vim.2019.0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stress-induced subclinical reactivation of varicella-zoster virus (VZV) has been studied previously. However, subclinical reactivation of VZV induced by the stress of pregnancy has not been investigated. The objective was to study varicella DNA and varicella antibody levels in mothers and their newborn babies. VZV immunoglobulin G (IgG) levels in 350 mother-newborn dyads were studied using indirect enzyme-linked immunosorbent assay testing. A subset of 73 dyads was selected, DNA was isolated from the serum samples, and quantitative polymerase chain reaction (qPCR) was performed. Nearly 15% (14.6%) mothers tested were positive for varicella antibodies (>100 mIU/dL) and 16% were borderline (<100 and >50 mIU/dL). Approximately 16.9% of the babies were positive, and 18% were in borderline. Among those tested for VZV-DNA, 70% of mothers with low VZ-IgG (<100 mIU/dL) and 11.32% of those with high VZ-IgG (>100 mIU/dL) were positive for DNA. Among the newborns, 60% of those with low VZ-IgG and 15% of those with high VZ-IgG were positive for DNA. Mothers who have had VZV infection in the past can transmit VZV DNA to their babies.
Collapse
Affiliation(s)
- Vivek Ranjan
- Department of Pediatrics, St. Stephens Hospital, New Delhi, India
| | | | | | | | | | - Jacob Puliyel
- Department of Pediatrics, St. Stephens Hospital, New Delhi, India
| | | |
Collapse
|
35
|
Agha NH, Baker FL, Kunz HE, Spielmann G, Mylabathula PL, Rooney BV, Mehta SK, Pierson DL, Laughlin MS, Markofski MM, Crucian BE, Simpson RJ. Salivary antimicrobial proteins and stress biomarkers are elevated during a 6-month mission to the International Space Station. J Appl Physiol (1985) 2019; 128:264-275. [PMID: 31751178 DOI: 10.1152/japplphysiol.00560.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As the international space community plans for manned missions to Mars, spaceflight-associated immune dysregulation has been identified as a potential risk to the health and safety of the flight crew. There is a need to determine whether salivary antimicrobial proteins, which act as a first line of innate immune defense against multiple pathogens, are altered in response to long-duration (>6 mo) missions. We collected 7 consecutive days of whole and sublingual saliva samples from eight International Space Station (ISS) crewmembers and seven ground-based control subjects at nine mission time points, ~180 and ~60 days before launch (L-180/L-60), on orbit at flight days ~10 and ~90 (FD10/FD90) and ~1 day before return (R-1), and at R+0, R+18, R+33, and R+66 days after returning to Earth. We found that salivary secretory (s)IgA, lysozyme, LL-37, and the cortisol-to-dehydroepiandrosterone ratio were elevated in the ISS crew before (L-180) and during (FD10/FD90) the mission. "Rookie" crewmembers embarking on their first spaceflight mission had lower levels of salivary sIgA but increased levels of α-amylase, lysozyme, and LL-37 during and after the mission compared with the "veteran" crew who had previously flown. Latent herpesvirus reactivation was distinct to the ~6-mo mission crewmembers who performed extravehicular activity ("spacewalks"). Crewmembers who shed at least one latent virus had higher cortisol levels than those who did not shed. We conclude that long-duration spaceflight alters the concentration and/or secretion of several antimicrobial proteins in saliva, some of which are related to crewmember flight experience, biomarkers of stress, and latent viral reactivation.NEW & NOTEWORTHY Spaceflight-associated immune dysregulation may jeopardize future exploration-class missions. Salivary antimicrobial proteins act as a first line of innate immune defense. We report here that several of these proteins are elevated in astronauts during an International Space Station mission, particularly in those embarking on their first space voyage. Astronauts who shed a latent herpesvirus also had higher concentrations of salivary cortisol compared with those who did not shed. Stress-relieving countermeasures are needed to preserve immunity and prevent viral reactivation during prolonged voyages into deep space.
Collapse
Affiliation(s)
- Nadia H Agha
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Forrest L Baker
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas.,Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Hawley E Kunz
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas.,Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Guillaume Spielmann
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas.,School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana
| | - Preteesh L Mylabathula
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas.,Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Bridgette V Rooney
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas.,GeoControl Systems, Incorporated, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas
| | - Satish K Mehta
- JesTech, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas
| | - Duane L Pierson
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - Mitzi S Laughlin
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas.,Fondren Orthopedic Research Institute, Houston, Texas
| | - Melissa M Markofski
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Brian E Crucian
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - Richard J Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas.,Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,Department of Pediatrics, University of Arizona, Tucson, Arizona.,Department of Immunobiology, University of Arizona, Tucson, Arizona.,Department of Behavioral Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
36
|
Tovar Salazar A, McKhann A, Chen H, Bosch RJ, Weinberg A. Immune Correlates of Herpes Zoster in People Living with HIV on Effective Antiretroviral Therapy. AIDS Res Hum Retroviruses 2019; 35:890-895. [PMID: 31179712 DOI: 10.1089/aid.2019.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Herpes zoster (HZ) has high morbidity in people living with HIV (PLHIV). We investigated immunological factors that correlated with the development of HZ in PLHIV with controlled HIV replication on antiretroviral therapy (ART). PLHIV who developed HZ on ART (cases), with undetectable plasma HIV RNA, and CD4 counts ≥200 cells/μL were matched 1:1 to controls by CD4 count, age, gender, race, and duration of ART. Varicella-zoster virus (VZV)-specific T cells and circulating regulatory T cells (Treg) were measured by flow cytometry before and after HZ. Differences between cases and controls were assessed by paired t-tests and longitudinal changes by Wilcoxon signed rank test. HZ cases (N = 31) had higher CD4+FOXP3+CD25+% Treg before HZ compared with 31 controls. After VZV ex vivo restimulation, cases had lower T cell responses, including CD8+perforin+% cytotoxic T lymphocytes (CTLs), CD4+IL10+%, and CD4+TGFβ+% compared with controls. Overall, Treg negatively correlated with VZV-specific Th1 responses. Moreover, Treg decreased over time on ART in HZ cases, VZV-CTLs were stable and did not increase even after HZ. Increased circulating Treg and decreased VZV-specific T cell immune responses were associated with the risk of HZ in PLHIV. The kinetics of Treg over time, but not of VZV-CTLs, paralleled the natural history of HZ, whose incidence decreases over time on effective ART.
Collapse
Affiliation(s)
- Adriana Tovar Salazar
- Department of Pediatrics, Anschutz Medical Center University of Colorado Denver, Aurora, Colorado
| | - Ashley McKhann
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Huichao Chen
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Adriana Weinberg
- Department of Pediatrics, Anschutz Medical Center University of Colorado Denver, Aurora, Colorado
- Department of Medicine, Anschutz Medical Center University of Colorado Denver, Aurora, Colorado
- Department of Pathology, Anschutz Medical Center University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
37
|
Voorhies AA, Mark Ott C, Mehta S, Pierson DL, Crucian BE, Feiveson A, Oubre CM, Torralba M, Moncera K, Zhang Y, Zurek E, Lorenzi HA. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci Rep 2019; 9:9911. [PMID: 31289321 PMCID: PMC6616552 DOI: 10.1038/s41598-019-46303-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Over the course of a mission to the International Space Station (ISS) crew members are exposed to a number of stressors that can potentially alter the composition of their microbiomes and may have a negative impact on astronauts’ health. Here we investigated the impact of long-term space exploration on the microbiome of nine astronauts that spent six to twelve months in the ISS. We present evidence showing that the microbial communities of the gastrointestinal tract, skin, nose and tongue change during the space mission. The composition of the intestinal microbiota became more similar across astronauts in space, mostly due to a drop in the abundance of a few bacterial taxa, some of which were also correlated with changes in the cytokine profile of crewmembers. Alterations in the skin microbiome that might contribute to the high frequency of skin rashes/hypersensitivity episodes experienced by astronauts in space were also observed. The results from this study demonstrate that the composition of the astronauts’ microbiome is altered during space travel. The impact of those changes on crew health warrants further investigation before humans embark on long-duration voyages into outer space.
Collapse
Affiliation(s)
- Alexander A Voorhies
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD, USA
| | - C Mark Ott
- NASA-Johnson Space Center, Houston, TX, USA
| | | | | | | | | | | | - Manolito Torralba
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD, USA
| | - Kelvin Moncera
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD, USA
| | - Yun Zhang
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Hernan A Lorenzi
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD, USA.
| |
Collapse
|
38
|
Park SY, Kim JY, Kim JA, Kwon JS, Kim SM, Jeon NY, Kim MC, Chong YP, Lee SO, Choi SH, Kim YS, Woo JH, Kim SH. Diagnostic Usefulness of Varicella-Zoster Virus Real-Time Polymerase Chain Reaction Analysis of DNA in Saliva and Plasma Specimens From Patients With Herpes Zoster. J Infect Dis 2019; 217:51-57. [PMID: 29029120 DOI: 10.1093/infdis/jix508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/19/2017] [Indexed: 12/29/2022] Open
Abstract
Background We evaluated the diagnostic usefulness of polymerase chain reaction (PCR) analysis for detecting varicella-zoster virus (VZV) infection and reactivation of VZV, using DNA extracted from saliva and plasma specimens obtained from subjects with suspected herpes zoster and from healthy volunteers during stressful and nonstressful conditions. Methods There were 52 patients with a diagnosis of herpes zoster (group 1), 30 with a diagnosis of zoster-mimicking disease (group 2), and 27 healthy volunteers (group 3). Saliva and plasma samples were evaluated for VZV DNA by real-time PCR analysis. Results Among patients with suspected herpes zoster (ie, patients in groups 1 and 2), the sensitivity of PCR analysis of salivary DNA for detecting VZV (88%; 95% confidence interval [CI], 74%-95%) was significantly higher than that of PCR analysis of plasma DNA (28%; 95% CI, 16%-44%; P < .001), whereas the specificity of PCR analysis of salivary DNA (100%; 95% CI, 88%-100%) was similar to that of PCR analysis of plasma DNA (100%; 95% CI, 78%-100%; P > .99). VZV DNA was not detected in saliva and plasma samples from group 3 (0%; 95% CI, 0%-14%). Conclusions Real-time PCR analysis of salivary DNA is more sensitive than that of plasma DNA for detecting VZV among patients with suspected herpes zoster. We found no subclinical reactivation of VZV in group 3 following exposure to common stressful conditions.
Collapse
Affiliation(s)
- Seong Yeon Park
- Department of Infectious Diseases, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Ae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun-Mi Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Na Young Jeon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Chul Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun Hee Woo
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
Rooney BV, Crucian BE, Pierson DL, Laudenslager ML, Mehta SK. Herpes Virus Reactivation in Astronauts During Spaceflight and Its Application on Earth. Front Microbiol 2019; 10:16. [PMID: 30792698 PMCID: PMC6374706 DOI: 10.3389/fmicb.2019.00016] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/09/2019] [Indexed: 12/30/2022] Open
Abstract
Latent herpes virus reactivation has been demonstrated in astronauts during shuttle (10–16 days) and International Space Station (≥180 days) flights. Following reactivation, viruses are shed in the body fluids of astronauts. Typically, shedding of viral DNA is asymptomatic in astronauts regardless of mission duration; however, in some cases, live/infectious virus was recovered by tissue culture that was associated with atopic-dermatitis or skin lesions during and after spaceflight. Hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes activation during spaceflight occurs as indicated by increased levels of stress hormones including cortisol, dehydroepiandrosterone, epinephrine, and norepinephrine. These changes, along with a decreased cell mediated immunity, contribute to the reactivation of latent herpes viruses in astronauts. Currently, 47/89 (53%) astronauts from shuttle-flights and 14/23 (61%) astronauts from ISS missions shed one or more herpes viruses in saliva/urine samples. Astronauts shed Epstein–Barr virus (EBV), varicella-zoster virus (VZV), and herpes-simplex-1 (HSV-1) in saliva and cytomegalovirus (CMV) in urine. Larger quantities and increased frequencies for these viruses were found during spaceflight as compared to before or after flight samples and their matched healthy controls. The shedding did not abate during the longer ISS missions, but rather increased in frequency and amplitude. These findings coincided with the immune system dysregulation observed in astronauts from shuttle and ISS missions. VZV shedding increased from 41% in space shuttle to 65% in ISS missions, EBV increased 82 to 96%, and CMV increased 47 to 61%. In addition, VZV/CMV shed ≤30 days after ISS in contrast to shuttle where VZV/CMV shed up to 5 and 3 days after flight respectively. Continued shedding of infectious-virus post-flight may pose a potential risk for crew who may encounter newborn infants, sero-negative adults or any immunocompromised individuals on Earth. Therefore, developing spaceflight countermeasures to prevent viral reactivation is essential. Our spaceflight-developed technologies for saliva collection/rapid viral detection have been extended to include clinical applications including zoster patients, chicken pox, post-herpetic neuralgia, multiple sclerosis, and various neurological disorders. These protocols are employed in various clinics and hospitals including the CDC and Columbia University in New York, as well as overseas in Switzerland and Israel.
Collapse
Affiliation(s)
| | | | | | - Mark L Laudenslager
- Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, United States
| | - Satish K Mehta
- Jes Tech, KBR Wyle Laboratories Houston, Houston, TX, United States
| |
Collapse
|
40
|
Baird NL, Zhu S, Pearce CM, Viejo-Borbolla A. Current In Vitro Models to Study Varicella Zoster Virus Latency and Reactivation. Viruses 2019; 11:v11020103. [PMID: 30691086 PMCID: PMC6409813 DOI: 10.3390/v11020103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022] Open
Abstract
Varicella zoster virus (VZV) is a highly prevalent human pathogen that causes varicella (chicken pox) during primary infection and establishes latency in peripheral neurons. Symptomatic reactivation often presents as zoster (shingles), but it has also been linked to life-threatening diseases such as encephalitis, vasculopathy and meningitis. Zoster may be followed by postherpetic neuralgia, neuropathic pain lasting after resolution of the rash. The mechanisms of varicella zoster virus (VZV) latency and reactivation are not well characterized. This is in part due to the human-specific nature of VZV that precludes the use of most animal and animal-derived neuronal models. Recently, in vitro models of VZV latency and reactivation using human neurons derived from stem cells have been established facilitating an understanding of the mechanisms leading to VZV latency and reactivation. From the models, c-Jun N-terminal kinase (JNK), phosphoinositide 3-kinase (PI3K) and nerve growth factor (NGF) have all been implicated as potential modulators of VZV latency/reactivation. Additionally, it was shown that the vaccine-strain of VZV is impaired for reactivation. These models may also aid in the generation of prophylactic and therapeutic strategies to treat VZV-associated pathologies. This review summarizes and analyzes the current human neuronal models used to study VZV latency and reactivation, and provides some strategies for their improvement.
Collapse
Affiliation(s)
- Nicholas L Baird
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Shuyong Zhu
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany.
| | - Catherine M Pearce
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
41
|
Abstract
There are two licensed herpes zoster vaccines. One is a live vaccine (ZVL) based on an attenuated varicella-zoster virus (VZV). The other is a recombinant vaccine (RZV) based on the VZV glycoprotein E (gE) combined with AS01B, a multicomponent adjuvant system. RZV is superior to ZVL in efficacy, and differs from ZVL in that protection is not diminished by the age of the vaccinee and has not waned significantly during 4 years of follow-up. Immunologic studies demonstrated higher peak memory and persistence of T cell responses in RZV compared with ZVL recipients. RZV recipients also showed development and persistence of polyfunctional T cell responses. Taken together, we conclude that the immunologic data parallel and support the higher efficacy over time of RZV compared with ZVL.
Collapse
Affiliation(s)
- Myron J Levin
- a Departments of Pediatrics , University of Colorado Denver School of Medicine, Anschutz Medical Campus , Aurora , CO , USA.,b Department of Medicine , University of Colorado Denver School of Medicine, Anschutz Medical Campus , Aurora , CO , USA
| | - Adriana Weinberg
- a Departments of Pediatrics , University of Colorado Denver School of Medicine, Anschutz Medical Campus , Aurora , CO , USA.,b Department of Medicine , University of Colorado Denver School of Medicine, Anschutz Medical Campus , Aurora , CO , USA.,c Department of Pathology , University of Colorado Denver School of Medicine, Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
42
|
Blachowicz A, Chiang AJ, Romsdahl J, Kalkum M, Wang CCC, Venkateswaran K. Proteomic characterization of Aspergillus fumigatus isolated from air and surfaces of the International Space Station. Fungal Genet Biol 2019; 124:39-46. [PMID: 30611835 DOI: 10.1016/j.fgb.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
The on-going Microbial Observatory Experiments on the International Space Station (ISS) revealed the presence of various microorganisms that may be affected by the distinct environment of the ISS. The low-nutrient environment combined with enhanced irradiation and microgravity may trigger changes in the molecular suite of microorganisms leading to increased virulence and resistance of microbes. Proteomic characterization of two Aspergillus fumigatus strains, ISSFT-021 and IF1SW-F4, isolated from HEPA filter debris and cupola surface of the ISS, respectively, is presented, along with a comparison to well-studied clinical isolates Af293 and CEA10. In-depth analysis highlights variations in the proteome of both ISS-isolated strains when compared to the clinical strains. Proteins that showed increased abundance in ISS isolates were overall involved in stress responses, and carbohydrate and secondary metabolism. Among the most abundant proteins were Pst2 and ArtA involved in oxidative stress response, PdcA and AcuE responsible for ethanol fermentation and glyoxylate cycle, respectively, TpcA, TpcF, and TpcK that are part of trypacidin biosynthetic pathway, and a toxin Asp-hemolysin. This report provides insight into possible molecular adaptation of filamentous fungi to the unique ISS environment.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Abby J Chiang
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jillian Romsdahl
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Markus Kalkum
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
43
|
Clinical Features of Varicella-Zoster Virus Infection. Viruses 2018; 10:v10110609. [PMID: 30400213 PMCID: PMC6266119 DOI: 10.3390/v10110609] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
Varicella-zoster virus (VZV) is a pathogenic human herpes virus that causes varicella (chickenpox) as a primary infection, following which it becomes latent in peripheral ganglia. Decades later, the virus may reactivate either spontaneously or after a number of triggering factors to cause herpes zoster (shingles). Varicella and its complications are more severe in the immunosuppressed. The most frequent and important complication of VZV reactivation is postherpetic neuralgia, the cause of which is unknown and for which treatment is usually ineffective. Reactivation of VZV may also cause a wide variety of neurological syndromes, the most significant of which is a vasculitis, which is treated with corticosteroids and the antiviral drug acyclovir. Other VZV reactivation complications include an encephalitis, segmental motor weakness and myelopathy, cranial neuropathies, Guillain–Barré syndrome, enteric features, and zoster sine herpete, in which the viral reactivation occurs in the absence of the characteristic dermatomally distributed vesicular rash of herpes zoster. There has also been a recent association of VZV with giant cell arteritis and this interesting finding needs further corroboration. Vaccination is now available for the prevention of both varicella in children and herpes zoster in older individuals.
Collapse
|
44
|
Herpes zoster in the context of varicella vaccination – An equation with several variables. Vaccine 2018; 36:7072-7082. [DOI: 10.1016/j.vaccine.2018.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
|
45
|
Abstract
Varicella zoster virus (VZV) infects and becomes latent in sensory, enteric, and other autonomic neurons during the viremia of varicella. Reactivation of VZV in neurons that project to the skin causes the rash of zoster; however, reactivation of VZV in enteric neurons can cause a painful gastrointestinal disorder ("enteric zoster") without cutaneous manifestations. Detection of VZV DNA in saliva of patients with gastrointestinal symptoms may suggest enteric zoster. This diagnosis is reinforced by observing a response to antiviral therapy and can be confirmed by detecting VZV gene products in intestinal mucosal biopsies. We developed an in vivo guinea pig model that may be useful in studies of VZV latency and reactivation. VZV-infected lymphocytes are used to induce latent infection in sensory and enteric neurons; evidence suggests that exosomes and stimulator of interferon genes (STING) may, by preventing proliferation play roles in the establishment of neuronal latency.
Collapse
Affiliation(s)
- Michael Gershon
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Anne Gershon
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
46
|
Gershon AA. Tale of two vaccines: differences in response to herpes zoster vaccines. J Clin Invest 2018; 128:4245-4247. [PMID: 30179221 DOI: 10.1172/jci123217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About one-third of the US population will develop herpes zoster (HZ, commonly known as shingles) over a lifetime, while two-thirds will not. It is not clear exactly why certain people are susceptible to HZ; however, we may be coming closer to an answer. In this issue of the JCI, a study by Levin et al. provides important details concerning pathogenesis of and protection from HZ. The authors characterized differences in the immunologic responses induced by two HZ vaccines, the live attenuated zoster vaccine (ZV) and the more recently developed adjuvanted varicella-zoster virus (VZV) glycoprotein E (gE) subunit herpes zoster vaccine (HZ/su), in vaccine-naive subjects and those previously vaccinated with HZ. The observed differences in responses paralleled the observed clinical protection of the two zoster vaccines, with HZ/su being superior to HZ. Together, these results seem to explain immunologically why the new subunit vaccine outperforms the live vaccine. These differences may also provide clues as to why HZ develops in the first place.
Collapse
|
47
|
Crucian BE, Choukèr A, Simpson RJ, Mehta S, Marshall G, Smith SM, Zwart SR, Heer M, Ponomarev S, Whitmire A, Frippiat JP, Douglas GL, Lorenzi H, Buchheim JI, Makedonas G, Ginsburg GS, Ott CM, Pierson DL, Krieger SS, Baecker N, Sams C. Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions. Front Immunol 2018; 9:1437. [PMID: 30018614 PMCID: PMC6038331 DOI: 10.3389/fimmu.2018.01437] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have established that dysregulation of the human immune system and the reactivation of latent herpesviruses persists for the duration of a 6-month orbital spaceflight. It appears certain aspects of adaptive immunity are dysregulated during flight, yet some aspects of innate immunity are heightened. Interaction between adaptive and innate immunity also seems to be altered. Some crews experience persistent hypersensitivity reactions during flight. This phenomenon may, in synergy with extended duration and galactic radiation exposure, increase specific crew clinical risks during deep space exploration missions. The clinical challenge is based upon both the frequency of these phenomena in multiple crewmembers during low earth orbit missions and the inability to predict which specific individual crewmembers will experience these changes. Thus, a general countermeasure approach that offers the broadest possible coverage is needed. The vehicles, architecture, and mission profiles to enable such voyages are now under development. These include deployment and use of a cis-Lunar station (mid 2020s) with possible Moon surface operations, to be followed by multiple Mars flyby missions, and eventual human Mars surface exploration. Current ISS studies will continue to characterize physiological dysregulation associated with prolonged orbital spaceflight. However, sufficient information exists to begin consideration of both the need for, and nature of, specific immune countermeasures to ensure astronaut health. This article will review relevant in-place operational countermeasures onboard ISS and discuss a myriad of potential immune countermeasures for exploration missions. Discussion points include nutritional supplementation and functional foods, exercise and immunity, pharmacological options, the relationship between bone and immune countermeasures, and vaccination to mitigate herpes (and possibly other) virus risks. As the immune system has sentinel connectivity within every other physiological system, translational effects must be considered for all potential immune countermeasures. Finally, we shall discuss immune countermeasures in the context of their individualized implementation or precision medicine, based on crewmember specific immunological biases.
Collapse
Affiliation(s)
- Brian E. Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Alexander Choukèr
- Laboratory of Translational Research “Stress and Immunity”, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Richard J. Simpson
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | | | - Gailen Marshall
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Scott M. Smith
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Sara R. Zwart
- University of Texas Medical Branch, Galveston, TX, United States
| | - Martina Heer
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | | | | | - Jean P. Frippiat
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Nancy, France
| | - Grace L. Douglas
- Human Systems Engineering and Development Division, NASA Johnson Space Center, Houston, TX, United States
| | | | - Judith-Irina Buchheim
- Laboratory of Translational Research “Stress and Immunity”, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | | | - Geoffrey S. Ginsburg
- Duke Center for Applied Genomics and Precision Medicine, Durham, NC, United States
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Duane L. Pierson
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | | | - Natalie Baecker
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | - Clarence Sams
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| |
Collapse
|
48
|
Rondaan C, van Leer CC, van Assen S, Bootsma H, de Leeuw K, Arends S, Bos NA, Westra J. Longitudinal analysis of varicella-zoster virus-specific antibodies in systemic lupus erythematosus: No association with subclinical viral reactivations or lupus disease activity. Lupus 2018; 27:1271-1278. [PMID: 29667858 PMCID: PMC6027773 DOI: 10.1177/0961203318770535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Systemic lupus erythematosus (SLE) patients are at high risk of herpes zoster. Previously, we found increased immunoglobulin (Ig)G levels against varicella-zoster virus (VZV) in SLE patients compared to controls, while antibody levels against diphtheria and cellular immunity to VZV were decreased. We aimed to test our hypothesis that increased VZV-IgG levels in SLE result from subclinical VZV reactivations, caused by stress because of lupus disease activity or immunosuppressive drug use.
Collapse
Affiliation(s)
- C Rondaan
- 1 Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - C C van Leer
- 2 Department of Medical Microbiology (Clinical Virology), University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - S van Assen
- 3 Department of Internal Medicine (Infectious Diseases), Treant Care Group, Hoogeveen, The Netherlands
| | - H Bootsma
- 1 Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - K de Leeuw
- 1 Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - S Arends
- 1 Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - N A Bos
- 1 Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - J Westra
- 1 Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, The Netherlands
| |
Collapse
|
49
|
Dynamic gene expression response to altered gravity in human T cells. Sci Rep 2017; 7:5204. [PMID: 28701719 PMCID: PMC5507981 DOI: 10.1038/s41598-017-05580-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023] Open
Abstract
We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.
Collapse
|
50
|
Blachowicz A, Mayer T, Bashir M, Pieber TR, De León P, Venkateswaran K. Human presence impacts fungal diversity of inflated lunar/Mars analog habitat. MICROBIOME 2017; 5:62. [PMID: 28693587 PMCID: PMC5504618 DOI: 10.1186/s40168-017-0280-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND An inflatable lunar/Mars analog habitat (ILMAH), simulated closed system isolated by HEPA filtration, mimics International Space Station (ISS) conditions and future human habitation on other planets except for the exchange of air between outdoor and indoor environments. The ILMAH was primarily commissioned to measure physiological, psychological, and immunological characteristics of human inhabiting in isolation, but it was also available for other studies such as examining its microbiological aspects. Characterizing and understanding possible changes and succession of fungal species is of high importance since fungi are not only hazardous to inhabitants but also deteriorate the habitats. Observing the mycobiome changes in the presence of human will enable developing appropriate countermeasures with reference to crew health in a future closed habitat. RESULTS Succession of fungi was characterized utilizing both traditional and state-of-the-art molecular techniques during the 30-day human occupation of the ILMAH. Surface samples were collected at various time points and locations to observe both the total and viable fungal populations of common environmental and opportunistic pathogenic species. To estimate the cultivable fungal population, potato dextrose agar plate counts method was utilized. The internal transcribed spacer region-based iTag Illumina sequencing was employed to measure the community structure and fluctuation of the mycobiome over time in various locations. Treatment of samples with propidium monoazide (PMA; a DNA intercalating dye for selective detection of viable microbial populations) had a significant effect on the microbial diversity compared to non-PMA-treated samples. Statistical analysis confirmed that viable fungal community structure changed (increase in diversity and decrease in fungal burden) over the occupation time. Samples collected at day 20 showed distinct fungal profiles from samples collected at any other time point (before or after). Viable fungal families like Davidiellaceae, Teratosphaeriaceae, Pleosporales, and Pleosporaceae were shown to increase during the occupation time. CONCLUSIONS The results of this study revealed that the overall fungal diversity in the closed habitat changed during human presence; therefore, it is crucial to properly maintain a closed habitat to preserve it from deteriorating and keep it safe for its inhabitants. Differences in community profiles were observed when statistically treated, especially of the mycobiome of samples collected at day 20. On a genus level Epiccocum, Alternaria, Pleosporales, Davidiella, and Cryptococcus showed increased abundance over the occupation time.
Collapse
Affiliation(s)
- A Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - T Mayer
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA
| | - M Bashir
- Division of Endocrinology and Metabolism, Medical University Graz, Graz, Austria
| | - T R Pieber
- Division of Endocrinology and Metabolism, Medical University Graz, Graz, Austria
| | - P De León
- Department of Space Studies, University of North Dakota, Grand Forks, ND, 58202, USA
| | - K Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA.
| |
Collapse
|