1
|
Naesens L, Snoeck R, Andrei G, Balzarini J, Neyts J, De Clercq E. HPMPC (cidofovir), PMEA (adefovir) and Related Acyclic Nucleoside Phosphonate Analogues: A Review of their Pharmacology and Clinical Potential in the Treatment of Viral Infections. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029700800101] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The acyclic nucleoside phosphonate (ANP) analogues are broad-spectrum antiviral agents, with potent and selective antiviral activity in vitro and in vivo. The prototype compounds are: ( S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC, cidofovir), which is active against a wide variety of DNA viruses; 9-(2-phosphonylmethoxyethyl)adenine (PMEA, adefovir), which is active against retro-, herpes- and hepadnaviruses, and ( R)-9-(2-phosphonylmethoxypropyl) adenine (PMPA), which is active against retro- and hepadnaviruses. The antiviral action of the ANP analogues is based on a specific interaction of the active diphosphorylated metabolite with the viral DNA polymerase. The long intracellular half-life of the active metabolite accounts for the optimal efficacy in infrequent dosing schedules. The potential of HPMPC as a broad-spectrum anti-DNA virus agent, as originally observed in vitro and in vivo, has been confirmed in clinical trials. HPMPC has recently been commercially released in the USA for the treatment of cytomegalovirus retinitis in AIDS patients. In addition, topical systemic HPMPC is being (or will be) explored for use against other herpesviruses (i.e. herpes simplex virus, Epstein-Barr virus, or varicella-zoster virus), by adenoviruses, or by human papilloma- or polyomaviruses. Intravenous HPMPC is associated with dose-dependent nephrotoxicity, that should be counteracted by prehydration and concomitant administration of probenecid, and by the application of an infrequent dosing schedule. The oral prodrug of PMEA, bis(pivaloyloxymethyl)-PMEA, is currently being evaluated in patients infected with human immunodeficiency virus (HIV) or hepatitis B virus. Finally, preclinical data on the efficacy of PMPA in animal retrovirus models point to its potential usefulness against HIV infections, when given either prophylactically or therapeutically in the treatment of established HIV infections.
Collapse
Affiliation(s)
- L Naesens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - R Snoeck
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - G Andrei
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - J Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - J Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
2
|
Vávrová K, Kovaříková P, Školová B, Líbalová M, Roh J, Čáp R, Holý A, Hrabálek A. Enhanced Topical and Transdermal Delivery of Antineoplastic and Antiviral Acyclic Nucleoside Phosphonate cPr-PMEDAP. Pharm Res 2011; 28:3105-15. [DOI: 10.1007/s11095-011-0508-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/01/2011] [Indexed: 11/27/2022]
|
3
|
De Clercq E. Yet another ten stories on antiviral drug discovery (part D): paradigms, paradoxes, and paraductions. Med Res Rev 2010; 30:667-707. [PMID: 19626594 DOI: 10.1002/med.20173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review article presents the fourth part (part D) in the series of stories on antiviral drug discovery. The stories told in part D focus on: (i) the cyclotriazadisulfonamide compounds; (ii) the {5-[(4-bromophenylmethyl]-2-phenyl-5H-imidazo[4,5-c]pyridine} compounds; (iii) (1H,3H-thiazolo[3,4-a]benzimidazole) derivatives; (iv) T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) and (v) its structurally closely related analogue pyrazine 2-carboxamide (pyrazinamide); (vi) new strategies for the treatment of hemorrhagic fever virus infections, including, as the most imminent, (vii) dengue fever, (viii) the veterinary use of acyclic nucleoside phosphonates; (ix) the potential (off-label) use of cidofovir in the treatment of papillomatosis, particularly RRP (recurrent respiratory papillomatosis); and (x) finally, the prophylactic use of tenofovir to prevent HIV infections.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
4
|
Doláková P, Dracínský M, Masojídková M, Solínová V, Kasicka V, Holý A. Acyclic nucleoside bisphosphonates: synthesis and properties of chiral 2-amino-4,6-bis[(phosphonomethoxy)alkoxy]pyrimidines. Eur J Med Chem 2009; 44:2408-24. [PMID: 18992968 PMCID: PMC2706328 DOI: 10.1016/j.ejmech.2008.09.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/15/2008] [Accepted: 09/18/2008] [Indexed: 11/26/2022]
Abstract
2-Amino-4,6-bis[(phosphonomethoxy)alkoxy]pyrimidines bearing two equal or different achiral or chiral phosphonoalkoxy chains have been prepared either by aromatic nucleophilic substitution of 2-amino-4,6-dichloropyrimidine or by alkylation of 4,6-dihydroxy-2-(methylsulfanyl)pyrimidine with appropriate phosphonate-bearing building block. Alkylation of 4,6-dihydroxy-2-(methylsulfanyl)pyrimidine proved to be the method of choice for efficient preparation of variety of bisphosphonates. The enantiomeric purity of selected compounds was determined by capillary electrophoresis. Antiviral activity of bisphosphonates is discussed.
Collapse
Affiliation(s)
- Petra Doláková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
5
|
Doláková P, Dračínský M, Fanfrlík J, Holý A. Synthesis of Analogues of Acyclic Nucleoside Diphosphates Containing a (Phosphonomethyl)phosphanyl Moiety and Studies of Their Phosphorylation. European J Org Chem 2009. [DOI: 10.1002/ejoc.200800911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Česnek M, Masojídková M, Holý A, Šolínová V, Koval D, Kašička V. Synthesis and Properties of 2-Guanidinopurines. ACTA ACUST UNITED AC 2006. [DOI: 10.1135/cccc20061303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
2-Guanidinopurines were prepared as derivatives of 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]-9H-purine (PMEDAP) (1), which shows an important antiviral activity. It completes earlier described synthesis of 6-guanidinopurine derivatives. The title compounds were obtained by the reaction of the corresponding 2-chloropurines with guanidine. 2- And 6-guanidinopurines were used as model compounds for determination of dissociation constants (pKa) of their ionogenic groups by capillary zone electrophoresis. The pKa values of ionogenic groups of the above compounds were compared with those of the corresponding aminopurines. The pKa of guanidino group at the purine moiety varies from 7.77 to 10.32. There is no protonation of N1-position in contrast to aminopurines. None of these compounds showed any antiviral activity.
Collapse
|
7
|
Holý A. Synthesis of acyclic nucleoside phosphonates. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2005; Chapter 14:Unit 14.2. [PMID: 18428938 DOI: 10.1002/0471142700.nc1402s22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Acyclic nucleoside phosphonates (ANPs) are important biologically active nucleotide analogs. They contain an isopolar phosphonomethyl function linked to the hydroxyl group of an acyclic side-chain via an undegradable ether group. Though their most important activity is antiviral, some exhibit cytostatic or antiprotozoic effects. The three most important groups of ANP are presented here as synthetic procedures for a large laboratory scale. Synthesis follows three principles: (1) introduction of a protected phosphonomethyl group to the hydroxyl on an appropriate alkyl side-chain of an acyclic nucleoside, (2) alkylation of the heterocyclic base by a synthon with all characteristic features of the future phoshonate-bearing side-chain, or (3) transformation of a reactive group at the heterocyclic base. The last step in all these cases is removal of the phosphonate esters. Preparation methods are described in detail for PMEA, PMEG, PMEDAP and its N(6)-cyclopropyl derivative, (R)-PMPA, and (S)-HPMPA, as well as all intermediates and synthons.
Collapse
Affiliation(s)
- Antonin Holý
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
8
|
Hocková D, Holý A, Masojídková M, Andrei G, Snoeck R, De Clercq E, Balzarini J. Synthesis and antiviral activity of 2,4-diamino-5-cyano-6-[2-(phosphonomethoxy)ethoxy]pyrimidine and related compounds. Bioorg Med Chem 2004; 12:3197-202. [PMID: 15158787 DOI: 10.1016/j.bmc.2004.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 04/02/2004] [Indexed: 11/19/2022]
Abstract
Synthesis of 2,4-diamino-5-cyano-6-[[(diisopropoxyphosphoryl)methoxy]ethoxy]pyrimidine was based on the formation of the pyrimidine ring by cyclization followed by modification of the side chain by alkylation. The 5-cyano group was also transformed to a 5-formyl and 5-hydroxymethyl group by reduction. As a side product an unexpected dimer was formed. Resulting compounds were converted to the free phosphonic acids by treatment with bromotrimethylsilane followed by hydrolysis. The 5-cyano and 5-formyl derivatives showed pronounced antiretroviral activity, comparable to that of the reference drugs adefovir and tenofovir.
Collapse
Affiliation(s)
- Dana Hocková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
9
|
Hocková D, Holý A, Masojídková M, Andrei G, Snoeck R, De Clercq E, Balzarini J. 5-Substituted-2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidinesAcyclic Nucleoside Phosphonate Analogues with Antiviral Activity. J Med Chem 2003; 46:5064-73. [PMID: 14584956 DOI: 10.1021/jm030932o] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2,4-Diamino-6-hydroxypyrimidines substituted in position 5 by an allyl, benzyl, cyanomethyl, ethoxycarbonylmethyl, phenyl, cyclopropyl, or methyl group were prepared either by C5-alkylation or by formation of the pyrimidine ring by cyclization. Their alkylation with 2-[(diisopropoxyphosphoryl)methoxy]ethyl tosylate afforded N1- and O6-regioisomers that were separated and converted to the free phosphonic acids by treatment with bromotrimethylsilane followed by hydrolysis. Reaction of 2,4-diamino-6-[[(diisopropoxyphosphoryl)methoxy]ethoxy]pyrimidine with elemental bromine, N-chloro-, or N-iodosuccinimide gave the corresponding phosphorus-protected 5-bromo-, 5-chloro-, and 5-iodo derivatives, respectively. Their deprotection afforded 2,4-diamino-5-bromo- and -5-chloro-6-[2-(phosphonomethoxy)ethoxy]pyrimidines. 2,4-Diamino-5-methyl-6-[2-(phosphonomethoxy)ethoxy]pyrimidine was synthesized also by cross-coupling of the 5-bromo compound with AlMe(3), followed by deprotection. The compounds showed poor, if any, inhibitory activity against DNA viruses such as herpes simplex virus type 1 and type 2, cytomegalovirus, varicella-zoster virus, and vaccinia virus. In contrast, several 5-substituted 2,4-diaminopyrimidine derivatives markedly inhibited retrovirus replication in cell culture. The 5-methyl derivative was exquisitely inhibitory to human immunodeficiency virus and Moloney murine sarcoma virus-induced cytopathicity in cell culture (EC(50) approximately 0.00018 mumol/mL) but also cytostatic to CEM cell cultures. In contrast, the 5-halogen-substituted derivatives showed pronounced antiretroviral activity (EC(50) = 0.0023-0.0110 mumol/mL), comparable to that of the reference drugs adefovir and tenofovir, but were devoid of measurable toxicity at 0.3 mumol/mL.
Collapse
Affiliation(s)
- Dana Hocková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
10
|
Holý A, Votruba I, Masojídková M, Andrei G, Snoeck R, Naesens L, De Clercq E, Balzarini J. 6-[2-(Phosphonomethoxy)alkoxy]pyrimidines with antiviral activity. J Med Chem 2002; 45:1918-29. [PMID: 11960502 DOI: 10.1021/jm011095y] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
6-Hydroxypyrimidines substituted at positions 2 and 4 by hydrogen, methyl, amino, cyclopropylamino, dimethylamino, methylsulfanyl, or hydroxyl group afford by the reaction with diisopropyl 2-(chloroethoxy)methylphosphonate in the presence of NaH, Cs(2)CO(3), or DBU a mixture of N(1)- and O(6)-[2-(diisopropylphosphorylmethoxy)ethyl] isomers which were converted to the free phosphonic acids by treatment with bromotrimethylsilane followed by hydrolysis. Analogously, 2,4-diamino-6-hydroxypyrimidine gave on reaction with [(R)- and (S)-2-(diisopropylphosphorylmethoxy)propyl] tosylate, followed by deprotection, the enantiomeric 6-[2-(phosphonomethoxy)propoxy]pyrimidines. 2,4-Diamino-6-sulfanylpyrimidine gave, on treatment with diisopropyl 2-(chloroethoxy)methylphosphonate in the presence of NaH and subsequent deprotection, 2,4-diamino-6-[[2-(phosphonomethoxy)ethyl]sulfanyl]pyrimidine. 2-Amino-4-hydroxy-6-[2-(phosphonomethoxy)ethyl]pyrimidine was obtained from the appropriate 2-amino-4-chloropyrimidine derivative by alkaline hydrolysis and ester cleavage. Direct alkylation of 2-amino-4,6-dihydroxypyrimidine afforded a mixture of 2-amino-4,6-bis[2-(phosphonomethoxy)ethyl]- and 2-amino-1,4-bis[2-(phosphonomethoxy)ethyl]pyrimidine. None of the N(1)-[2-(phosphonomethoxy)ethyl] isomers exhibited any antiviral activity against DNA viruses or RNA viruses tested in vitro. On the contrary, the O(6)-isomers, namely the compounds derived from 2,4-diamino-, 2-amino-4-hydroxy-, or 2-amino-4-[2-(phosphonomethoxy)ethoxy]-6-hydroxypyrimidine, inhibited the replication of herpes viruses [herpes simplex type 1 (HSV-1) and type 2 (HSV-2), varicella-zoster virus (VZV), and cytomegalovirus (CMV)] and retroviruses [Moloney sarcoma virus (MSV) and human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2)], their activity being most pronounced against the latter. The antiviral activity was lower if the oxygen at the position 6 was replaced by a sulfur atom, as in 2,4-diamino-6-[2-(phosphonomethoxy)ethylsulfanyl]pyrimidine. In analogy to N(9)-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine (PMPDAP), solely the (R)-2,4-diamino-6-[2-(phosphonomethoxy)propoxy]pyrimidine exerted antiviral activity, whereas its (S)-enantiomer was essentially inactive.
Collapse
Affiliation(s)
- Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Praha 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Holý A, Votruba I, Tloušťová E, Masojídková M. Synthesis and Cytostatic Activity of N-[2-(Phosphonomethoxy)alkyl] Derivatives of N6-Substituted Adenines, 2,6-Diaminopurines and Related Compounds. ACTA ACUST UNITED AC 2001. [DOI: 10.1135/cccc20011545] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
N6-Substituted adenine and 2,6-diaminopurine derivatives of 9-[2-(phosphonomethoxy)- ethyl] (PME), 9-[(R)-2-(phosphonomethoxy)propyl] [(R)-PMP] and enantiomeric (S)-PMP series were synthesized by reactions of primary or secondary amines with 6-chloro-9-{[2-(diisopropoxyphosphoryl)methoxy]alkyl}purines (26-28) or 2-amino-6-chloro-9-{[2-(diisopropoxy- phosphoryl)methoxy]alkyl}purines (29-31) followed by treatment of the diester intermediates32with bromo(trimethyl)silane and hydrolysis. Diesters32were also obtained by reaction ofN6-substituted purines with synthons23-25bearing diisopropoxyphosphoryl group. Alkylation of 2-amino-6-chloropurine (9) with diethyl [2-(2-chloroethoxy)ethyl]phosphonate (148) gave the diester149which was analogously converted toN6-substituted 2,6-diamino- 9-[2-(2-phosphonoethoxy)ethyl]purines151-153. Alkylation ofN6-substituted 2,6-diaminopurines with (R)-[(trityloxy)methyl]oxirane (155) followed by reaction of thus-obtained intermediates156with dimethylformamide dimethylacetal and condensation with diisopropyl [(tosyloxy)methyl]phosphonate (158) followed by deprotection of the intermediates159gaveN6-substituted 2,6-diamino-9-[(S)-3-hydroxy-2-(phosphonomethoxy)propyl]purines160-163. The highest cytostatic activityin vitrowas exhibited by the followingN6-derivatives of 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP): 2,2,2-trifluoroethyl (53), allyl (54), [(2-dimethylamino)ethyl] (68), cyclopropyl (75) and dimethyl (91). In CCRF-CEM cells, the cyclopropyl derivative75is deaminated to the guanine derivative PMEG (3) which is then converted to its diphosphate.
Collapse
|
12
|
Holý A, Günter J, Dvoráková H, Masojídková M, Andrei G, Snoeck R, Balzarini J, De Clercq E. Structure-antiviral activity relationship in the series of pyrimidine and purine N-[2-(2-phosphonomethoxy)ethyl] nucleotide analogues. 1. Derivatives substituted at the carbon atoms of the base. J Med Chem 1999; 42:2064-86. [PMID: 10377214 DOI: 10.1021/jm9811256] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of dialkyl esters of purine and pyrimidine N-[2-(phosphonomethoxy)ethyl] derivatives substituted at position 2, 6, or 8 of the purine base or position 2, 4, or 5 of the pyrimidine base were prepared by alkylation of the appropriate heterocyclic base with 2-chloroethoxymethylphosphonate diester in the presence of sodium hydride, cesium carbonate, or 1,8-diazabicyclo[5,4, 0]undec-7-ene (DBU) in dimethylformamide. Additional derivatives were obtained by the transformations of the bases in the suitably modified intermediates bearing reactive functions at the base moiety. The diesters were converted to the corresponding monoesters by sodium azide treatment, while the free acids were obtained from the diester by successive treatment with bromotrimethylsilane and hydrolysis. None of the PME derivatives in the pyrimidine series, their 6-aza or 3-deaza analogues, exhibited any activity against DNA viruses or retroviruses tested, except for the 5-bromocytosine derivative. Substitution of the adenine ring in PMEA at position 2 by Cl, F, or OH group decreased the activity against all DNA viruses tested. PMEDAP was highly active against HSV-1, HSV-2, and VZV in the concentration range (EC50) of 0.07-2 microg/mL. Also the 2-amino-6-chloropurine derivative was strongly active (EC50 = 0.1-0. 4 microg/mL) against herpes simplex viruses and (EC50 = 0.006-0.3 microg/mL) against CMV and VZV. PMEG was the most active compound of the whole series against DNA viruses (EC50 approximately 0.01-0.02 microg/mL), though it exhibited significant toxicity against the host cells. The base-modified compounds did not show any appreciable activity against DNA viruses except for 7-deazaPMEA (IC50 approximately 7.5 microg/mL) against HIV-1 and MSV. The neutral (diisopropyl, diisooctyl) diesters of PMEA were active against CMV and VZV, while the corresponding monoesters were inactive. The diisopropyl ester of the 2-chloroadenine analogue of PMEA showed substantially (10-100x) higher activity against CMV and VZV than the parent phosphonate. Also, the diisopropyl and diisooctyl ester of PMEDAP inhibited CMV and VZV, but esterification of the phosphonate residue did not improve the activity against either MSV or HIV.
Collapse
Affiliation(s)
- A Holý
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám.2, 16610 Praha 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nicoll AJ, Colledge DL, Toole JJ, Angus PW, Smallwood RA, Locarnini SA. Inhibition of duck hepatitis B virus replication by 9-(2-phosphonylmethoxyethyl)adenine, an acyclic phosphonate nucleoside analogue. Antimicrob Agents Chemother 1998; 42:3130-5. [PMID: 9835503 PMCID: PMC106011 DOI: 10.1128/aac.42.12.3130] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 08/29/1998] [Indexed: 11/20/2022] Open
Abstract
The use of regimens that use nucleoside analogues for the treatment of chronic hepatitis B virus infection is often limited because of their high relapse rates. This is thought to be due to the persistence of virus in nonhepatocyte reservoirs and/or the viral covalently closed circular (CCC) DNA species in the nucleus of infected hepatocytes. We have evaluated the novel nucleoside analogue 9-(2-phosphonylmethoxyethyl)adenine (PMEA) in the duck model of hepatitis B. Eight Pekin-Aylesbury ducks congenitally infected with the duck hepatitis B virus (DHBV) were treated with PMEA at a dosage of 15 mg/kg of body weight/day via the intraperitoneal route for 4 weeks. At the end of the treatment period, four animals were killed and the remainder were monitored for a further 4-week drug-free period before analysis. The results were compared with those for eight age-matched, untreated controls. The levels of viremia, the total intrahepatic DHBV load, and CCC DNA, viral RNA, and protein levels were measured by Southern hybridization, Northern hybridization, and immunoblotting of the appropriate specimen, respectively. Viral proteins and DNA were also measured by immunohistochemistry (IHC) and in situ hybridization (ISH) of sections of liver and pancreatic tissue. PMEA treatment reduced the viremia to undetectable levels, while the total viral DNA load in the liver was reduced by 95% compared to the control level. Viral RNA and protein levels decreased by approximately 30%. ISH and IHC confirmed the PMEA-related intrahepatic changes and established that the amount of virus in bile duct epithelial cells (BDEC) was reduced by 70% during therapy. During the follow-up period all parameters of active virological replication returned to those for the age-matched controls. PMEA had no significant effect upon the number of virus-infected islet or acinar cells in the pancreas. PMEA at a dosage of 15 mg/kg/day has potent activity against DHBV found within hepatocytes and BDEC and inhibits DHBV replication in BDEC.
Collapse
Affiliation(s)
- A J Nicoll
- Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria 3051, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Balzarini J, Hatse S, Naesens L, De Clercq E. Selection and characterisation of murine leukaemia L1210 cells with high-level resistance to the cytostatic activity of the acyclic nucleoside phosphonate 9-(2-phosphonylmethoxyethyl) adenine (PMEA). BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1402:29-38. [PMID: 9551083 DOI: 10.1016/s0167-4889(97)00143-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An L1210 cell line showing a 300-fold resistance to the cytostatic effect of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) (designated L1210/PMEA-1) was selected in cell culture upon exposure of wild-type L1210/0 cells to stepwise-increased drug concentrations. The mutant L1210/PMEA-1 cell line was characterized by an unusual specificity in that the cytostatic activity was severely impaired only for PMEA and the closely related 2,6-diaminopurine derivative PMEDAP, but not for its guanine counterpart PMEG or for 9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine (HPMPA). The L1210/PMEA-1 cell line showed poor resistance to the cytostatic activity of the lipophilic PMEA prodrug bis(POM)PMEA and virtually kept its PMEA resistance profile in the presence of indomethacin, excluding resistance of the cells of PMEA and PMEDAP by an increased efflux of the drugs. Intracellular purine nucleotide pool labelling studies with adenine, hypoxanthine and glycine revealed that PMEA/PMEDAP resistance did not originate from a defect in the enzymatic pathways of purine nucleotides. ATP, AMP and cAMP, but not adenosine, adenine, HPMPA and inhibitors of nucleoside transport carriers markedly interfered with PMEA uptake in L1210/0 cells. The L1210/PMEA-1 cells proved to have less than 10% of the PMEA uptake capacity of wild-type L1210/0 cells as measured by rapid sampling kinetics as well as long-term incubation experiments. After a 24-h incubation period, the intracellular levels of [2,8-3H]PMEA and its phosphorylated metabolites were approximately 10-fold lower in L1210/PMEA-1 cells than in L1210/0 cells. Our observations point to a compromised and highly specific PMEA/PMEDAP uptake as the molecular basis for the pronounced PMEA resistance of the mutant L1210/PMEA-1 cells.
Collapse
Affiliation(s)
- J Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.
| | | | | | | |
Collapse
|
15
|
Nicoll A, Locarnini S. Review: Present and future directions in the treatment of chronic hepatitis B infection. J Gastroenterol Hepatol 1997; 12:843-54. [PMID: 9504896 DOI: 10.1111/j.1440-1746.1997.tb00382.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The last decade has witnessed substantial progress in the development of chemotherapeutic agents for chronic hepatitis B. However, the only currently licensed treatment in Australia, interferon-alpha, has low initial response rates and the adverse effects are often unacceptable. Of the newer agents in the class of nucleoside analogues, famciclovir and lamivudine are in phase III clinical trials with encouraging preliminary results, while other agents, such as bis-POM PMEA (Adefovir), are at phase I/II development. Future approaches to therapy will be governed by an understanding of the effects of nucleoside analogues on the natural history of the disease as well as on the hepatitis B virus hepatocyte interaction. Combination antiviral therapy should theoretically offer improved response rates, decrease the development of viral resistance, and provide the greatest reduction in viral load, but it has not yet been widely examined in the clinical setting. In this article, we review the currently available strategies, discuss potential problem areas, and speculate on promising approaches with combination chemotherapy and the features of agents soon to be trialed.
Collapse
Affiliation(s)
- A Nicoll
- Victorian Infectious Diseases Reference Laboratory, Fairfield Hospital, Victoria, Australia
| | | |
Collapse
|
16
|
Holý A, Dvoráková H, Jindrich J, Masojídková M, Budĕsínský M, Balzarini J, Andrei G, De Clercq E. Acyclic nucleotide analogs derived from 8-azapurines: synthesis and antiviral activity. J Med Chem 1996; 39:4073-88. [PMID: 8831773 DOI: 10.1021/jm960314q] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Reaction of phosphoroorganic synthons with 8-azaadenine, 8-aza-2, 6-diaminopurine, and 8-azaguanine using cesium carbonate yielded regioisomeric 8-azapurine N7-, N8-, and N9-(2-(phosphonomethoxy)alkyl) derivatives. This reaction followed by deprotection afforded isomeric 2-(phosphonomethoxy)ethyl (PME), (S)-(3-hydroxy-2-(phosphonomethoxy)propyl) [(S)-HPMP], (S)-(3-flouro-2-(phosphonomethoxy)propyl) [(S)-FPMP], (S)-(2-(phosphonomethoxy)propyl) [(S)-PMP], and (R)-(2-(phosphonomethoxy)propyl) [(R)-PMP] derivatives. 13C NMR spectra were used for structural assignment of the regioisomers. None of the 8-isomers exhibited any antiviral activity against herpesviruses, Moloney murine sarcoma virus (MSV), and/or HIV. 9-(S)-HPMP-8-azaadenine (23) and PME-8-azaguanine (65) were active against HSV-1, HSV-2, and CMV at 0.2-7 micrograms/mL, VZV at 0.04-0.4 microgram/mL, and MSV (at 0.3-0.6 microgram/mL). PME-8-azaguanine (65) and (R)-PMP-8-azaguanine (71a) protected MT-4 and CEM cells against HIV-1- and HIV-2-induced cytopathicity at a concentration of approximately 2 micrograms/mL.
Collapse
Affiliation(s)
- A Holý
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Praha
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Naesens L, Balzarini J, Bischofberger N, De Clercq E. Antiretroviral activity and pharmacokinetics in mice of oral bis(pivaloyloxymethyl)-9-(2-phosphonylmethoxyethyl)adenine, the bis(pivaloyloxymethyl) ester prodrug of 9-(2-phosphonylmethoxyethyl)adenine. Antimicrob Agents Chemother 1996; 40:22-8. [PMID: 8787873 PMCID: PMC163050 DOI: 10.1128/aac.40.1.22] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lipophilic ester prodrugs of 9-(2-phosphonylmethoxyethyl)adenine (PMEA), i.e., bis(pivaloyloxymethyl)-PMEA [bis(POM)-PMEA] and diphenyl-PMEA, have been synthesized in an attempt to increase the oral bioavailability of this broad-spectrum antiviral agent. The antiretroviral efficacy was determined in severe combined immune deficiency (SCID) mice infected with Moloney murine sarcoma virus (MSV). They were treated twice daily for 5 days after infection. Oral treatment with bis(POM)-PMEA at a dose equivalent to 100 or 50 mg of PMEA per kg of body weight per day proved markedly effective in delaying MSV-induced tumor formation and death of the mice. Oral bis(POM)-PMEA afforded anti-MSV efficacy equal to that of subcutaneous PMEA given at equimolar doses. Oral treatment with PMEA or diphenyl-PMEA proved less efficient. Similarly, in mice infected with Friend leukemia virus (FLV), oral treatment with bis(POM)-PMEA at a dose equivalent to 100 or 50 mg of PMEA per kg per day effected a marked inhibition of FLV-induced splenomegaly (87 and 48% inhibition, respectively), the efficacy being equal to that of PMEA given subcutaneously at equivalent doses. Pharmacokinetic experiments with mice showed that the oral bioavailabilities of PMEA following oral gavage of bis(POM)-PMEA, diphenyl-PMEA, or PMEA (at a dose equivalent to 50 mg of PMEA per kg) were 53,3, and 16%, respectively. These data were calculated from the levels of free PMEA in plasma. Also, the recoveries of free PMEA in the urine upon oral administration of bis(POM)-PMEA, diphenyl-PMEA, or PMEA (at a dose equivalent to 25 mg of PMEA per kg) were 48, 4, and 7%, respectively. Oral bis(POM)-PMEA was not recovered from plasma, suggesting that it was readily cleaved to free PMEA. In contrast, diphenyl-PMEA was not efficiently cleaved to free PMEA, resulting in a rather low oral bioavailability of PMEA from this prodrug. Bis(POM)-PMEA appears to be an efficient oral prodrug of PMEA that deserves further clinical evaluation in human immunodeficiency virus-infected individuals.
Collapse
Affiliation(s)
- L Naesens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium. lieve.naesens/rega.kuleuven.ac.be
| | | | | | | |
Collapse
|
18
|
Naesens L, Balzarini J, De Clercq E. Therapeutic potential of PMEA as an antiviral drug. Rev Med Virol 1994. [DOI: 10.1002/rmv.1980040302] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Caliò R, Villani N, Balestra E, Sesa F, Holy A, Balzarini J, De Clercq E, Perno CF, Del Gobbo V. Enhancement of natural killer activity and interferon induction by different acyclic nucleoside phosphonates. Antiviral Res 1994; 23:77-89. [PMID: 7511362 DOI: 10.1016/0166-3542(94)90034-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acyclic nucleoside phosphonate (ANP) analogues are a class of compounds with potent activity against herpesviruses and/or retroviruses. Our preliminary experiments have shown that 9-(2-phosphonylmethoxyethyl)adenine (PMEA), a prototype of the ANP family, enhances some parameters of natural immunity. In this paper we have evaluated the effect of different schedules of administration of PMEA and other ANP analogues of clinical interest upon natural killer (NK) activity and interferon (IFN) production in a mouse model. The results show that PMEA significantly enhances NK activity and interferon production. Other ANP analogues tested in our system, i.e., 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP), and 9-(3-fluoro-2-phosphonylmethoxypropyl)adenine (FPMPA), similarly induced enhancement of natural immunity. The immunomodulating effect of PMEA was even more pronounced with a single administration compared to repeated administrations of the drug. Dose-dependent enhancement of NK activity and IFN production could also be demonstrated during chronic administration of PMEA (more resembling to what will be the schedule of administration of this drug in patients). Overall, the data here presented suggest that the enhancement of some natural immune functions induced by ANP analogues may add to the direct antiviral activity of these drugs against retroviruses and herpesviruses, and thus may be able to increase the host resistance against viral infections.
Collapse
Affiliation(s)
- R Caliò
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma Tor Vergata, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Neyts J, Stals F, Bruggeman C, De Clercq E. Activity of the anti-HIV agent 9-(2-phosphonyl-methoxyethyl)-2,6-diaminopurine against cytomegalovirus in vitro and in vivo. Eur J Clin Microbiol Infect Dis 1993; 12:437-46. [PMID: 8395382 DOI: 10.1007/bf01967438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP), a potent inhibitor of human immunodeficiency virus (HIV) replication, was evaluated for its activity against human cytomegalovirus (HCMV) in vitro, and murine cytomegalovirus (MCMV) and rat CMV (RCMV) in vivo. PMEDAP strongly inhibited HCMV-induced cytopathicity in human embryonic lung (HEL) cell cultures (EC50 11 microM) and caused a concentration-dependent suppression of viral DNA synthesis (IC50 20 microM) [corrected]. PMEDAP had no effect on the expression of HCMV-specific immediate early antigens (IEA) as measured on day 1 post-infection, but inhibited the expression of HCMV late antigens as measured on day 6 post-infection (EC50 20 microM) [corrected]. The diphosphate derivative of PMEDAP (PMEDAPpp) selectively inhibited HCMV-induced DNA polymerase (IC50 0.1 microM). PMEDAP proved markedly effective in reducing the mortality rate of NMRI mice that had been infected intraperitoneally or intracerebrally with a lethal dose of MCMV. PMEDAP exhibited greater anti-MCMV activity when administered as a single dose immediately after infection than when this dose was divided over repeated administrations. 9-(2-phosphonylmethoxyethyl)-adenine (PMEA) also prevented MCMV-induced mortality, but only at a dose ten-fold higher than that of PMEDAP. PMEDAP also delayed death in severe combined immune deficiency (SCID) mice that had been infected with MCMV. The effect of PMEDAP on RCMV infections in rats was less pronounced.
Collapse
Affiliation(s)
- J Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| | | | | | | |
Collapse
|
21
|
Strategies for the treatment and prevention of cytomegalovirus infections. Int J Antimicrob Agents 1993; 3:187-204. [DOI: 10.1016/0924-8579(93)90012-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/1993] [Indexed: 11/19/2022]
|