1
|
Gutierrez MB, de Assis RMS, Arantes I, Fumian TM. Full genotype constellations analysis of unusual DS-1-like G12P[6] and G6P[8] rotavirus strains detected in Brazil, 2019. Virology 2022; 577:74-83. [PMID: 36323046 DOI: 10.1016/j.virol.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Rotavirus A (RVA) is a major cause of acute gastroenteritis (AGE) in children worldwide. We report unusual RVA G12P[6] and G6P[8] strains isolated from fecal samples from Brazilian children hospitalized for AGE. The characterized RVA have genome segments backbone: G12-P[6]/ G6-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 of DS-1-like genogroup. Our study describes the first identification of G6P[8], a DS-1-like genogroup strain. Nucleotide analysis of VP7 and VP4 genes revealed that all G12 Brazilian strains clustered into the sub-lineages IIIB, mostly associated with P[6] lineage I. Additionally, our G6 lineage I strains were closely related to German G6 genotypes, bound with P[8] lineage III, differing from both vaccine strains. The comparative sequence analysis of our strains with vaccine strains revealed amino acid substitutions located in immunodominant regions of VP7 and VP4 proteins. Continuous monitoring of RVA genotypes is essential to evaluate the impact of vaccination on the dynamic nature of RVA evolution.
Collapse
Affiliation(s)
- Meylin Bautista Gutierrez
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Ighor Arantes
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil.
| |
Collapse
|
2
|
Gupta S, Gauhar M, Bubber P, Ray P. Phylogenetic analysis of VP7 and VP4 genes of the most predominant human group A rotavirus G12 identified in children with acute gastroenteritis in Himachal Pradesh, India during 2013-2016. J Med Virol 2021; 93:6200-6209. [PMID: 34138482 DOI: 10.1002/jmv.27142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 11/05/2022]
Abstract
G12 strains are now considered to be the sixth most prevalent human rotaviruses globally. India has introduced rotavirus vaccine Rotavac® into the national immunization program in 2016 and Himachal Pradesh (HP) is the first state to launch it. During epidemiological rotavirus surveillance in HP, predominance of G12 rotaviruses was observed. This study investigated the genetic variability and evolution of HP G12 strains (n = 15) associated with P-genotypes P[6], P[4], and P[8] identified between 2013 and 2016. Phylogenetic analysis of VP7 gene revealed that all characterized G12 strains clustered in lineage-III and diversified into three subclusters indicating that these strains may have originated from three different ancestral G12 strains. The comparative sequence analysis of HP strains with Rotavac® and Rotarix® vaccine strains revealed various amino acid substitutions in epitope regions of VP7 and VP4 proteins especially at the antibody neutralization sites. Only 12/29 VP7 epitope residues and 2/25 VP4 epitope residues were found to be conserved between HP rotavirus strains and vaccine strains. Both long and short electropherotypes were observed in G12P[4] strains, while a single long electropherotype was observed in G12P[6] strains. Children of ≤11 months were significantly infected with G12 rotaviruses. The frequency of vomiting episodes (≥5/day) was significantly higher in children infected with G12 rotavirus strains as compared to non-G12 rotaviruses (p = 0.0405). Our study provides the comprehensive data on clinical characteristics and evolutionary pattern of the G12 rotavirus, the most prevalent strain in HP and emphasizes the need to monitor these strains for inclusion in future vaccine.
Collapse
Affiliation(s)
- Shipra Gupta
- Department of Biotechnology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mariyam Gauhar
- Department of Biotechnology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Parvesh Bubber
- Department of Biochemistry, School of Sciences, IGNOU, New Delhi, India
| | - Pratima Ray
- Department of Biotechnology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India.,Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Arana A, Jere KC, Chaguza C, Montes M, Alkorta M, Iturriza-Gomara M, Cilla G. Molecular epidemiology of G12 rotavirus strains during eight consecutive epidemic seasons in the Basque Country (North of Spain), 2010–2018. INFECTION GENETICS AND EVOLUTION 2019; 71:67-75. [DOI: 10.1016/j.meegid.2019.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
|
4
|
Ogden KM, Tan Y, Akopov A, Stewart LS, McHenry R, Fonnesbeck CJ, Piya B, Carter MH, Fedorova NB, Halpin RA, Shilts MH, Edwards KM, Payne DC, Esona MD, Mijatovic-Rustempasic S, Chappell JD, Patton JT, Halasa NB, Das SR. Multiple Introductions and Antigenic Mismatch with Vaccines May Contribute to Increased Predominance of G12P[8] Rotaviruses in the United States. J Virol 2019; 93:e01476-18. [PMID: 30333170 PMCID: PMC6288334 DOI: 10.1128/jvi.01476-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
Rotavirus is the leading global cause of diarrheal mortality for unvaccinated children under 5 years of age. The outer capsid of rotavirus virions consists of VP7 and VP4 proteins, which determine viral G and P types, respectively, and are primary targets of neutralizing antibodies. Successful vaccination depends upon generating broadly protective immune responses following exposure to rotaviruses presenting a limited number of G- and P-type antigens. Vaccine introduction resulted in decreased rotavirus disease burden but also coincided with the emergence of uncommon G and P genotypes, including G12. To gain insight into the recent predominance of G12P[8] rotaviruses in the United States, we evaluated 142 complete rotavirus genome sequences and metadata from 151 clinical specimens collected in Nashville, TN, from 2011 to 2013 through the New Vaccine Surveillance Network. Circulating G12P[8] strains were found to share many segments with other locally circulating strains but to have distinct constellations. Phylogenetic analyses of G12 sequences and their geographic sources provided evidence for multiple separate introductions of G12 segments into Nashville, TN. Antigenic epitopes of VP7 proteins of G12P[8] strains circulating in Nashville, TN, differ markedly from those of vaccine strains. Fully vaccinated children were found to be infected with G12P[8] strains more frequently than with other rotavirus genotypes. Multiple introductions and significant antigenic mismatch may in part explain the recent predominance of G12P[8] strains in the United States and emphasize the need for continued monitoring of rotavirus vaccine efficacy against emerging rotavirus genotypes.IMPORTANCE Rotavirus is an important cause of childhood diarrheal disease worldwide. Two immunodominant proteins of rotavirus, VP7 and VP4, determine G and P genotypes, respectively. Recently, G12P[8] rotaviruses have become increasingly predominant. By analyzing rotavirus genome sequences from stool specimens obtained in Nashville, TN, from 2011 to 2013 and globally circulating rotaviruses, we found evidence of multiple introductions of G12 genes into the area. Based on sequence polymorphisms, VP7 proteins of these viruses are predicted to present themselves to the immune system very differently than those of vaccine strains. Many of the sick children with G12P[8] rotavirus in their diarrheal stools also were fully vaccinated. Our findings emphasize the need for continued monitoring of circulating rotaviruses and the effectiveness of the vaccines against strains with emerging G and P genotypes.
Collapse
Affiliation(s)
- Kristen M Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- J. Craig Venter Institute, Rockville, Maryland, USA
| | - Asmik Akopov
- J. Craig Venter Institute, Rockville, Maryland, USA
| | - Laura S Stewart
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rendie McHenry
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Bhinnata Piya
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maximilian H Carter
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Meghan H Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel C Payne
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mathew D Esona
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Natasha B Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Suman R Das
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- J. Craig Venter Institute, Rockville, Maryland, USA
| |
Collapse
|
5
|
Umair M, Salman M, Alam MM, Rana MS, Zaidi SSZ, Bowen MD, Aamir UB, Abbasi BH. Rotavirus surveillance in Pakistan during 2015-2016 reveals high prevalence of G12P[6]. J Med Virol 2018; 90:1272-1276. [PMID: 29573357 DOI: 10.1002/jmv.25075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/06/2018] [Indexed: 11/09/2022]
Abstract
The G12 rotavirus genotype has emerged globally since their first detection in 1987 from the Philippines; however it remains a rare cause of gastroenteritis in Pakistan. Rotavirus surveillance conducted during 2015-2016, assessed 3446 children <5 years hospitalized for gastroenteritis and found 802 (23.2%) positive on ELISA. Genotyping of a subset of positive samples (n = 319) revealed G12P[6] (11.28%) as the third most common G/P combination following G3P[8] (28.5%) and G1P[8] (12.5%); G2P[4] (10.65%) and G3P[6] (8.15%) were other frequently detected strains. Phylogenetic analysis of G12 strains from Pakistan revealed high genetic similarity to G12 strains from Italy, Thailand, Korea, and Great Britain as well as local strains within G12 lineage III. In conclusion, G12P[6] was a major contributor of RVA gastroenteritis in Pakistani children. Robust surveillance after the introduction of rotavirus vaccines will help determine the evolution of G12 and other circulating genotypes in the country.
Collapse
Affiliation(s)
- Massab Umair
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan.,Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Salman
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Muhammad Masroor Alam
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Muhammad S Rana
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Syed S Z Zaidi
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Michael D Bowen
- Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Uzma B Aamir
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Bilal H Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
6
|
Moussa A, Fredj MBH, BenHamida-Rebaï M, Fodha I, Boujaafar N, Trabelsi A. Phylogenetic analysis of partial VP7 gene of the emerging human group A rotavirus G12 strains circulating in Tunisia. J Med Microbiol 2017; 66:112-118. [DOI: 10.1099/jmm.0.000420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Amal Moussa
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Mouna Ben Hadj Fredj
- Faculty of Sciences and Techniques, University of Kairouan, 9100 Kairouan, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Meriam BenHamida-Rebaï
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Imene Fodha
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Noureddine Boujaafar
- Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
| | - Abdelhalim Trabelsi
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| |
Collapse
|
7
|
Nakagomi T, Do LP, Agbemabiese CA, Kaneko M, Gauchan P, Doan YH, Jere KC, Steele AD, Iturriza-Gomara M, Nakagomi O, Cunliffe NA. Whole-genome characterisation of G12P[6] rotavirus strains possessing two distinct genotype constellations co-circulating in Blantyre, Malawi, 2008. Arch Virol 2016; 162:213-226. [PMID: 27718073 DOI: 10.1007/s00705-016-3103-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Rotavirus A strains detected in diarrhoeal children commonly possess any one of the genotypes G1, G2, G3, G4, and G9, with a recent increase in G12 detection globally. G12P[6] strains possessing short RNA (DS-1-like) and long RNA (Wa-like) migration patterns accounted for 27 % of the strains circulating in Blantyre, Malawi, between 2007 and 2008. To understand how the G12P[6] strains with two distinct genetic backgrounds emerged in Malawi, we conducted whole-genome analysis of two long-RNA and two short-RNA strains. While the former had a typical Wa-like genotype constellation of G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1, the latter was found to have G12-P[6]-I2-R2-C2-M1-A2-N2-T2-E2-H2: a VP3 gene mono-reassortant on the DS-1-like backbone. Phylogenetic and Bayesian Markov chain Monte Carlo analyses showed that the short-RNA G12P[6] strains were generated around 2006 by reassortment between an African Wa-like G12P[6] strain donating three genes (the VP7, VP4, and VP3 genes) and a G2P[4] strain similar to the one circulating in Thailand or the United States of America that donated the remaining eight genes. On the other hand, the long-RNA strains were generated as a result of reassortment events within Wa-like G12 and non-G12 strains commonly circulating in Africa; only the VP4 gene was from a Malawian G8P[6] strain. In conclusion, this study uncovered the evolutionary pathways through which two distinct G12P[6] strains emerged in Malawi.
Collapse
Affiliation(s)
- T Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - L P Do
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - C A Agbemabiese
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - M Kaneko
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - P Gauchan
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Y H Doan
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Virology 2, National Institute of Infectious Diseases, Tokyo, Japan
| | - K C Jere
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Malawi-Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - A D Steele
- Vaccines and Immunization, PATH, Seattle, WA, 98121, USA.,MRC Diarrhoeal Pathogens Research Unit, MEDUNSA, University of Limpopo, Pretoria, South Africa
| | - M Iturriza-Gomara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - O Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - N A Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Delogu R, Ianiro G, Morea A, Chironna M, Fiore L, Ruggeri FM. Molecular characterization of two rare human G8P[14] rotavirus strains, detected in Italy in 2012. INFECTION GENETICS AND EVOLUTION 2016; 44:303-312. [PMID: 27449953 DOI: 10.1016/j.meegid.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/30/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Since 2007, the Italian Rotavirus Surveillance Program (RotaNet-Italy) has monitored the diversity and distribution of genotypes identified in children hospitalized with rotavirus acute gastroenteritis. We report the genomic characterization of two rare human G8P[14] rotavirus strains, identified in two children hospitalized with acute gastroenteritis in the southern Italian region of Apulia during rotavirus strain surveillance in 2012. Both strains showed a G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genomic constellation (DS-1-like genomic background). Phylogenetic analysis of each genome segment revealed a mixed configuration of genes of animal and zoonotic human origin, indicating that genetic reassortment events generated these unusual human strains. Eight out of 11 genes (VP1, VP2, VP3, VP6, VP7, NSP3, NSP4 and NSP5) of the Italian G8P[14] strains exhibited close identity with a Spanish sheep strain, whereas the remaining genes (VP4, NSP1 and NSP2) were more closely related to human strains. The amino acid sequences of the antigenic regions of outer capsid proteins VP4 and VP7 were compared with vaccine and field strains, showing high conservation between the amino acid sequences of Apulia G8P[14] strains and human and animal strains bearing G8 and/or P[14] proteins, and revealing many substitutions with respect to the RotaTeq™ and Rotarix™ vaccine strains. Conversely, the amino acid analysis of the four antigenic sites of VP6 revealed a high degree of conservation between the two Apulia strains and the human and animal strains analyzed. These results reinforce the potential role of interspecies transmission and reassortment in generating novel rotavirus strains that might not be fully contrasted by current vaccines.
Collapse
Affiliation(s)
- Roberto Delogu
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Morea
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Chironna
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Fiore
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Franco M Ruggeri
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
9
|
Pacilli M, Cortese MM, Smith S, Siston A, Samala U, Bowen MD, Parada JP, Tam KI, Rungsrisuriyachai K, Roy S, Esona MD, Black SR. Outbreak of Gastroenteritis in Adults Due to Rotavirus Genotype G12P[8]. Clin Infect Dis 2015; 61:e20-5. [DOI: 10.1093/cid/civ294] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/04/2015] [Indexed: 11/14/2022] Open
|
10
|
Delogu R, Ianiro G, Camilloni B, Fiore L, Ruggeri FM. Unexpected spreading of G12P[8] rotavirus strains among young children in a small area of central Italy. J Med Virol 2015; 87:1292-302. [PMID: 25758365 DOI: 10.1002/jmv.24180] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 11/09/2022]
Abstract
Rotavirus gastroenteritis is associated mainly with the five genotypes G1,3,4,9P[8] and G2P[4] that are common worldwide, but emerging strains including G6, G8, and G12 are also reported sporadically. G12P[8] rotavirus was observed unexpectedly to spread in a limited area of Italy during the rotavirus surveillance season 2012-2013. All strains were genotyped for VP7 and VP4 and subjected to phylogenetic analysis. Amino acid sequences of antigenic regions were compared with vaccine and field strains. G12P[8] strains were detected in the stools of 52 of 69 (75%) children infected with rotavirus in the central Italian region of Umbria. All G12 strains belonged to lineage III, and presented the P[8] genotype. Sequence analysis showed close nucleotide identity of both VP4 and VP7 genes among Umbria G12P[8] strains. The VP7 gene was also similar to other G12 strains circulating in different years and countries, and the VP4 gene was closely related to other local and global P[8] strains possessing different G-types. Overall findings suggest either the introduction and evolution of a G12 VP7 gene into the local Wa-like rotavirus population or the spreading of a strain novel for the area. Comparison of the VP8* and VP7 antigenic regions showed high conservation between the amino acid sequences of Umbria G12P[8] strains, and revealed various substitutions in the VP8* antigenic regions between the Italian G12P[8] strains and RotaTeq™ and Rotarix™ vaccine strains. The sudden and unexpected emergence of G12P[8] rotavirus confirms that these strains have the potential to become a sixth common genotype across the world.
Collapse
Affiliation(s)
- Roberto Delogu
- National Center for Research & Evaluation of Immunobiologicals, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Camilloni
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Lucia Fiore
- National Center for Research & Evaluation of Immunobiologicals, Istituto Superiore di Sanità, Rome, Italy
| | - Franco Maria Ruggeri
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
11
|
Molecular genotyping and quantitation assay for rotavirus surveillance. J Virol Methods 2014; 213:157-63. [PMID: 25526999 DOI: 10.1016/j.jviromet.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/20/2022]
Abstract
Rotavirus genotyping is useful for surveillance purposes especially in areas where rotavirus vaccination has been or will be implemented. RT-PCR based molecular methods have been applied widely, but quantitative assays targeting a broad spectrum of genotypes have not been developed. Three real time RT-PCR panels were designed to identify G1, G2, G9, G12 (panel GI), G3, G4, G8, G10 (panel GII), and P[4], P[6], P[8], P[10], P[11] (panel P), respectively. An assay targeting NSP3 was included in both G panels as an internal control. The cognate assays were also formulated as one RT-PCR-Luminex panel for simultaneous detection of all the genotypes listed above plus P[9]. The assays were evaluated with various rotavirus isolates and 89 clinical samples from Virginia, Bangladesh and Tanzania, and exhibited 95% (81/85) sensitivity compared with the conventional RT-PCR-Gel-electrophoresis method, and 100% concordance with sequencing. Real time assays identified a significantly higher rate of mixed genotypes in Bangladeshi samples than the conventional gel-electrophoresis-based RT-PCR assay (32.5% versus 12.5%, P<0.05). In these mixed infections, the relative abundance of the rotavirus types could be estimated by Cq values. These typing assays detect and discriminate a broad range of G/P types circulating in different geographic regions with high sensitivity and specificity and can be used for rotavirus surveillance.
Collapse
|
12
|
Gómez MM, Resque HR, Volotão EDM, Rose TL, Figueira Marques da Silva M, Heylen E, Zeller M, Matthijnssens J, Leite JPG. Distinct evolutionary origins of G12P[8] and G12P[9] group A rotavirus strains circulating in Brazil. INFECTION GENETICS AND EVOLUTION 2014; 28:385-8. [DOI: 10.1016/j.meegid.2014.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 12/12/2022]
|
13
|
Theamboonlers A, Maiklang O, Thongmee T, Chieochansin T, Vuthitanachot V, Poovorawan Y. Complete genotype constellation of human rotavirus group A circulating in Thailand, 2008–2011. INFECTION GENETICS AND EVOLUTION 2014; 21:295-302. [DOI: 10.1016/j.meegid.2013.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 01/26/2023]
|
14
|
Mijatovic-Rustempasic S, Teel EN, Kerin TK, Hull JJ, Roy S, Weinberg GA, Payne DC, Parashar UD, Gentsch JR, Bowen MD. Genetic analysis of G12P[8] rotaviruses detected in the largest U.S. G12 genotype outbreak on record. INFECTION GENETICS AND EVOLUTION 2013; 21:214-9. [PMID: 24270016 DOI: 10.1016/j.meegid.2013.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/30/2013] [Accepted: 11/10/2013] [Indexed: 01/13/2023]
Abstract
In 2006-07, 77 cases of gastroenteritis in Rochester, NY, USA were associated with rotavirus genotype G12P[8]. Sequence analysis identified a high degree of genetic relatedness among the VP7 and VP4 genes of the Rochester G12P[8] strains and between these strains and currently circulating human G12P[8] strains. Out of 77 samples, two and seven unique nucleotide sequences were identified for VP7 and VP4 genes, respectively. Rochester strain VP7 genes were found to occupy the G12-III lineage and VP4 genes clustered within the P[8]-3 lineage. Six strains contained non-synonymous nucleotide substitutions that produced amino acid changes at 6 sites in the VP8(∗) region of the VP4 gene. Two sites (amino acids 242 and 246) were located in or near a described trypsin cleavage site. Selection analyses identified one positively selected VP7 site (107) and strong purifying selection at 58 sites within the VP7 gene as well as 2 of the 6 variant sites (79 and 218) in VP4.
Collapse
Affiliation(s)
- Slavica Mijatovic-Rustempasic
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elizabeth N Teel
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tara K Kerin
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer J Hull
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sunando Roy
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Geoffrey A Weinberg
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daniel C Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jon R Gentsch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael D Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
15
|
Ndze VN, Achidi EA, Papp H, Kovács E, Farkas S, Adiogo D, Kisfali P, Ngeng MB, Abena MTO, Martella V, Esona MD, Bányai K. Shared G12 VP7 gene among human and bovine rotaviruses detected in Cameroonian villages. Acta Microbiol Immunol Hung 2013; 60:21-8. [PMID: 23529296 DOI: 10.1556/amicr.60.2013.1.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Group A rotaviruses (RVA) are an important enteric pathogen in humans and livestock animals. Transmission of animal RVA strains to humans has been documented on several occasions. A reverse route of transmission of RVA under natural circumstances is anticipated, although evidence is scarce. However, experimental studies indicated that animals can be infected with human RVAs. By screening the stool samples collected from 157 cattle during 2011 in two Cameroonian villages, four samples (2.5%) were found positive for RVA. Upon sequence analysis of a 410 bp fragment of the VP7 gene, the RVA strains shared up to 100% nt identity to each other and to G12 RVAs identified in human patients living in the same geographic regions. This finding provides evidence for a human-to-animal transmission of an epidemic human rotavirus strain.
Collapse
Affiliation(s)
- Valentine Ngum Ndze
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaoundé, Cameroon
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Anderson EJ, Shippee DB, Weinrobe MH, Davila MD, Katz BZ, Reddy S, Cuyugan MGKP, Lee SY, Simons YM, Yogev R, Noskin GA. Indirect protection of adults from rotavirus by pediatric rotavirus vaccination. Clin Infect Dis 2013; 56:755-60. [PMID: 23349228 DOI: 10.1093/cid/cis1010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Pediatric vaccination has resulted in declines in disease in unvaccinated individuals through decreasing pathogen circulation in the community. About 2 years after implementation of pediatric rotavirus vaccination in the United States, dramatic declines in rotavirus disease were observed in both vaccinated and unvaccinated children. Whether this protection extends to adults is unknown. METHODS The prevalence of rotavirus, as determined by Rotaclone enzyme immunoassay, in adults who had stools submitted for bacterial stool culture (BSC) between February to May to Northwestern Memorial Hospital, Chicago, was compared between the prepediatric impact era (2006-2007) and the pediatric impact era (2008-2010). Isolates were genotyped and clinical characteristics of those with rotavirus were compared. RESULTS Of the 5788 BSC sent, 4725 met inclusion criteria and 3530 of these (74.7%) were saved for rotavirus testing. The prevalence of rotavirus among adults who had stool sent for BSC declined from 4.35% in 2006-2007 to 2.24% in 2008-2010 (a relative decline of 48.4%; P = .0007). The decline in the prevalence of rotavirus was of similar significant magnitude in both outpatients and inpatients. Marked year-to-year variability was observed in circulating rotavirus genotypes, with strain G2P[4] accounting for 24%; G1P[8], 22%; G3P[8], 11%; and G12P[6], 10% overall. About 30% of adults from whom rotavirus was isolated were immunocompromised and this remained constant. CONCLUSIONS Pediatric rotavirus vaccination correlated with a relative decline of almost 50% in rotavirus identified from adult BSC during the peak rotavirus season, suggesting that pediatric rotavirus vaccination protects adults from rotavirus.
Collapse
Affiliation(s)
- Evan J Anderson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Divisions of Infectious Diseases, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cho MK, Jheong WH, Lee SG, Park CJ, Jung KH, Paik SY. Full genomic analysis of a human rotavirus G1P[8] strain isolated in South Korea. J Med Virol 2012; 85:157-70. [PMID: 23023979 DOI: 10.1002/jmv.23366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2012] [Indexed: 11/07/2022]
Abstract
A rotavirus G1P[8] strain C1-81 was isolated from a 5-month-old female infant admitted to hospital with fever and severe diarrhea in Incheon, South Korea. To investigate its full genomic relatedness and its group, the full genome of strain C1-81 was determined. Based on a full genome classification system, C1-81 was shown to possess the typical Wa-like genotype constellation: G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. On the basis of sequence similarities, the strain was shown to be the closest related strain to contemporary human rotavirus strains with recent strains isolated in Asia. This C1-81 strain showed the highest degree of nucleic acid similarity (98.8% and 97%) to G1 B4633-03 and P[8] (Thai-1604 and Dhaka8-02), respectively. This is the first report that group A rotavirus was analyzed with G1P[8] in South Korea. The study of the complete genome of the virus will help understanding of the evolution of rotavirus.
Collapse
Affiliation(s)
- Min-Kyu Cho
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Rotavirus genotypes in children in the Basque Country (North of Spain): rapid and intense emergence of the G12[P8] genotype. Epidemiol Infect 2012; 141:868-74. [PMID: 22873952 DOI: 10.1017/s0950268812001306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Between July 2009 and June 2011, rotavirus was detected in 507 of 4597 episodes of acute gastroenteritis in children aged <3 years in Gipuzkoa (Basque Country, Spain), of which the G-type was determined in 458 (90·3%). During the annual seasonal epidemic of 2010-2011, the unusual G-type 12 was predominant, causing 65% (145/223) of cases of rotavirus gastroenteritis. All the G12 strains were clustered in lineage III and were preferentially associated with P-type 8. This epidemic was characterized by broad geographical distribution (rural and urban) and, over 7 months, affected both infants and children, the most frequently affected being children between 4 and 24 months. Of children with rotavirus G12, 16% required hospital admission, the admission rate in children aged <2 years being 20·7 cases/10 000 children. The sudden emergence and predominance of G12 rotaviruses documented in this winter outbreak suggest that they may soon become a major human rotavirus genotype.
Collapse
|
19
|
Matthijnssens J, Van Ranst M. Genotype constellation and evolution of group A rotaviruses infecting humans. Curr Opin Virol 2012; 2:426-33. [PMID: 22683209 DOI: 10.1016/j.coviro.2012.04.007] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/01/2012] [Accepted: 04/19/2012] [Indexed: 12/12/2022]
Abstract
Numerous rotavirus group A (RVA) strains with distinct G-genotype and P-genotype combinations have been described infecting humans worldwide. However, the increasing amount of complete RVA genome data which have become available, suggest that only RVA strains with 2 discrete genotype constellations have been successful in sustaining infection of humans worldwide over longer periods of time. Those genotype constellations have been designated I1-R1-C1-M1-A1-N1-T1-E1-H1 and I2-R2-C2-M2-A2-N2-T2-E2-H2 and are also known as Wa-like and DS-1-like, respectively. RVAs of other genotype constellations which were able to spread to a limited extent in the human population are AU-1-related RVA strains (I3-R3-C3-M3-A3/A12-N3-T3-E3-H3/H6) in combination with G3P[9] or G12P[9], and neonatal G10P[11] RVA strains in India (bovine×human Wa-like reassortants). On the basis of the analysis of complete genomes, it is suggested that the overall genetic diversity of epidemiologically widespread human RVA strains is more limited than generally assumed. This conclusion has consequences for how we look at host range restriction and the criteria according to which the effectiveness of RVA universal mass vaccination programs is assessed.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- Laboratory of Clinical & Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium.
| | | |
Collapse
|
20
|
Stupka JA, Degiuseppe JI, Parra GI. Increased frequency of rotavirus G3P[8] and G12P[8] in Argentina during 2008–2009: Whole-genome characterization of emerging G12P[8] strains. J Clin Virol 2012; 54:162-7. [DOI: 10.1016/j.jcv.2012.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 11/28/2022]
|
21
|
Hwang KP, Wu FT, Bányai K, Wu HS, Yang DCF, Huang YC, Lin JS, Hsiung CA, Huang JC, Jiang B, Gentsch JR. Identification of porcine rotavirus-like genotype P[6] strains in Taiwanese children. J Med Microbiol 2012; 61:990-997. [PMID: 22466032 DOI: 10.1099/jmm.0.042499-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular characterization of genotype P[6] rotavirus strains collected from children admitted to hospital with acute dehydrating diarrhoea during a 6-year surveillance period in Taiwan is described in this study. In total, three G4P[6] strains, one G5P[6] and one G12P[6] were characterized by sequencing and phylogenetic analysis of the VP4, VP7, VP6 and NSP4 genes. Whilst all four genes of the single Taiwanese G12P[6] strain clustered with the respective genes of globally common human rotavirus strains, the G4 and G5 strains showed remarkable similarities to porcine rotavirus strains and putative porcine-origin human P[19] strains reported previously from Taiwan. The overall proportion of porcine rotavirus-like strains in Taiwan remains around 1 % among hospitalized children; however, the circulation and sporadic transmission of these heterotypic strains from pigs to humans could pose a public-health concern. Therefore, continuation of strain monitoring is needed in the vaccine era to detect any possible vaccine breakthrough events associated with the introduction of such heterologous rotavirus strains.
Collapse
Affiliation(s)
- Kao-Pin Hwang
- Division of Pediatric Infectious Disease, Department of Pediatrics, China Medical University Hospital, China Medical University School of Medicine, Taichung, Taiwan ROC
| | - Fang-Tzy Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan ROC.,Centers for Disease Control, Department of Health, Taiwan ROC
| | | | - Ho-Sheng Wu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan ROC.,Centers for Disease Control, Department of Health, Taiwan ROC
| | | | - Yhu-Chering Huang
- Division of Pediatric Infectious Disease, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan ROC
| | - Jen-Shiou Lin
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan ROC
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan ROC
| | - Jason C Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan ROC
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jon R Gentsch
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
22
|
Soares LDS, Lobo PDS, Mascarenhas JDP, Neri DL, Guerra SDFDS, de Oliveira ADSL, Maestri RP, Oliveira DDS, de Menezes EMDFC, Linhares ADC. Identification of lineage III of G12 rotavirus strains in diarrheic children in the Northern Region of Brazil between 2008 and 2010. Arch Virol 2011; 157:135-9. [PMID: 21947565 DOI: 10.1007/s00705-011-1111-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/09/2011] [Indexed: 01/09/2023]
Abstract
This study reports on the surveillance for rotavirus genotypes and the identification of G12 human rotavirus in the Northern Region of Brazil. Rotavirus-positive samples were collected from children <5 years of age with acute diarrhea from January 2008 to October 2010. G2P[4] was the most prevalent genotype, accounting for 45.6% (126/303) of cases. Five rotavirus strains bearing G12P[6] genotype specificity were detected. Phylogenetic analysis of the VP7 gene showed that G12 strains clustered into lineage III. This is the first detection of G12 strains from lineage III in Latin America, broadening the current evidence for the worldwide emergence of this genotype.
Collapse
Affiliation(s)
- Luana da Silva Soares
- Seção de Virologia, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Rodovia BR 316-KM 07, S/N, Levilândia, 67.030-000 Ananindeua, Pará, Brasil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ghosh S, Kobayashi N. Whole-genomic analysis of rotavirus strains: current status and future prospects. Future Microbiol 2011; 6:1049-65. [DOI: 10.2217/fmb.11.90] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on genetic diversity of rotaviruses have been primarily based on the genes encoding the antigenically significant VP7 and VP4 proteins. Since the rotavirus genome has 11 segments of RNA that are vulnerable to reassortment events, analyses of the VP7 and VP4 genes may not be sufficient to obtain conclusive data on the overall genetic diversity, or true origin of strains. In the last few years following the advent of the whole-genome-based genotype classification system, the whole genomes of at least 167 human group A rotavirus strains have been analyzed, providing a plethora of new and important information on the complex origin of strains, inter- and intra-genogroup reassortment events, animal–human reassortment events, zoonosis, and genetic linkages involving different group A rotavirus gene segments. In addition, the whole genomes of a limited number of human group B, C and novel group rotavirus strains have been analyzed. This article briefly reviews the available data on whole-genomic analysis of human rotavirus strains. The significance and future prospects of whole-genome-based studies are also discussed.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556, Japan
| | | |
Collapse
|
24
|
Ghosh S, Paul SK, Yamamoto D, Nagashima S, Kobayashi N. Full genomic analyses of human rotavirus strains possessing the rare P[8]b VP4 subtype. INFECTION GENETICS AND EVOLUTION 2011; 11:1481-6. [DOI: 10.1016/j.meegid.2011.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 11/30/2022]
|
25
|
Full genomic analysis of Indian G1P[8] rotavirus strains. INFECTION GENETICS AND EVOLUTION 2011; 11:504-11. [DOI: 10.1016/j.meegid.2011.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/27/2010] [Accepted: 01/04/2011] [Indexed: 01/05/2023]
|
26
|
Than VT, Le VP, Lim I, Kim W. Complete genomic characterization of cell culture adapted human G12P[6] rotaviruses isolated from South Korea. Virus Genes 2011; 42:317-22. [DOI: 10.1007/s11262-011-0576-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/17/2011] [Indexed: 01/24/2023]
|
27
|
New molecular approaches in the diagnosis of acute diarrhea: advantages for clinicians and researchers. Curr Opin Gastroenterol 2011; 27:24-9. [PMID: 21099430 DOI: 10.1097/mog.0b013e3283413750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW To provide an update of the advantages of new-generation molecular diagnostics as regards acute diarrhea, and to evaluate how they can help clinicians and researchers diagnose this condition. RECENT FINDINGS Thanks to real-time polymerase chain reaction techniques, many enteropathogens can now be identified simultaneously within hours. Most techniques are based on amplification of specific nucleotide sequences. With high-resolution melting analyses, microarrays, and metagenomic analyses, multiple genomic sequences can be evaluated in a single sample; thus, a wide range of enteropathogens can be evaluated in one run. Molecular techniques have elucidated the role of major enteropathogens such as norovirus and bocavirus and their evolving epidemiology. They have revealed novel transmission routes, also in food-borne diarrhea outbreaks, and have opened the way to new therapies and preventive measures, as well as to surveillance of emerging rotavirus strains after vaccine introduction. SUMMARY Molecular approaches are best suited for epidemiologic purposes and for selected clinical conditions such as early identification of treatable agents in at-risk patients, rather than for cases requiring only oral rehydration. In the field of acute diarrhea, the major application of molecular techniques is the identification of novel agents of gastroenteritis and their epidemiology.
Collapse
|
28
|
Molecular characterization of rare G12P[6] rotavirus isolates closely related to G12 strains from the United States, CAU 195 and CAU 214. Arch Virol 2010; 156:511-6. [PMID: 21132336 DOI: 10.1007/s00705-010-0865-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/13/2010] [Indexed: 01/28/2023]
Abstract
Two human G12 rotaviruses, CAU 195 and CAU 214, were isolated from South Korea using cell culture and characterized on the basis of sequence divergence in the VP7, VP4, and NSP4 genes. Phylogenetic analysis of the VP7 gene sequences indicated that these strains clustered into lineage III and were most closely related to G12 rotaviruses isolated in the United States. The VP4 and NSP4 gene sequences showed that two strains belonged to the P[6]-Ia lineage and genotype [B]. This finding provides information that can be used to evaluate G12 strains and aid in the development of effective vaccines in the future.
Collapse
|
29
|
Grimwood K, Lambert SB, Milne RJ. Rotavirus infections and vaccines: burden of illness and potential impact of vaccination. Paediatr Drugs 2010; 12:235-56. [PMID: 20593908 DOI: 10.2165/11537200-000000000-00000] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rotaviruses are the most common cause of severe gastroenteritis in children. By 5 years of age virtually every child worldwide will have experienced at least one rotavirus infection. This leads to an enormous disease burden, where every minute a child dies because of rotavirus infection and another four are hospitalized, at an annual societal cost in 2007 of $US2 billion. Most of the annual 527 000 deaths are in malnourished infants living in rural regions of low and middle income countries. In contrast, most measurable costs arise from medical expenses and lost parental wages in high income countries. Vaccines are the only public health prevention strategy likely to control rotavirus disease. They were developed to mimic the immunity following natural rotavirus infection that confers protection against severe gastroenteritis and consequently reduces the risk of primary healthcare utilization, hospitalization and death. The two currently licensed vaccines--one a single human strain rotavirus vaccine, the other a multiple strain human-bovine pentavalent reassortant rotavirus vaccine--are administered to infants in a two- or three-dose course, respectively, with the first dose given at 6-14 weeks of age. In various settings they are safe, immunogenic and efficacious against many different rotavirus genotypes. In high and middle income countries, rotavirus vaccines confer 85-100% protection against severe disease, while in low income regions of Africa and Asia, protection is less, at 46-77%. Despite this reduced efficacy in low income countries, the high burden of diarrheal disease in these regions means that proportionately more severe cases are prevented by vaccination than elsewhere. Post-licensure effectiveness studies show that rotavirus vaccines not only reduce rotavirus activity in infancy but they also decrease rates of rotavirus diarrhea in older and unimmunized children. A successful rotavirus vaccination program will rely upon sustained vaccine efficacy against diverse and evolving rotavirus strains and efficient vaccine delivery systems. The potential introduction of rotavirus vaccines into the world's poorest countries with the greatest rates of rotavirus-related mortality is expected to be very cost effective, while rotavirus vaccines should also be cost effective by international standards when incorporated into developed countries immunization schedules. Nonetheless, cost effectiveness in each country still depends largely on the local rotavirus mortality rate and the price of the vaccine in relation to the per capita gross domestic product.
Collapse
Affiliation(s)
- Keith Grimwood
- Queensland Paediatric Infectious Diseases Laboratory, Queensland Children's Medical Research Institute, The University of Queensland, Royal Children's Hospital, Herston Road, Herston, QLD 4029, Australia.
| | | | | |
Collapse
|
30
|
Rahman M, Matthijnssens J, Saiada F, Hassan Z, Heylen E, Azim T, Van Ranst M. Complete genomic analysis of a Bangladeshi G1P[8] rotavirus strain detected in 2003 reveals a close evolutionary relationship with contemporary human Wa-like strains. INFECTION GENETICS AND EVOLUTION 2010; 10:746-54. [DOI: 10.1016/j.meegid.2010.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/15/2010] [Accepted: 04/26/2010] [Indexed: 11/30/2022]
|
31
|
Anderson EJ. Prevention and treatment of viral diarrhea in pediatrics. Expert Rev Anti Infect Ther 2010; 8:205-17. [PMID: 20109050 DOI: 10.1586/eri.10.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diarrhea is the second largest cause of mortality worldwide in children from the perinatal period to the age of 5 years. Rotavirus has been the most commonly identified viral cause of diarrhea in children. Norovirus is now recognized as the second most common viral pathogen. Adenovirus, astrovirus and sapovirus are the other major viral causes of pediatric gastroenteritis. Strategies for prevention include basic hygiene, optimization of nutrition and, ultimately, vaccination. Two new vaccines have recently been licensed for the prevention of rotavirus, the monovalent human rotavirus vaccine (Rotarix) and the pentavalent bovine-human reassortant vaccine (RotaTeq). These vaccines have already dramatically decreased the morbidity associated with rotavirus in countries where they are widely used. Efforts to develop a norovirus vaccine face substantial hurdles. Treatment of the viral pathogens is primarily limited to symptomatic measures.
Collapse
Affiliation(s)
- Evan J Anderson
- Divisions of Infectious Diseases and Pediatric Infectious Diseases, Northwestern Memorial and Children's Memorial Hospitals, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA.
| |
Collapse
|
32
|
Full genomic analysis and possible origin of a porcine G12 rotavirus strain RU172. Virus Genes 2010; 40:382-8. [DOI: 10.1007/s11262-010-0454-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/27/2010] [Indexed: 12/11/2022]
|
33
|
Abstract
PURPOSE OF REVIEW The authors discuss the most relevant information in the field of rotavirus vaccines published from October 2007 to June 2009; new information on the virus, host response and disease burden that relate to our understanding of vaccine mechanisms and impact are discussed. The review will focus on the role of the vaccines for the developing world but this does not preclude the relevance of these vaccines for children living in the industrialized world. RECENT FINDINGS Immune mechanisms involved in rotavirus-associated immunity potentially relevant for vaccine-associated immunity continue to be identified including anti-NSP4 antibodies, cellular and mucosal mechanisms. Rotavirus-associated disease burden is high, causing approximately 40% of diarrhea-associated hospitalizations in children less than 5 years of age worldwide; G12, G8 and P[6] antigenic types emerging in developing countries are increasing in prevalence and may share worldwide circulation with the other five more common serotypes. The two currently available vaccines, based on different immune concepts, (VP7/VP4 homotypic specificity for RotaTeq vs. homotypic and heterotypic specificity for Rotarix) have demonstrated high and sustained efficacy in middle and high-income countries. Recent efficacy and effectiveness studies demonstrate acceptable protection levels in the poorest countries of the world against most antigenic types, leading to universal vaccine recommendation. Postlicensure surveillance has not detected any signal of increased risk for intussusception in children vaccinated with any of the two vaccines. SUMMARY Rotavirus vaccines are well tolerated and provide adequate protection against moderate to severe disease in high, middle and low-income regions. Partnerships between governments, industry, and funding agencies will now be urgently needed to promote vaccine use, especially in the less privileged countries of the world.
Collapse
|