1
|
Xiang X, Yu D, Li Z, Fros JJ, Wei J, Liu K, Li Z, Shao D, Li B, Kortekaas J, van Oers MM, Ma Z, Pijlman GP, Qiu Y. Japanese encephalitis virus-induced DNA methylation contributes to blood-brain barrier permeability by modulating tight junction protein expression. J Neuroinflammation 2024; 21:277. [PMID: 39468601 PMCID: PMC11520778 DOI: 10.1186/s12974-024-03266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Japanese encephalitis virus (JEV) is a neurotropic and neuroinvasive flavivirus causing viral encephalitis, which seriously threatens the development of animal husbandry and human health. DNA methylation is a major epigenetic modification involved in viral pathogenesis, yet how DNA methylation affects JEV infection remains unknown. Here, we show genome-wide DNA methylation profiles in the brains of JEV-infected mice compared to mock-infected mice. JEV can significantly increase the overall DNA methylation levels in JEV-infected mouse brains. A total of 14,781 differentially methylated regions associated genes (DMGs) have been identified. Subsequently, KEGG pathway analysis suggested that DNA methylation modulates the tight junction signaling pathway, which can potentially impact the permeability of the blood-brain barrier (BBB). We demonstrate that hypermethylation of the tight junction gene Afdn promoter inhibited AFDN expression and increased monolayer permeability of mouse brain microvascular endothelial (bEnd.3) cells in an in vitro transwell assay. Collectively, this study reveals that DNA methylation is increased in a murine Japanese encephalitis model and that modulation of Afdn expression promotes BBB permeability.
Collapse
Affiliation(s)
- Xiao Xiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Du Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Zhuangzhuang Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Jeroen Kortekaas
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands.
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China.
| |
Collapse
|
2
|
Viana Filho JMC, Castro Coêlho MD, Queiroz Neto JND, Souza BFD, Valença AMG, Oliveira NFPD. TNF-α promoter hypomethylation is frequent in oncopediatric patients who recovered from mucositis. Braz Oral Res 2024; 38:e042. [PMID: 38747829 PMCID: PMC11376642 DOI: 10.1590/1807-3107bor-2024.vol38.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/20/2023] [Indexed: 06/15/2024] Open
Abstract
The aim of this study was to investigate the DNA methylation profile in genes encoding catalase (CAT) and superoxide dismutase (SOD3) enzymes, which are involved in oxidative stress mechanisms, and in genes encoding pro-inflammatory cytokines interleukin-6 (IL6) and tumor necrosis factor-alpha (TNF-α) in the oral mucosa of oncopediatric patients treated with methotrexate (MTX®). This was a cross-sectional observational study and the population comprised healthy dental patients (n = 21) and those with hematological malignancies (n = 64) aged between 5 and 19 years. Oral conditions were evaluated using the Oral Assessment Guide and participants were divided into 4 groups: 1- healthy individuals; 2- oncopediatric patients without mucositis; 3- oncopediatric patients with mucositis; 4- oncopediatric patients who had recovered from mucositis. Methylation of DNA from oral mucosal cells was evaluated using the Methylation-Specific PCR technique (MSP). For CAT, the partially methylated profile was the most frequent and for SOD3 and IL6, the hypermethylated profile was the most frequent, with no differences between groups. For TNF-α, the hypomethylated profile was more frequent in the group of patients who had recovered from mucositis. It was concluded that the methylation profiles of CAT, SOD3, and IL6 are common profiles for oral cells of children and adolescents and have no association with oral mucositis or exposure to chemotherapy with MTX®. Hypomethylation of TNF-α is associated with oral mucosal recovery in oncopediatric patients who developed oral mucositis during chemotherapy.
Collapse
Affiliation(s)
- José Maria Chagas Viana Filho
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós Graduação em Odontologia, João Pessoa, PB, Brasil
| | - Marina de Castro Coêlho
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós Graduação em Odontologia, João Pessoa, PB, Brasil
| | - José Nunes de Queiroz Neto
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, João Pessoa, PB, Brasil
| | - Beatriz Fernandes de Souza
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós Graduação em Odontologia, João Pessoa, PB, Brasil
| | - Ana Maria Gondim Valença
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós Graduação em Odontologia, João Pessoa, PB, Brasil
| | - Naila Francis Paulo de Oliveira
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós Graduação em Odontologia, João Pessoa, PB, Brasil
| |
Collapse
|
3
|
Lv A, BianBaZhuoMa, DeQiong, DaWaZhuoMa, PuBuZhuoMa, Yao D, LangJiQuZhen, Lu Y, Cai L, DaZhen, Tang C, BianBaZhuoMa, Zhang Y, Yin J, Ding T, DaWaCang, Wu M, Chen Y, Li Y. Effect of COVID-19 infection on pregnant women in plateau regions. Public Health 2024; 229:57-62. [PMID: 38401193 DOI: 10.1016/j.puhe.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 02/26/2024]
Abstract
OBJECTIVE The present study aims to explore the effect of COVID-19 infection on pregnant women in plateau regions. STUDY DESIGN Data from 381 pregnant women infected with COVID-19 who underwent prenatal examination or treatment at Women and Children's Hospital of Tibet Autonomous Region between January 2020 and December 2022 and 314 pregnant women not infected with COVID-19 were retrospectively collected. METHODS The study participants were divided into an infected and non-infected group according to whether they were infected with COVID-19. Basic information (ethnicity, age, body mass index and gestational age [GA]), vaccination status, intensive care unit (ICU) admission and delivery outcomes were compared. Binary logistic regression was used to analyse the influencing factors of ICU admission. RESULTS The results revealed significant differences in the GA, vaccination rate, blood pressure, partial pressure of oxygen, white blood cell (WBC) count, ICU admission rate, preeclampsia rate, forearm presentation rate, thrombocytopenia rate, syphilis infection rate and placental abruption rate between the two groups (P < 0.05). A univariate analysis showed that COVID-19 infection, hepatitis B virus infection, the WBC count and hypoproteinaemia were risk factors for ICU admission. The results of the multivariate analysis of the ICU admission of pregnant women showed that COVID-19 infection (odds ratio [OR] = 4.271, 95 % confidence interval [CI]: 3.572-5.820, P < 0.05) was a risk factor for ICU admission and the WBC count (OR = 0.935, 95 % CI: 0.874-0.947, P < 0.05) was a protective factor for ICU admission. CONCLUSION Pregnant women are vulnerable to the adverse consequences of COVID-19 infection, and public health measures such as vaccination are needed to protect this population subgroup.
Collapse
Affiliation(s)
- A Lv
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO. 1 DaHua Road, Dong Dan, Beijing, 100730, PR China; Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - BianBaZhuoMa
- Lhasa People's Hospital, No. 1, Beijing Middle Road, Chengguan District, Lhasa, Tibet Autonomous Region, 850000, PR China
| | - DeQiong
- Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - DaWaZhuoMa
- Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - PuBuZhuoMa
- Lhasa People's Hospital, No. 1, Beijing Middle Road, Chengguan District, Lhasa, Tibet Autonomous Region, 850000, PR China
| | - D Yao
- Nyingchi People's Hospital, No. 11, Water Garden, Bayi Town, Bayi District, Nyingchi City, Tibet Autonomous Region, 860000, PR China
| | - LangJiQuZhen
- Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - Y Lu
- Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - L Cai
- Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - DaZhen
- Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - C Tang
- Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - BianBaZhuoMa
- Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - Y Zhang
- Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - J Yin
- Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - T Ding
- Women and Children's Hospital of Tibet Autonomous Region, NO. 10 Chagu Avenue, Doilungdêqên District, Liuwu New Area, Lhasa, Tibet Autonomous Region, 851414, PR China
| | - DaWaCang
- Tibet University Medical School, No. 10, Zangda East Road, Chengguan District, Lhasa, Tibet Autonomous Region, 850000, PR China
| | - M Wu
- Tibet University Medical School, No. 10, Zangda East Road, Chengguan District, Lhasa, Tibet Autonomous Region, 850000, PR China
| | - Y Chen
- Tibet University Medical School, No. 10, Zangda East Road, Chengguan District, Lhasa, Tibet Autonomous Region, 850000, PR China
| | - Y Li
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO. 1 DaHua Road, Dong Dan, Beijing, 100730, PR China.
| |
Collapse
|
4
|
Tang ML, Li H, Ning JF, Shen X, Sun X. Discovery of First-in-Class TAK1-MKK3 Protein-Protein Interaction (PPI) Inhibitor (R)-STU104 for the Treatment of Ulcerative Colitis through Modulating TNF-α Production. J Med Chem 2022; 65:6690-6709. [PMID: 35442672 DOI: 10.1021/acs.jmedchem.1c02198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor α (TNF-α) has been demonstrated to be a therapeutic target for autoimmune diseases. However, this biological therapy exhibits some inevitable disadvantages, such as risk of infection. Thus, small-molecule alternatives by targeting TNF-α production signaling pathway are still in demand. Herein, we describe the design, synthesis, and structure-activity relationships of 3-aryindanone compounds regarding their modulation of TNF-α production. Among them, (R)-STU104 exhibited the most potent inhibitory activity on TNF-α production, which suppressed the TAK1/MKK3/p38/MnK1/MK2/elF4E signal pathways through binding with MKK3 and disrupting the TAK1 phosphorylating MKK3. As a result, (R)-STU104 demonstrated remarkable dose-effect relationships on both acute and chronic mouse UC models. In addition to its good pharmacokinetic (PK) and safety profile, (R)-STU104 showed better anti-UC efficacy in vivo at 10 mg/kg/d than mesalazine at the dose of 50 mg/kg/d. These results suggested that TAK1-MKK3 interaction inhibitors could be potentially utilized for the treatment of UC.
Collapse
Affiliation(s)
- Mei-Lin Tang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Haidong Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jin-Feng Ning
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xiaoyan Shen
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xun Sun
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,The Institutes of Integrative Medicine of Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
| |
Collapse
|
5
|
Santos NCD, Gomes TN, Góis IADF, Oliveira JSD, Coelho LFL, Ferreira GP, Silva FRPD, Pereira ACTDC. Association of single nucleotide polymorphisms in TNF-α (-308G/A and -238G/A) to dengue: Case-control and meta-analysis study. Cytokine 2020; 134:155183. [PMID: 32731142 DOI: 10.1016/j.cyto.2020.155183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 01/27/2023]
Abstract
Dengue is an acute viral disease whose clinical condition is related to the interaction of factors related to the Dengue virus (DENV), environment and the host, with the immunity of the human host contributing a substantial role in the pathogenesis of DENV infection. Studies have demonstrated that single nucleotide polymorphisms (SNPs) in the promoter regions of cytokine genes such as tumor necrosis factor (TNF-α) affect transcription and/or expression; and therefore, may influence the pathogenesis of infectious diseases, such as dengue. Consequently, the objective of this study was to assess through a case-control study whether there was an association between the presence of SNPs -308G/A and -238G/A in the TNF-α gene and 158 patients with dengue and 123 controls. No association was found between the SNPs and the dengue cases in the study population. We then performed a meta-analysis, retrieving data from case-control studies in the literature for the same polymorphisms. For SNP-308G/A, the GG genotype was associated with dengue fever (DF) risk (OR = 1.24, 1.00-1.53; p = 0.05; I2 = 0%), while the GA genotype (OR = 0.75, 0.60-0.93; p = 0.01; I2 = 0%) and allele A (OR = 0.75, 0.60-0.93; p = 0.01; I2 = 0%) were associated with protection. The genotype GG population in the Asian continent (OR = 1.81 [1.06, 3.09], p = 0.03, I2 = 0%) and American (OR = 1.29 [1.00, 1.65], p = 0.05, I2 = 0%) was also associated with protection in the comparison between the cases versus the control group. In each comparison, the dominant model AA + GA (p < 0.00001) conferred protection. For SNP-238G/A the GA genotype was associated with risk for dengue hemorrhagic fever (DHF; OR = 2.17, 1.28-3.67; p = 0.004; I2 = 0%)), and the dominant AA + GA model (p < 0.00001) was associated with protection in each comparison. In summary, our results did not associate SNPs in the TNF-α gene to dengue in the Brazilian northeast population. However, combined literature data suggested the effect of the GG and GA genotypes of the SNP-308G/A on risk and protection, respectively, in Asian and American populations.
Collapse
Affiliation(s)
- Naiany Carvalho Dos Santos
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | - Thiago Nobre Gomes
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | - Iara Alda de Fontes Góis
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | | | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Gustavo Portela Ferreira
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | | | | |
Collapse
|
6
|
Alberca RW, Pereira NZ, Oliveira LMDS, Gozzi-Silva SC, Sato MN. Pregnancy, Viral Infection, and COVID-19. Front Immunol 2020; 11:1672. [PMID: 32733490 PMCID: PMC7358375 DOI: 10.3389/fimmu.2020.01672] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Pregnancy comprises a unique immunological condition, to allow fetal development and to protect the host from pathogenic infections. Viral infections during pregnancy can disrupt immunological tolerance and may generate deleterious effects on the fetus. Despite these possible links between pregnancy and infection-induced morbidity, it is unclear how pregnancy interferes with maternal response to some viral pathogens. In this context, the novel coronavirus (SARS-CoV-2) can induce the coronavirus diseases-2019 (COVID-19) in pregnant women. The potential risk of vertical transmission is unclear, babies born from COVID-19-positive mothers seems to have no serious clinical symptoms, the possible mechanisms are discussed, which highlights that checking the children's outcome and more research is warranted. In this review, we investigate the reports concerning viral infections and COVID-19 during pregnancy, to establish a correlation and possible implications of COVID-19 during pregnancy and neonatal's health.
Collapse
MESH Headings
- Betacoronavirus
- COVID-19
- Child, Preschool
- Coronavirus Infections/blood
- Coronavirus Infections/immunology
- Coronavirus Infections/transmission
- Coronavirus Infections/virology
- Cytokines/blood
- Female
- Fetal Development/immunology
- Humans
- Infant
- Infant, Newborn
- Infectious Disease Transmission, Vertical
- Mothers
- Pandemics
- Pneumonia, Viral/blood
- Pneumonia, Viral/immunology
- Pneumonia, Viral/transmission
- Pneumonia, Viral/virology
- Pregnancy
- Pregnancy Complications, Infectious/blood
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/virology
- SARS-CoV-2
Collapse
Affiliation(s)
- Ricardo Wesley Alberca
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Nátalli Zanete Pereira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Luanda Mara Da Silva Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Bannister S, Messina NL, Novakovic B, Curtis N. The emerging role of epigenetics in the immune response to vaccination and infection: a systematic review. Epigenetics 2020; 15:555-593. [PMID: 31914857 PMCID: PMC7574386 DOI: 10.1080/15592294.2020.1712814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Extensive research has highlighted the role of infection-induced epigenetic events in the development of cancer. More recently, attention has focused on the ability of non-carcinogenic infections, as well as vaccines, to modify the human epigenome and modulate the immune response. This review explores this rapidly evolving area of investigation and outlines the many and varied ways in which vaccination and natural infection can influence the human epigenome from modulation of the innate and adaptive immune response, to biological ageing and modification of disease risk. The implications of these epigenetic changes on immune regulation and their potential application to the diagnosis and treatment of chronic infection and vaccine development are also discussed.
Collapse
Affiliation(s)
- Samantha Bannister
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| | - Nicole L. Messina
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Boris Novakovic
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Epigenetics Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
8
|
Lemos FDO, França A, Lima Filho ACM, Florentino RM, Santos ML, Missiaggia DG, Rodrigues GOL, Dias FF, Souza Passos IB, Teixeira MM, Andrade AMDF, Lima CX, Vidigal PVT, Costa VV, Fonseca MC, Nathanson MH, Leite MF. Molecular Mechanism for Protection Against Liver Failure in Human Yellow Fever Infection. Hepatol Commun 2020; 4:657-669. [PMID: 32363317 PMCID: PMC7193135 DOI: 10.1002/hep4.1504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Yellow fever (YF) is a viral hemorrhagic fever that typically involves the liver. Brazil recently experienced its largest recorded YF outbreak, and the disease was fatal in more than a third of affected individuals, mostly because of acute liver failure. Affected individuals are generally treated only supportively, but during the recent Brazilian outbreak, selected patients were treated with liver transplant. We took advantage of this clinical experience to better characterize the clinical and pathological features of YF-induced liver failure and to examine the mechanism of hepatocellular injury in YF, to identify targets that would be amenable to therapeutic intervention in preventing progression to liver failure and death. Patients with YF liver failure rapidly developed massive transaminase elevations, with jaundice, coagulopathy, thrombocytopenia, and usually hepatic encephalopathy, along with pathological findings that included microvesicular steatosis and lytic necrosis. Hepatocytes began to express the type 3 isoform of the inositol trisphosphate receptor (ITPR3), an intracellular calcium (Ca2+) channel that is not normally expressed in hepatocytes. Experiments in an animal model, isolated hepatocytes, and liver-derived cell lines showed that this new expression of ITPR3 was associated with increased nuclear Ca2+ signaling and hepatocyte proliferation, and reduced steatosis and cell death induced by the YF virus. Conclusion: Yellow fever often induces liver failure characterized by massive hepatocellular damage plus steatosis. New expression of ITPR3 also occurs in YF-infected hepatocytes, which may represent an endogenous protective mechanism that could suggest approaches to treat affected individuals before they progress to liver failure, thereby decreasing the mortality of this disease in a way that does not rely on the costly and limited resource of liver transplantation.
Collapse
Affiliation(s)
| | - Andressa França
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Rodrigo M. Florentino
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Marcone Loiola Santos
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Dabny G. Missiaggia
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Felipe Ferraz Dias
- Center of MicroscopyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Mauro M. Teixeira
- Department of Biochemistry and ImmunologyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Cristiano Xavier Lima
- Hepatic Transplant ServiceHospital Felício RochoBelo HorizonteBrazil
- SurgeryUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | | | - Matheus Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and MaterialsRua Giuseppe Máximo ScolfaroCampinasBrazil
| | - Michael H. Nathanson
- Section of Digestive DiseasesDepartment of Internal MedicineYale University School of MedicineNew HavenCT
| | - M. Fatima Leite
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
9
|
Sajjanar B, Trakooljul N, Wimmers K, Ponsuksili S. DNA methylation analysis of porcine mammary epithelial cells reveals differentially methylated loci associated with immune response against Escherichia coli challenge. BMC Genomics 2019; 20:623. [PMID: 31366318 PMCID: PMC6670134 DOI: 10.1186/s12864-019-5976-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background Epigenetic changes such as cytosine (CpG) DNA methylations regulate gene expression patterns in response to environmental cues including infections. Microbial infections induce DNA methylations that play a potential role in modulating host-immune response. In the present study, we sought to determine DNA methylation changes induced by the mastitis causing Escherichia coli (E. coli) in porcine mammary epithelial cells (PMEC). Two time points (3 h and 24 h) were selected based on specific transcriptomic changes during the early and late immune responses, respectively. Results DNA methylation analysis revealed 561 and 898 significant (P < 0.01) differentially methylated CpG sites at 3 h and 24 h after E. coli challenge in PMEC respectively. These CpG sites mapped to genes that have functional roles in innate and adaptive immune responses. Significantly, hypomethylated CpG sites were found in the promoter regions of immune response genes such as SDF4, SRXN1, CSF1 and CXCL14. The quantitative transcript estimation indicated higher expression associated with the DNA CpG methylation observed in these immune response genes. Further, E. coli challenge significantly reduced the expression levels of DNMT3a, a subtype of de novo DNA methylation enzyme, in PMEC indicating the probable reason for the hypomethylation observed in the immune response genes. Conclusions Our study revealed E. coli infection induced DNA methylation loci in the porcine genome. The differentially methylated CpGs were identified in the regulatory regions of genes that play important role in immune response. These results will help to understand epigenetic mechanisms for immune regulation during coliform mastitis in pigs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5976-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Basavaraj Sajjanar
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| |
Collapse
|
10
|
de Aguiar GPCG, Leite CMGDS, Dias B, Vasconcelos SMM, de Moraes RA, de Moraes MEA, Vallinoto ACR, Macedo DS, Cavalcanti LPDG, Miyajima F. Evidence for Host Epigenetic Signatures Arising From Arbovirus Infections: A Systematic Review. Front Immunol 2019; 10:1207. [PMID: 31214179 PMCID: PMC6554415 DOI: 10.3389/fimmu.2019.01207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/13/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Arbovirus infections have steadily become a major pandemic threat. This study aimed at investigating the existence of host epigenetic markers arising from the principal arboviruses infections impacting on human health. We set to systematically review all published evidence describing any epigenetic modifications associated with infections from arboviruses, including, but not limited to, microRNAs, DNA methylation, and histone modifications. Methods: A comprehensive search was conducted using the electronic databases PubMed, Science Direct and Cochrane Library from inception to January 4th, 2018. We included reports describing original in vivo or in vitro studies investigating epigenetic changes related to arbovirus infections in either clinical subjects or human cell lines. Studies investigating epigenetic modifications related to the virus or the arthropod vector were excluded. A narrative synthesis of the findings was conducted, contextualizing comparative evidence from in vitro and in vivo studies. Results: A total of 853 unique references were identified and screened by two independent researchers. Thirty-two studies met the inclusion criteria and were reviewed. The evidence was centered mainly on microRNA and DNA methylation signatures implicated with secondary Dengue fever. Evidence for recent epidemic threats, such as the infections by Zika or Chikungunya viruses is still scant. Conclusions: Major epigenetic alterations found on arboviruses infections were miR-146, miR-30e and the Dicer complex. However, existing studies frequently tested distinct hypotheses resulting in a heterogeneity of methodological approaches. Whilst epigenetic signatures associated with arbovirus infections have been reported, existing studies have largely focused on a small number of diseases, particularly dengue. Validation of epigenetic signatures have an untapped potential, but concerted investigations are certainly required to deliver robust candidates of clinical utility for diagnosis, staging and prognosis of specific arboviral diseases.
Collapse
Affiliation(s)
| | | | - Beatriz Dias
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil
| | - Silvania Maria Mendes Vasconcelos
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Renata Amaral de Moraes
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil.,Sao Jose Hospital of Infectious Diseases, Fortaleza, Brazil
| | - Maria Elisabete Amaral de Moraes
- Postgraduate Programme in Medical and Surgical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | | | - Danielle Silveira Macedo
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Luciano Pamplona de Goes Cavalcanti
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil.,Department of Community Health, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Fabio Miyajima
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Postgraduate Programme in Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Oswaldo Cruz Foundation (Fiocruz), Branch Ceara, Eusebio, Brazil
| |
Collapse
|
11
|
Korkmaz FT, Kerr DE. Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. BMC Genomics 2017; 18:405. [PMID: 28545453 PMCID: PMC5445414 DOI: 10.1186/s12864-017-3796-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Differences in DNA methylation are known to contribute to the development of immune-related disorders in humans but relatively little is known about how methylation regulates immune function in cattle. Utilizing whole-transcriptome analyses of bovine dermal fibroblasts, we have previously identified an age and breed-dependent up-regulation of genes within the toll-like receptor 4 (TLR4) pathway that correlates with enhanced fibroblast production of IL-8 in response to lipopolysaccharide (LPS). Age-dependent differences in IL-8 production are abolished by treatment with 5-aza-2-deoxycytidine and Trichostatin A (AZA-TSA), suggesting epigenetic regulation of the innate response to LPS. In the current study, we performed reduced representation bisulfite sequencing (RRBS) on fibroblast cultures isolated from the same animals at 5- and 16-months of age to identify genes that exhibit variable methylation with age. To validate the role of methylation in gene expression, six innate response genes that were hyper-methylated in young animals were assessed by RT-qPCR in fibroblasts from animals at different ages and from different breeds. RESULTS We identified 14,094 differentially methylated CpGs (DMCs) that differed between fibroblast cultures at 5- versus 16-months of age. Of the 5065 DMCs that fell within gene regions, 1117 were located within promoters, 1057 were within gene exons and 2891 were within gene introns and 67% were more methylated in young cultures. Transcription factor enrichment of the promoter regions hyper-methylated in young cultures revealed significant regulation by the key pro-inflammatory regulator, NF-κB. Additionally, five out of six chosen genes (PIK3R1, FES, NFATC1, TNFSF13 and RORA) that were more methylated in young cultures showed a significant reduction in expression post-LPS treatment in comparison with older cultures. Two of these genes, FES and NFATC1, were similarly down-regulated in Angus cultures that also exhibit a low LPS response phenotype. CONCLUSIONS Our study has identified immune-related loci regulated by DNA methylation in cattle that may contribute to differential cellular response to LPS, two of which exhibit an identical expression profile in both low-responding age and breed phenotypes. Methylation biomarkers of differential immunity may prove useful in developing selection strategies for replacement cows that are less susceptible to severe infections, such as coliform mastitis.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Cellular, Molecular and Biomedical Sciences Program, University of Vermont, 89 Beaumont Avenue, C141C Given, Burlington, VT, 05405, USA. .,Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, 213 Terrill Hall, Burlington, VT, 05405, USA.
| | - David E Kerr
- Cellular, Molecular and Biomedical Sciences Program, University of Vermont, 89 Beaumont Avenue, C141C Given, Burlington, VT, 05405, USA.,Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, 213 Terrill Hall, Burlington, VT, 05405, USA
| |
Collapse
|