1
|
Omatola CA, Olaniran AO. Molecular Characterization and Phylogenetic analyses of Rotaviruses Circulating in Municipal Sewage and Sewage-Polluted River Waters in Durban Area, South Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:363-379. [PMID: 38914870 PMCID: PMC11422280 DOI: 10.1007/s12560-024-09598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/17/2024] [Indexed: 06/26/2024]
Abstract
Globally, rotavirus continues to be the leading etiology of severe pediatric gastroenteritis, and transmission of the disease via environmental reservoirs has become an emerging concern in developing countries. From August to October 2021, a total of 69 samples comprising 48 of raw and treated sewage, and 21 surface waters, were collected from four Durban wastewater treatment plants (DWWTP), and effluent receiving rivers, respectively. Rotaviruses recovered and identified from the samples were subjected to sequencing, genotyping, and phylogenetic analysis. Of the 65 (94.2%) rotavirus-positive samples, 33.3% were from raw sewage, 16% from activated sludge, 15.9% from final effluents, and 29.0% were from the receiving river samples. A total of 49 G and 41 P genotypes were detected in sewage while 15 G and 22 P genotypes were detected in river samples. G1 genotype predominated in sewage (24.5%) followed by G3 (22.4%), G2 (14.3%), G4 (12.2%), G12 (10.2%), G9 (8.2%), and G8 (6.1%). Similarly, G1 predominated in river water samples (33.3%) and was followed by G2, G4 (20.0% each), G3, and G12 (13.3% each). Rotavirus VP4 genotypes P[4], P[6], and P[8] accounted for 36.6%, 29.3%, and 9.8%, respectively, in sewage. Correspondingly, 45.5%, 31.8%, and 13.6% were detected in river samples. The G and P genotypes not identified by the methods used were 2.1% versus 24.3% and 0.1% versus 9.1% for sewage and river water samples, respectively. Sequence comparison studies indicated a high level of nucleotide identity in the G1, G2, G3, G4, G8 VP7, and P[4], P[6], and P[8] VP4 gene sequences between strains from the environment and those from patients in the region. This is the first environmental-based study on the G and P genotypes diversity of rotavirus in municipal wastewater and their receiving rivers in this geographical region. The high similarity between environmental and clinical rotavirus strains suggests both local circulation of the virus and potential exposure risks. In addition, it highlights the usefulness of sewage surveillance as an additional tool for an epidemiological investigation, especially in populations that include individuals with subclinical or asymptomatic infections that are precluded in case-based studies.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, Republic of South Africa
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, Republic of South Africa.
| |
Collapse
|
2
|
França Y, Medeiros RS, Viana E, de Azevedo LS, Guiducci R, da Costa AC, Luchs A. Genetic diversity and evolution of G12P[6] DS-1-like and G12P[9] AU-1-like Rotavirus strains in Brazil. Funct Integr Genomics 2024; 24:92. [PMID: 38733534 DOI: 10.1007/s10142-024-01360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
In the early 2000s, the global emergence of rotavirus (RVA) G12P[8] genotype was noted, while G12P[6] and G12P[9] combinations remained rare in humans. This study aimed to characterize and phylogenetically analyze three Brazilian G12P[9] and four G12P[6] RVA strains from 2011 to 2020, through RT-PCR and sequencing, in order to enhance our understanding of the genetic relationship between human and animal-origin RVA strains. G12P[6] strains displayed a DS-1-like backbone, showing a distinct genetic clustering. G12P[6] IAL-R52/2020, IAL-R95/2020 and IAL-R465/2019 strains clustered with 2019 Northeastern G12P[6] Brazilian strains and a 2018 Benin strain, whereas IAL-R86/2011 strain grouped with 2010 Northern G12P[6] Brazilian strains and G2P[4] strains from the United States and Belgium. These findings suggest an African genetic ancestry and reassortments with co-circulating American strains sharing the same DS-1-like constellation. No recent zoonotic reassortment was observed, and the DS-1-like constellation detected in Brazilian G12P[6] strains does not seem to be genetically linked to globally reported intergenogroup G1/G3/G9/G8P[8] DS-1-like human strains. G12P[9] strains exhibited an AU-1-like backbone with two different genotype-lineage constellations: IAL-R566/2011 and IAL-R1151/2012 belonged to a VP3/M3.V Lineage, and IAL-R870/2013 to a VP3/M3.II Lineage, suggesting two co-circulating strains in Brazil. This genetic diversity is not observed elsewhere, and the VP3/M3.II Lineage in G12P[9] strains seems to be exclusive to Brazil, indicating its evolution within the country. All three G12P[9] AU-1-like strains were closely relate to G12P[9] strains from Paraguay (2006-2007) and Brazil (2010). Phylogenetic analysis also highlighted that all South American G12P[9] AU-1-like strains had a common origin and supports the hypothesis of their importation from Asia, with no recent introduction from globally circulating G12P[9] strains or reassortments with local G12 strains P[8] or P[6]. Notably, certain genes in the Brazilian G12P[9] AU-1-like strains share ancestry with feline/canine RVAs (VP3/M3.II, NSP4/E3.IV and NSP2/N3.II), whereas NSP1/A3.VI likely originated from artiodactyls, suggesting a history of zoonotic transmission with human strains. This genomic data adds understanding to the molecular epidemiology of G12P[6] and G12P[9] RVA strains in Brazil, offering insights into their genetic diversity and evolution.
Collapse
Affiliation(s)
- Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Antonio Charlys da Costa
- Medical Parasitology Laboratory (LIM/46), São Paulo Tropical Medicine Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Zhuo R, Freedman SB, Xie J, Charlton C, Plitt S, Croxen MA, Li V, Tarr GAM, Lee B, Ali S, Chui L, Luong J, Pang X. Molecular epidemiology of rotavirus among children in Western Canada: Dynamic changes in genotype prevalence in four consecutive seasons. J Med Virol 2023; 95:e29028. [PMID: 37573569 DOI: 10.1002/jmv.29028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Rotavirus molecular surveillance remains important in the postvaccine era to monitor the changes in transmission patterns, identify vaccine-induced antigenic changes and discover potentially pathogenic vaccine-related strains. The Canadian province of Alberta introduced rotavirus vaccination into its provincial vaccination schedule in June 2015. To evaluate the impact of this program on stool rotavirus positivity rate, strain diversity, and seasonal trends, we analyzed a prospective cohort of children with acute gastroenteritis recruited between December 2014 and August 2018. We identified dynamic changes in rotavirus positivity and genotype trends during pre- and post-rotavirus vaccine introduction periods. Genotypes G9P[8], G1P[8], G2P[4], and G12P[8] predominated consecutively each season with overall lower rotavirus incidence rates in 2016 and 2017. The demographic and clinical features of rotavirus gastroenteritis were comparable among wild-type rotaviruses; however, children with G12P[8] infections were older (p < 0.001). Continued efforts to monitor changes in the molecular epidemiology of rotavirus using whole genome sequence characterization are needed to further understand the impact of the selection pressure of vaccination on rotavirus evolution.
Collapse
Affiliation(s)
- Ran Zhuo
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Stephen B Freedman
- Sections of Pediatric Emergency Medicine and Gastroenterology, Departments of Pediatrics and Emergency Medicine, Alberta Children's Hospital and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jianling Xie
- Sections of Pediatric Emergency Medicine and Gastroenterology, Departments of Pediatrics and Emergency Medicine, Alberta Children's Hospital and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carmen Charlton
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sabrina Plitt
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
- Centre for Communicable Diseases and Infection Control, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Mathew A Croxen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vincent Li
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Gillian A M Tarr
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bonita Lee
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Samina Ali
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Jasper Luong
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Gutierrez MB, de Assis RMS, Arantes I, Fumian TM. Full genotype constellations analysis of unusual DS-1-like G12P[6] and G6P[8] rotavirus strains detected in Brazil, 2019. Virology 2022; 577:74-83. [PMID: 36323046 DOI: 10.1016/j.virol.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Rotavirus A (RVA) is a major cause of acute gastroenteritis (AGE) in children worldwide. We report unusual RVA G12P[6] and G6P[8] strains isolated from fecal samples from Brazilian children hospitalized for AGE. The characterized RVA have genome segments backbone: G12-P[6]/ G6-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 of DS-1-like genogroup. Our study describes the first identification of G6P[8], a DS-1-like genogroup strain. Nucleotide analysis of VP7 and VP4 genes revealed that all G12 Brazilian strains clustered into the sub-lineages IIIB, mostly associated with P[6] lineage I. Additionally, our G6 lineage I strains were closely related to German G6 genotypes, bound with P[8] lineage III, differing from both vaccine strains. The comparative sequence analysis of our strains with vaccine strains revealed amino acid substitutions located in immunodominant regions of VP7 and VP4 proteins. Continuous monitoring of RVA genotypes is essential to evaluate the impact of vaccination on the dynamic nature of RVA evolution.
Collapse
Affiliation(s)
- Meylin Bautista Gutierrez
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Ighor Arantes
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil.
| |
Collapse
|
5
|
Omatola CA, Ogunsakin RE, Olaniran AO. Prevalence, Pattern and Genetic Diversity of Rotaviruses among Children under 5 Years of Age with Acute Gastroenteritis in South Africa: A Systematic Review and Meta-Analysis. Viruses 2021; 13:1905. [PMID: 34696335 PMCID: PMC8538439 DOI: 10.3390/v13101905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/26/2022] Open
Abstract
Rotavirus is the most significant cause of severe acute gastroenteritis among children under 5 years of age, worldwide. Sub-Saharan Africa particularly bears the brunt of the diarrheal deaths. A meta-analysis was conducted on 43 eligible studies published between 1982 and 2020 to estimate the pooled prevalence of rotavirus infection and changes in the main rotavirus strains circulating before and after vaccine introduction among under-five children in South Africa. The pooled national prevalence of rotavirus infection was estimated at 24% (95% CI: 21-27%) for the pre-vaccination period and decreased to 23% (95% CI: 21-25%) in the post-vaccination period. However, an increased number of cases was observed in the KwaZulu-Natal (21-28%) and Western Cape (18-24%) regions post-vaccination. The most dominant genotype combinations in the pre-vaccine era was G1P[8], followed by G2P[4], G3P[8], and G1P[6]. After vaccine introduction, a greater genotype diversity was observed, with G9P[8] emerging as the predominant genotype combination, followed by G2P[4], G12P[8], and G1P[8]. The introduction of the rotavirus vaccine was associated with a reduction in the burden of rotavirus-associated diarrhea in South Africa, although not without regional fluctuation. The observed changing patterns of genotype distribution highlights the need for ongoing surveillance to monitor the disease trend and to identify any potential effects associated with the dynamics of genotype changes on vaccine pressure/failure.
Collapse
Affiliation(s)
- Cornelius A. Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa;
| | - Ropo E. Ogunsakin
- Discipline of Public Health Medicine, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa;
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
6
|
Arakaki L, Tollefson D, Kharono B, Drain PK. Prevalence of rotavirus among older children and adults with diarrhea: A systematic review and meta-analysis. Vaccine 2021; 39:4577-4590. [PMID: 34244008 DOI: 10.1016/j.vaccine.2021.06.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Older children and adults are susceptible to rotavirus, but the extent to which rotavirus affects this population is not fully understood, hindering accuracy of global rotavirus estimations. OBJECTIVE To determine what proportion of diarrhea cases are due to rotavirus among persons ≥ 5 years old and to estimate this proportion by age strata. METHODS We conducted a systematic review and meta-analysis using the PRISMA guidelines. We included studies that reported on conditional rotavirus prevalence (i.e., percent of diarrhea due to rotavirus) in persons ≥ 5 years old who were symptomatic with diarrhea/gastroenteritis and had laboratory confirmation for rotavirus infection. Studies on nosocomial infections and outbreak investigations were excluded. We collected age group-specific conditional rotavirus prevalence and other variables, such as study geography, study setting, and study type. We calculated pooled conditional rotavirus prevalence, corresponding 95% confidence intervals (95% CI), heterogeneity (I2) estimates, and prediction intervals (PI). RESULTS Sixty-six studies from 32 countries met the inclusion criteria. Conditional rotavirus prevalence ranged from 0% to 30% across the studies. The total pooled prevalence of rotavirus among persons ≥ 5 years old with diarrhea was 7.6% (95% CI: 6.2-9.2%, I2 = 99.6%, PI: 0-24%). The pooled prevalence of rotavirus among older children and adolescents was 8.7% (95% CI: 6.2-11.7%, I2 = 96%, PI:0-27%), among younger adults was 5.4% (95% CI: 1.4-11.8%, I2 = 96%, PI:0-31%), and among older adults was 4.7% (95% CI: 2.8-7.0%, I2 = 96%, PI:0-16%). Pooled conditional rotavirus prevalences did not differ by other variables. CONCLUSION In this systematic review and meta-analysis of rotavirus among persons ≥ 5 years old with diarrhea, we found relatively low pooled conditional rotavirus prevalence compared to what is typically reported for children < 5 years; however, results should be interpreted with caution as the wide prediction intervals suggest large heterogeneity.
Collapse
Affiliation(s)
- Lola Arakaki
- University of Washington, Strategic Analysis, Research, and Training (START) Center, 3980 15th Ave NE, Seattle, WA 98195, United States; University of Washington, Department of Epidemiology, 3980 15th Ave NE, Seattle, WA 98195, United States.
| | - Deanna Tollefson
- University of Washington, Strategic Analysis, Research, and Training (START) Center, 3980 15th Ave NE, Seattle, WA 98195, United States; University of Washington, Department of Global Health, 3980 15th Ave NE, Seattle, WA 98195, United States.
| | - Brenda Kharono
- University of Washington, Strategic Analysis, Research, and Training (START) Center, 3980 15th Ave NE, Seattle, WA 98195, United States; University of Washington, Department of Global Health, 3980 15th Ave NE, Seattle, WA 98195, United States.
| | - Paul K Drain
- University of Washington, Strategic Analysis, Research, and Training (START) Center, 3980 15th Ave NE, Seattle, WA 98195, United States; University of Washington, Department of Global Health, 3980 15th Ave NE, Seattle, WA 98195, United States; University of Washington, Department of Medicine, 1959 NE Pacific St, Seattle, WA 98195, United States.
| |
Collapse
|
7
|
Gupta S, Gauhar M, Bubber P, Ray P. Phylogenetic analysis of VP7 and VP4 genes of the most predominant human group A rotavirus G12 identified in children with acute gastroenteritis in Himachal Pradesh, India during 2013-2016. J Med Virol 2021; 93:6200-6209. [PMID: 34138482 DOI: 10.1002/jmv.27142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 11/05/2022]
Abstract
G12 strains are now considered to be the sixth most prevalent human rotaviruses globally. India has introduced rotavirus vaccine Rotavac® into the national immunization program in 2016 and Himachal Pradesh (HP) is the first state to launch it. During epidemiological rotavirus surveillance in HP, predominance of G12 rotaviruses was observed. This study investigated the genetic variability and evolution of HP G12 strains (n = 15) associated with P-genotypes P[6], P[4], and P[8] identified between 2013 and 2016. Phylogenetic analysis of VP7 gene revealed that all characterized G12 strains clustered in lineage-III and diversified into three subclusters indicating that these strains may have originated from three different ancestral G12 strains. The comparative sequence analysis of HP strains with Rotavac® and Rotarix® vaccine strains revealed various amino acid substitutions in epitope regions of VP7 and VP4 proteins especially at the antibody neutralization sites. Only 12/29 VP7 epitope residues and 2/25 VP4 epitope residues were found to be conserved between HP rotavirus strains and vaccine strains. Both long and short electropherotypes were observed in G12P[4] strains, while a single long electropherotype was observed in G12P[6] strains. Children of ≤11 months were significantly infected with G12 rotaviruses. The frequency of vomiting episodes (≥5/day) was significantly higher in children infected with G12 rotavirus strains as compared to non-G12 rotaviruses (p = 0.0405). Our study provides the comprehensive data on clinical characteristics and evolutionary pattern of the G12 rotavirus, the most prevalent strain in HP and emphasizes the need to monitor these strains for inclusion in future vaccine.
Collapse
Affiliation(s)
- Shipra Gupta
- Department of Biotechnology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mariyam Gauhar
- Department of Biotechnology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Parvesh Bubber
- Department of Biochemistry, School of Sciences, IGNOU, New Delhi, India
| | - Pratima Ray
- Department of Biotechnology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India.,Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Rakau KG, Nyaga MM, Gededzha MP, Mwenda JM, Mphahlele MJ, Seheri LM, Steele AD. Genetic characterization of G12P[6] and G12P[8] rotavirus strains collected in six African countries between 2010 and 2014. BMC Infect Dis 2021; 21:107. [PMID: 33482744 PMCID: PMC7821174 DOI: 10.1186/s12879-020-05745-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND G12 rotaviruses were first observed in sub-Saharan Africa in 2004 and since then have continued to emerge and spread across the continent and are reported as a significant human rotavirus genotype in several African countries, both prior to and after rotavirus vaccine introduction. This study investigated the genetic variability of 15 G12 rotavirus strains associated with either P[6] or P[8] identified between 2010 and 2014 from Ethiopia, Kenya, Rwanda, Tanzania, Togo and Zambia. METHODS The investigation was carried out by comparing partial VP7 and partial VP4 sequences of the African G12P[6] and G12P[8] strains with the available GenBank sequences and exploring the recognized neutralization epitopes of these strains. Additionally, Bayesian evolutionary analysis was carried out using Markov Chain Monte Carlo (MCMC) implemented in BEAST to estimate the time to the most recent ancestor and evolutionary rate for these G12 rotavirus strains. RESULTS The findings suggested that the VP7 and VP4 nucleotide and amino acid sequences of the G12 strains circulating in African countries are closely related, irrespective of country of origin and year of detection, with the exception of the Ethiopian strains that clustered distinctly. Neutralization epitope analysis revealed that rotavirus VP4 P[8] genes associated with G12 had amino acid sequences similar to those reported globally including the vaccine strains in RotaTeq and Rotarix. The estimated evolutionary rate of the G12 strains was 1.016 × 10- 3 substitutions/site/year and was comparable to what has been previously reported. Three sub-clusters formed within the current circulating lineage III shows the diversification of G12 from three independent ancestries within a similar time frame in the late 1990s. CONCLUSIONS At present it appears to be unlikely that widespread vaccine use has driven the molecular evolution and sustainability of G12 strains in Africa. Continuous monitoring of rotavirus genotypes is recommended to assess the long-term impact of rotavirus vaccination on the dynamic nature of rotavirus evolution on the continent.
Collapse
Affiliation(s)
- Kebareng G Rakau
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Martin M Nyaga
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,Next Generation Sequencing Unit and Department of Medical Microbiology and Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Maemu P Gededzha
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,National Health Laboratory Service, Department of Molecular Medicine and Haematology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Jason M Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Cluster, WHO African Regional Office, Brazzaville, Congo
| | - M Jeffrey Mphahlele
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,South African Medical Research Council, Soutpansberg Road, Pretoria, South Africa
| | - L Mapaseka Seheri
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - A Duncan Steele
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa. .,Present address: Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA.
| |
Collapse
|
9
|
Silva-Sales M, Leal E, Milagres FADP, Brustulin R, Morais VDS, Marcatti R, Araújo ELL, Witkin SS, Deng X, Sabino EC, Delwart E, Luchs A, Costa ACD. Genomic constellation of human Rotavirus A strains identified in Northern Brazil: a 6-year follow-up (2010-2016). Rev Inst Med Trop Sao Paulo 2020; 62:e98. [PMID: 33331517 PMCID: PMC7748031 DOI: 10.1590/s1678-9946202062098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 02/21/2023] Open
Abstract
Surveillance of Rotavirus A (RVA) throughout the national territory is important
to establish a more complete epidemiological-molecular scenario of this virus
circulation in Brazil. The aim of the present study was to investigate the
genetic diversity of RVA strains circulating in Tocantins State (Northern
Brazil) during six years of post-vaccination follow-up (2010-2016). A total of
248 stool samples were screened by next generation sequencing and 107 (43.1%)
nearly full length RVA genome sequences were obtained; one sample was
co-infected with two RVA strains (G2/G8P[4]). Six G and P genotypes combinations
were detected: G12P[8] strains (78.6%), as well as the G3P[8] (9.3%) and G1P[8]
(0.9%) were associated with a Wa-like genogroup backbone. All G2P[4] (5.6%) and
G8P[4] (2.8%) strains, including the mixed G2/G8P[4] infection (0.9%) showed the
DS-1-like genetic background. The two G12P[4] strains (1.9%) were associated
with distinct genetic backbones: Wa-like and DS-1-like. The phylogenetic
analysis revealed the circulation of lineages G1-I, G2-IV, G3-III, G8-I and
G12-III, and P[4]-V and P[8]-III of the VP7 and VP4 genes, respectively.
Conserved clustering pattern and low genetic diversity were observed regarding
VP1-VP3 and VP6, as well as NSP1-5 segments. We identified the same RVA
circulation pattern reported in other Brazilian regions in the period of
2010-2016, suggesting that rural and low-income areas may not have a different
RVA genotypic distribution compared to other parts of the country. The unique
presentation of whole-genome data of RVA strains detected in the Tocantins State
provides a baseline for monitoring variations in the genetic composition of RVA
in this area.
Collapse
Affiliation(s)
- Marcelle Silva-Sales
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Laboratório de Virologia e Cultivo Celular, Goiânia, Goiás, Brazil
| | - Elcio Leal
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, Pará, Brazil
| | - Flavio Augusto de Pádua Milagres
- Universidade Federal do Tocantins, Palmas, Tocantins, Brazil.,Laboratório Central de Saúde Pública do Estado de Tocantins, Palmas, Tocantins, Brazil
| | - Rafael Brustulin
- Universidade Federal do Tocantins, Palmas, Tocantins, Brazil.,Laboratório Central de Saúde Pública do Estado de Tocantins, Palmas, Tocantins, Brazil
| | - Vanessa Dos Santos Morais
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Roberta Marcatti
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Emerson Luiz Lima Araújo
- Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Articulação Estratégica de Vigilância em Saúde, Coordenação Geral de Laboratórios de Saúde Pública, Brasília, Distrito Federal, Brazil
| | - Steven S Witkin
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil.,Weill Cornell Medicine, Department of Obstetrics and Gynecology, New York, New York, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, California, USA.,University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, USA
| | - Ester Cerdeira Sabino
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, California, USA.,University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, USA
| | - Adriana Luchs
- Instituto Adolfo Lutz, Centro de Virologia, Núcleo de Doenças Entéricas, São Paulo, São Paulo, Brazil
| | - Antonio Charlys da Costa
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Unveiling Viruses Associated with Gastroenteritis Using a Metagenomics Approach. Viruses 2020; 12:v12121432. [PMID: 33322135 PMCID: PMC7764520 DOI: 10.3390/v12121432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Acute infectious gastroenteritis is an important illness worldwide, especially on children, with viruses accounting for approximately 70% of the acute cases. A high number of these cases have an unknown etiological agent and the rise of next generation sequencing technologies has opened new opportunities for viral pathogen detection and discovery. Viral metagenomics in routine clinical settings has the potential to identify unexpected or novel variants of viral pathogens that cause gastroenteritis. In this study, 124 samples from acute gastroenteritis patients from 2012–2014 previously tested negative for common gastroenteritis pathogens were pooled by age and analyzed by next generation sequencing (NGS) to elucidate unidentified viral infections. The most abundant sequences detected potentially associated to acute gastroenteritis were from Astroviridae and Caliciviridae families, with the detection of norovirus GIV and sapoviruses. Lower number of contigs associated to rotaviruses were detected. As expected, other viruses that may be associated to gastroenteritis but also produce persistent infections in the gut were identified including several Picornaviridae members (EV, parechoviruses, cardioviruses) and adenoviruses. According to the sequencing data, astroviruses, sapoviruses and NoV GIV should be added to the list of viral pathogens screened in routine clinical analysis.
Collapse
|
11
|
Zhou X, Wang YH, Pang BB, Chen N, Kobayashi N. Surveillance of Human Rotavirus in Wuhan, China (2011-2019): Predominance of G9P[8] and Emergence of G12. Pathogens 2020; 9:pathogens9100810. [PMID: 33023203 PMCID: PMC7600066 DOI: 10.3390/pathogens9100810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Rotaviruses are a major etiologic agent of gastroenteritis in infants and young children worldwide. To learn the shift of genotypes and genetic characteristics of Rotavirus A (RVA) causing diarrhea in children and adults, a hospital-based surveillance of rotavirus was conducted in Wuhan, China from June 2011 through May 2019, and representative virus strains were phylogenetically analyzed. Among a total of 6733 stool specimens collected from both children and adults with acute gastroenteritis, RVA was detected in 25.5% (1125/4409) and 12.3% (285/2324) of specimens, respectively. G9P[8] was the most common genotype (74.5%), followed by G1P[8] (8.7%), G2P[4] (8.4%), and G3P[8] (7.3%), with G9P[8] increasing rapidly during the study period. The predominant genotype shifted from G1P[8] to G9P[8] in 2012-2013 epidemic season. G12P[6] strain RVA/Human-wt/CHN/Z2761/2019/G12P[6] was detected in April 2019 and assigned to G12-P[6]-I1-R1-C1-M1-A1-N1-T2-E1-H1 genotypes. Phylogenetic analysis revealed that VP7, VP4, VP6, VP3, NSP1, NSP2, and NSP5 genes of Z2761 clustered closely with those of Korean G12P[6] strain CAU_214, showing high nucleotide identities (98.0-98.8%). The NSP3 gene of Z2761 was closely related to those of G2P[4] and G12P[6] rotaviruses in Asia. All the eleven gene segments of Z2761 kept distance from those of cocirculating G9P[8], G1P[8], and G3P[8] strains detected in Wuhan during this study period. This is the first identification of G12 rotavirus in China. It is deduced that Z2761 is a reassortant having DS-1-like NSP3 gene in the background of G12P[6] rotavirus genetically close to CAU_214.
Collapse
Affiliation(s)
- Xuan Zhou
- Division of Microbiology, Wuhan Centers for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.-B.P.)
| | - Yuan-Hong Wang
- Division of Microbiology, Wuhan Centers for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.-B.P.)
- Correspondence: ; Tel.: + 86-27-85801763
| | - Bei-Bei Pang
- Division of Microbiology, Wuhan Centers for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.-B.P.)
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
12
|
Gutierrez MB, Fialho AM, Maranhão AG, Malta FC, de Andrade JDSR, de Assis RMS, Mouta SDSE, Miagostovich MP, Leite JPG, Machado Fumian T. Rotavirus A in Brazil: Molecular Epidemiology and Surveillance during 2018-2019. Pathogens 2020; 9:pathogens9070515. [PMID: 32605014 PMCID: PMC7400326 DOI: 10.3390/pathogens9070515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023] Open
Abstract
Rotavirus A (RVA) vaccines succeeded in lowering the burden of acute gastroenteritis (AGE) worldwide, especially preventing severe disease and mortality. In 2019, Brazil completed 13 years of RVA vaccine implementation (Rotarix™) within the National Immunization Program (NIP), and as reported elsewhere, the use of Rotarix™ in the country has reduced childhood mortality and morbidity due to AGE. Even though both marketed vaccines are widely distributed, the surveillance of RVA causing AGE and the monitoring of circulating genotypes are important tools to keep tracking the epidemiological scenario and vaccines impact. Thus, our study investigated RVA epidemiological features, viral load and G and P genotypes circulation in children and adults presenting AGE symptoms in eleven states from three out of five regions in Brazil. By using TaqMan®-based one-step RT-qPCR, we investigated a total of 1536 stool samples collected from symptomatic inpatients, emergency department visits and outpatients from January 2018 to December 2019. G and P genotypes of RVA-positive samples were genetically characterized by multiplex RT-PCR or by nearly complete fragment sequencing. We detected RVA in 12% of samples, 10.5% in 2018 and 13.7% in 2019. A marked winter/spring seasonality was observed, especially in Southern Brazil. The most affected age group was children aged >24-60 months, with a positivity rate of 18.8% (p < 0.05). Evaluating shedding, we found a statistically lower RVA viral load in stool samples collected from children aged up to six months compared to the other age groups (p < 0.05). The genotype G3P[8] was the most prevalent during the two years (83.7% in 2018 and 65.5% in 2019), and nucleotide sequencing of some strains demonstrated that they belonged to the emergent equine-like G3P[8] genotype. The dominance of an emergent genotype causing AGE reinforces the need for continuous epidemiological surveillance to assess the impact of mass RVA immunization as well as to monitor the emergence of novel genotypes.
Collapse
|
13
|
Ianiro G, Micolano R, Di Bartolo I, Scavia G, Monini M. Group A rotavirus surveillance before vaccine introduction in Italy, September 2014 to August 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 30994104 PMCID: PMC6470368 DOI: 10.2807/1560-7917.es.2019.24.15.1800418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction Group A rotaviruses (RVA) are the leading cause of acute gastroenteritis (AGE) in young children, causing ca 250,000 deaths worldwide, mainly in low-income countries. Two proteins, VP7 (glycoprotein, G genotype) and VP4 (protease-sensitive protein, P genotype), are the basis for the binary RVA nomenclature. Although 36 G types and 51 P types are presently known, most RVA infections in humans worldwide are related to five G/P combinations: G1P[8], G2P[4], G3P[8], G4P[8], G9P[8]. Aim This study aimed to characterise the RVA strains circulating in Italy in the pre-vaccination era, to define the trends of circulation of genotypes in the Italian paediatric population. Methods Between September 2014 and August 2017, after routine screening in hospital by commercial antigen detection kit, 2,202 rotavirus-positive samples were collected in Italy from children hospitalised with AGE; the viruses were genotyped following standard European protocols. Results This 3-year study revealed an overall predominance of the G12P[8] genotype (544 of 2,202 cases; 24.70%), followed by G9P[8] (535/2,202; 24.30%), G1P[8] (459/2,202; 20.84%) and G4P[8] (371/2,202; 16.85%). G2P[4] and G3P[8] genotypes were detected at low rates (3.32% and 3.09%, respectively). Mixed infections accounted for 6.49% of cases (143/2,202), uncommon RVA strains for 0.41% of cases (9/2,202). Conclusions The emergence of G12P[8] rotavirus in Italy, as in other countries, marks this genotype as the sixth most common human genotype. Continuous surveillance of RVA strains and monitoring of circulating genotypes are important for a better understanding of rotavirus evolution and genotype distribution, particularly regarding strains that may emerge from reassortment events.
Collapse
Affiliation(s)
- Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Micolano
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gaia Scavia
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
14
|
Silva-Sales M, Martínez-Puchol S, Gonzales-Gustavson E, Hundesa A, Gironès R. High Prevalence of Rotavirus A in Raw Sewage Samples from Northeast Spain. Viruses 2020; 12:v12030318. [PMID: 32188099 PMCID: PMC7150846 DOI: 10.3390/v12030318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/08/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022] Open
Abstract
Rotavirus A (RVA) is the most common virus associated with infantile gastroenteritisworldwide, being a public health threat, as it is excreted in large amounts in stool and can persist inthe environment for extended periods. In this study, we performed the detection of RVA and humanadenovirus (HAdV) by TaqMan qPCR and assessed the circulation of RVA genotypes in threewastewater treatment plants (WWTPs) between 2015 and 2016 in Catalonia, Spain. RVA wasdetected in 90% and HAdV in 100% of the WWTP samples, with viral loads ranging between 3.96 ×104 and 3.30 × 108 RT-PCR Units/L and 9.51 × 104 and 1.16 × 106 genomic copies/L, respectively. RVAVP7 and VP4 gene analysis revealed the circulation of G2, G3, G9, G12, P[4], P[8], P[9] and P[10].Nucleotide sequencing (VP6 fragment) showed the circulation of I1 and I2 genotypes, commonlyassociated with human, bovine and porcine strains. It is important to mention that the RVA strainsisolated from the WWTPs were different from those recovered from piglets and calves living in thesame area of single sampling in 2016. These data highlight the importance of monitoring watermatrices for RVA epidemiology and may be a useful tool to evaluate and predict possibleemergence/reemergence of uncommon strains in a region.
Collapse
|
15
|
Pankov RC, Gondim RNDG, Prata MMG, Medeiros PHQS, Veras HN, Santos AKS, Havt A, da Silva MFM, Fumian TM, Miagostovich MP, Leite JPG, Lima AAM. Rotavirus A Infections in Community Childhood Diarrhea in the Brazilian Semiarid Region During Postvaccination Era. J Pediatr Gastroenterol Nutr 2019; 69:e91-e98. [PMID: 31568040 DOI: 10.1097/mpg.0000000000002416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Rotavirus A (RVA) is one of the leading causes of acute gastroenteritis worldwide; however, few studies assessed RVA genetics with community surveillance. OBJECTIVES This study aimed to investigate clinical data, genetic diversity, and coinfection patterns of RVA infections in children from 2 to 36 months old with or without community childhood diarrhea in the Brazilian semiarid region during postvaccination era. METHODS We enrolled and collected socioeconomic/clinical information using a standardized questionnaire and fecal samples from 291 children. Viral RNA samples were extracted and analyzed using quantitative reverse transcription polymerase chain reaction to establish the diagnosis of RVA. Sequencing of VP7 and VP4 (VP8*) regions and phylogenetic analysis were performed. RESULTS RVA-negative diagnosis was associated with children 24 to 36 months old with complete vaccination schedule. Genotype G1P[8] was the most prevalent (57%), whereas unusual genotypes including G1P[4], G2P[8], and G3P[9] were also detected. G1- and P[8]-positive samples showed high degrees of similarity with the vaccine strain. RVA coinfections were frequently observed, and enteroaggregative Escherichia coli was the most prevalent copathogen. CONCLUSIONS These results demonstrate that genotype G1P[8] is the most prevalent strain. VP7 and/or VP8* gene segments arising from RV1 vaccine strain were documented in these children, suggesting shedding or herd vaccination. Moreover, our study indicates full vaccination is important for protection against RVA infections.
Collapse
Affiliation(s)
- Rafaela C Pankov
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE
| | - Rafhaella N D G Gondim
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE
| | - Mara M G Prata
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE
| | - Pedro H Q S Medeiros
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE
| | - Herlice N Veras
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE
| | - Ana K S Santos
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE
| | - Alexandre Havt
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE
| | | | | | | | | | - Aldo A M Lima
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE
| |
Collapse
|
16
|
Arana A, Jere KC, Chaguza C, Montes M, Alkorta M, Iturriza-Gomara M, Cilla G. Molecular epidemiology of G12 rotavirus strains during eight consecutive epidemic seasons in the Basque Country (North of Spain), 2010–2018. INFECTION GENETICS AND EVOLUTION 2019; 71:67-75. [DOI: 10.1016/j.meegid.2019.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
|
17
|
Emergence of G12P[6] rotavirus strains among hospitalised children with acute gastroenteritis in Belém, Northern Brazil, following introduction of a rotavirus vaccine. Arch Virol 2019; 164:2107-2117. [PMID: 31144039 DOI: 10.1007/s00705-019-04295-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
Species A rotavirus still remains a major cause of acute gastroenteritis in infants and young children. Globally, six genotypes (G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8]) account for >90% of circulating strains; however, genotype G12 in combination with P[6] or P[9] has been detected at increasing rates. We sought to broaden our knowledge about the rotavirus strains circulating during the early post-vaccine-introduction period. Stool samples were obtained from children hospitalised for acute gastroenteritis in Belém, Northern Brazil, from May 2008 to May 2011 and examined by reverse transcription polymerase chain reaction and nucleotide sequencing. A total of 122 out of the original 1076 rotavirus strains were judged to be non-typeable in the first analysis and were therefore re-examined. G2P[4] was the most prevalent genotype (58.0%), followed by G1P[8] (16.9%), and G12P[6] (7.5%). G12P[6] strains were identified at similar rates during the first (2.5%) and second (3.9%) years, and the rate jumped to 15.6% in the third year. Analysis of VP7 sequences of the G12P[6] strains showed that they belonged to lineage III. In addition, co-circulating G12P[6] strains displaying long and short RNA patterns were found to belong to the Wa-like and DS-1-like constellation, respectively. Additional unusual circulating strains G12P[9] and G3P[9] were also identified. This hospital-based study showed a high prevalence of G12P[6] strains in the third year of surveillance. Our results highlight the need for continuous longitudinal monitoring of circulating rotavirus strains after introduction of rotavirus vaccines in Brazil and elsewhere.
Collapse
|
18
|
Luchs A, da Costa AC, Cilli A, Komninakis SCV, Carmona RDCC, Boen L, Morillo SG, Sabino EC, Timenetsky MDCST. Spread of the emerging equine-like G3P[8] DS-1-like genetic backbone rotavirus strain in Brazil and identification of potential genetic variants. J Gen Virol 2018; 100:7-25. [PMID: 30457517 DOI: 10.1099/jgv.0.001171] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In 2013, the equine-like G3P[8] DS-1-like rotavirus (RVA) strain emerged worldwide. In 2016, this strain was reported in northern Brazil. The aims of the study were to conduct a retrospective genetic investigation to identify the possible entry of these atypical strains in Brazil and to describe their distribution across a representative area of the country. From 2013 to 2017, a total of 4226 faecal samples were screened for RVA by ELISA, PAGE, RT-PCR and sequencing. G3P[8] represented 20.9 % (167/800) of all RVA-positive samples, further subdivided as equine-like G3P[8], DS-1-like (11.0 %; 88/800) and Wa-like G3P[8] (9.9 %; 79/800). Six equine-like G3P[8] DS-1-like samples were selected for whole-genome investigation, confirming the backbone I2-R2-C2-M2-A2-N2-T2-E2-H2. During 2013-2014, Wa-like G3P[8] was predominant and no equine-like G3P[8] DS-1-like was detected. Equine-like G3P[8] DS-1-like was first identified in Paraná in March/2015, suggesting that the strain entered Brazil through the Southern region. Equine-like G3P[8] rapidly spread across the area under surveillance and displayed a marked potential to replace Wa-like G3P[8] strains. Brazilian equine-like G3P[8] DS-1-like strains clustered with contemporary equine-like G3P[8] DS-1-like detected worldwide, but exhibited a distinct NSP2 genotype (N2) compared to the previously reported Amazon equine-like G3P[8] DS-1-like strain (N1). Two distinct NSP4 E2 genotype lineages were also identified. Taken together, these data suggest that different variants of equine-like G3P[8] DS-1-like strains might have been introduced into the country at distinct time points, and co-circulated in the period 2015-2017. The global emergence of equine-like G3P[8] DS-1-like strains, predominantly in countries using the Rotarix vaccine, raises the question of whether vaccines may be inducing selective pressures on zoonotic strains.
Collapse
Affiliation(s)
- Adriana Luchs
- 1Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Antonio Charlys da Costa
- 2LIM/46 - Laboratory of Medical Parasitology, Department of Infectious and Parasitic Diseases, College of Medicine, University of São Paulo, São Paulo, Brazil.,3Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Audrey Cilli
- 1Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Shirley Cavalcante Vasconcelos Komninakis
- 4Postgraduate Program in Health Science, Faculty of Medicine of ABC, Santo André, Brazil.,5Retrovirology Laboratory, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Lais Boen
- 1Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Ester Cerdeira Sabino
- 2LIM/46 - Laboratory of Medical Parasitology, Department of Infectious and Parasitic Diseases, College of Medicine, University of São Paulo, São Paulo, Brazil.,3Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
19
|
Chan-It W, Chanta C. Emergence of G9P[8] rotaviruses in children with acute gastroenteritis in Thailand, 2015-2016. J Med Virol 2017; 90:477-484. [DOI: 10.1002/jmv.24985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Wisoot Chan-It
- Biology Program; Faculty of Science and Technology; Pibulsongkram Rajabhat University; Phitsanulok Thailand
| | - Chulapong Chanta
- Pediatric Unit; Chiangrai Prachanukroh Hospital; Chiang Rai Thailand
| |
Collapse
|
20
|
Almeida TNV, de Sousa TT, da Silva RA, Fiaccadori FS, Souza M, Badr KR, de Paula Cardoso DDD. Phylogenetic analysis of G1P[8] and G12P[8] rotavirus A samples obtained in the pre- and post-vaccine periods, and molecular modeling of VP4 and VP7 proteins. Acta Trop 2017; 173:153-159. [PMID: 28606817 DOI: 10.1016/j.actatropica.2017.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
Reduction in morbimortality rates for acute gastroenteritis (AGE) by Rotavirus A (RVA) has been observed after the introduction of vaccines, however the agent continues to circulate. The present study described the genomic characterization of the 11 dsRNA segments of two RVA samples G1P[8] obtained in the pre- and post-vaccination periods and one of G12P[8] sample (post-vaccine), compared to Rotarix™ vaccine. Analysis by molecular sequencing of the samples showed that the three samples belonged to genogroup I. In addition, the analysis of VP7 gene revealed that the samples G1 (pre-vaccine), G1 (post-vaccine) and G12 were characterized as lineages II, I and III, respectively. Regarding to VP4 and NSP4 gene it was observed that all samples belonged to lineage III, whereas for VP6 gene, the sample of the pre- and post-vaccine belonged to the lineage IV and I, respectively. Considering the VP7 gene, it was observed high nucleotide and amino acid identity for the two G1 samples when compared to Rotarix™ vaccine and lesser identity for the G12 sample. In relation to antigenic epitope of VP7 greater modifications were observed for the G12 sample in the 7-2 epitope that was confirmed by molecular modeling. On the other hand, for VP4, some changes in the 8-1 and 8-3 antigenic epitopes was observed for the three samples. This data could be interpreted as a low selective pressure exerted by vaccination in relation to G1P[8] samples and lesser protection in relation to G12P[8]. Thus, the continuous monitoring of RVA circulating samples remains important.
Collapse
|