1
|
Hare D, Dembicka KM, Brennan C, Campbell C, Sutton-Fitzpatrick U, Stapleton PJ, De Gascun CF, Dunne CP. Whole-genome sequencing to investigate transmission of SARS-CoV-2 in the acute healthcare setting: a systematic review. J Hosp Infect 2023; 140:139-155. [PMID: 37562592 DOI: 10.1016/j.jhin.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Whole-genome sequencing (WGS) has been used widely to elucidate transmission of SARS-CoV-2 in acute healthcare settings, and to guide infection, prevention, and control (IPC) responses. AIM To systematically appraise available literature, published between January 1st, 2020 and June 30th, 2022, describing the implementation of WGS in acute healthcare settings to characterize nosocomial SARS-CoV-2 transmission. METHODS Searches of the PubMed, Embase, Ovid MEDLINE, EBSCO MEDLINE, and Cochrane Library databases identified studies in English reporting the use of WGS to investigate SARS-CoV-2 transmission in acute healthcare environments. Publications involved data collected up to December 31st, 2021, and findings were reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. FINDINGS In all, 3088 non-duplicate records were retrieved; 97 met inclusion criteria, involving 62 outbreak analyses and 35 genomic surveillance studies. No publications from low-income countries were identified. In 87/97 (90%), WGS supported hypotheses for nosocomial transmission, while in 46 out of 97 (47%) suspected transmission events were excluded. An IPC intervention was attributed to the use of WGS in 18 out of 97 (18%); however, only three (3%) studies reported turnaround times ≤7 days facilitating near real-time IPC action, and none reported an impact on the incidence of nosocomial COVID-19 attributable to WGS. CONCLUSION WGS can elucidate transmission of SARS-CoV-2 in acute healthcare settings to enhance epidemiological investigations. However, evidence was not identified to support sequencing as an intervention to reduce the incidence of SARS-CoV-2 in hospital or to alter the trajectory of active outbreaks.
Collapse
Affiliation(s)
- D Hare
- UCD National Virus Reference Laboratory, University College Dublin, Ireland; School of Medicine, University of Limerick, Limerick, Ireland.
| | - K M Dembicka
- School of Medicine, University of Limerick, Limerick, Ireland
| | - C Brennan
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | - C Campbell
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | | | | | - C F De Gascun
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | - C P Dunne
- School of Medicine, University of Limerick, Limerick, Ireland; Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| |
Collapse
|
2
|
Manoussopoulos Y, Anastassopoulou C, Ioannidis JPA, Tsakris A. Paired associated SARS-CoV-2 spike variable positions: a network analysis approach to emerging variants. mSystems 2023; 8:e0044023. [PMID: 37432011 PMCID: PMC10469592 DOI: 10.1128/msystems.00440-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 07/12/2023] Open
Abstract
Amino acids in variable positions of proteins may be correlated, with potential structural and functional implications. Here, we apply exact tests of independence in R × C contingency tables to examine noise-free associations between variable positions of the SARS-CoV-2 spike protein, using as a paradigm sequences from Greece deposited in GISAID (N = 6,683/1,078 full length) for the period 29 February 2020 to 26 April 2021 that essentially covers the first three pandemic waves. We examine the fate and complexity of these associations by network analysis, using associated positions (exact P ≤ 0.001 and Average Product Correction ≥ 2) as links and the corresponding positions as nodes. We found a temporal linear increase of positional differences and a gradual expansion of the number of position associations over time, represented by a temporally evolving intricate web, resulting in a non-random complex network of 69 nodes and 252 links. Overconnected nodes corresponded to the most adapted variant positions in the population, suggesting a direct relation between network degree and position functional importance. Modular analysis revealed 25 k-cliques comprising 3 to 11 nodes. At different k-clique resolutions, one to four communities were formed, capturing epistatic associations of circulating variants (Alpha, Beta, B.1.1.318), but also Delta, which dominated the evolutionary landscape later in the pandemic. Cliques of aminoacidic positional associations tended to occur in single sequences, enabling the recognition of epistatic positions in real-world virus populations. Our findings provide a novel way of understanding epistatic relationships in viral proteins with potential applications in the design of virus control procedures. IMPORTANCE Paired positional associations of adapted amino acids in virus proteins may provide new insights for understanding virus evolution and variant formation. We investigated potential intramolecular relationships between variable SARS-CoV-2 spike positions by exact tests of independence in R × C contingency tables, having applied Average Product Correction (APC) to eliminate background noise. Associated positions (exact P ≤ 0.001 and APC ≥ 2) formed a non-random, epistatic network of 25 cliques and 1-4 communities at different clique resolutions, revealing evolutionary ties between variable positions of circulating variants and a predictive potential of previously unknown network positions. Cliques of different sizes represented theoretical combinations of changing residues in sequence space, allowing the identification of significant aminoacidic combinations in single sequences of real-world populations. Our analytic approach that links network structural aspects to mutational aminoacidic combinations in the spike sequence population offers a novel way to understand virus epidemiology and evolution.
Collapse
Affiliation(s)
- Yiannis Manoussopoulos
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- ELGO-Demeter, Plant Protection Division of Patras, Laboratory of Virology, Patras, Greece
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - John P. A. Ioannidis
- Department of Medicine, Stanford University, Stanford, California, USA
- Departments of Epidemiology and Population Health, Stanford University, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Department of Statistics, Stanford University, Stanford, California, USA
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Molina-Mora JA, Reales-González J, Camacho E, Duarte-Martínez F, Tsukayama P, Soto-Garita C, Brenes H, Cordero-Laurent E, Ribeiro dos Santos A, Guedes Salgado C, Santos Silva C, Santana de Souza J, Nunes G, Negri T, Vidal A, Oliveira R, Oliveira G, Muñoz-Medina JE, Salas-Lais AG, Mireles-Rivera G, Sosa E, Turjanski A, Monzani MC, Carobene MG, Remes Lenicov F, Schottlender G, Fernández Do Porto DA, Kreuze JF, Sacristán L, Guevara-Suarez M, Cristancho M, Campos-Sánchez R, Herrera-Estrella A. Overview of the SARS-CoV-2 genotypes circulating in Latin America during 2021. Front Public Health 2023; 11:1095202. [PMID: 36935725 PMCID: PMC10018007 DOI: 10.3389/fpubh.2023.1095202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Latin America is one of the regions in which the COVID-19 pandemic has a stronger impact, with more than 72 million reported infections and 1.6 million deaths until June 2022. Since this region is ecologically diverse and is affected by enormous social inequalities, efforts to identify genomic patterns of the circulating SARS-CoV-2 genotypes are necessary for the suitable management of the pandemic. To contribute to the genomic surveillance of the SARS-CoV-2 in Latin America, we extended the number of SARS-CoV-2 genomes available from the region by sequencing and analyzing the viral genome from COVID-19 patients from seven countries (Argentina, Brazil, Costa Rica, Colombia, Mexico, Bolivia, and Peru). Subsequently, we analyzed the genomes circulating mainly during 2021 including records from GISAID database from Latin America. A total of 1,534 genome sequences were generated from seven countries, demonstrating the laboratory and bioinformatics capabilities for genomic surveillance of pathogens that have been developed locally. For Latin America, patterns regarding several variants associated with multiple re-introductions, a relatively low percentage of sequenced samples, as well as an increment in the mutation frequency since the beginning of the pandemic, are in line with worldwide data. Besides, some variants of concern (VOC) and variants of interest (VOI) such as Gamma, Mu and Lambda, and at least 83 other lineages have predominated locally with a country-specific enrichments. This work has contributed to the understanding of the dynamics of the pandemic in Latin America as part of the local and international efforts to achieve timely genomic surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Jose Arturo Molina-Mora
- Centro de investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- *Correspondence: Jose Arturo Molina-Mora
| | | | - Erwin Camacho
- Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
| | - Francisco Duarte-Martínez
- Laboratorio de Genómica y Biología Molecular, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Tres Ríos, Cartago, Costa Rica
| | - Pablo Tsukayama
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Claudio Soto-Garita
- Laboratorio de Genómica y Biología Molecular, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Tres Ríos, Cartago, Costa Rica
| | - Hebleen Brenes
- Laboratorio de Genómica y Biología Molecular, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Tres Ríos, Cartago, Costa Rica
| | - Estela Cordero-Laurent
- Laboratorio de Genómica y Biología Molecular, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Tres Ríos, Cartago, Costa Rica
| | | | | | - Caio Santos Silva
- Instituto de Ciências Biológica, Universidade Federal do Pará, Belém, Brazil
| | | | - Gisele Nunes
- Environmental Genomics, Vale Institute of Technology, Belém, Pará, Brazil
| | - Tatianne Negri
- Environmental Genomics, Vale Institute of Technology, Belém, Pará, Brazil
| | - Amanda Vidal
- Environmental Genomics, Vale Institute of Technology, Belém, Pará, Brazil
| | - Renato Oliveira
- Environmental Genomics, Vale Institute of Technology, Belém, Pará, Brazil
| | - Guilherme Oliveira
- Environmental Genomics, Vale Institute of Technology, Belém, Pará, Brazil
| | - José Esteban Muñoz-Medina
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Angel Gustavo Salas-Lais
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Guadalupe Mireles-Rivera
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Ezequiel Sosa
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Adrián Turjanski
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Monzani
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Medicina de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio G. Carobene
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Medicina de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Medicina de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Schottlender
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Luisa Sacristán
- Vicerrectoria de Investigación y Creación, Universidad de Los Andes, Bogotá, Colombia
| | | | - Marco Cristancho
- Vicerrectoria de Investigación y Creación, Universidad de Los Andes, Bogotá, Colombia
| | - Rebeca Campos-Sánchez
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José, Costa Rica
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
- Alfredo Herrera-Estrella
| |
Collapse
|
4
|
Bousali M, Pogka V, Vatsellas G, Loupis T, Athanasiadis EI, Zoi K, Thanos D, Paraskevis D, Mentis A, Karamitros T. Tracing the First Days of the SARS-CoV-2 Pandemic in Greece and the Role of the First Imported Group of Travelers. Microbiol Spectr 2022; 10:e0213422. [PMID: 36409093 PMCID: PMC9769540 DOI: 10.1128/spectrum.02134-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The first SARS-CoV-2 case in Greece was confirmed on February 26, 2020, and since then, multiple strains have circulated the country, leading to regional and country-wide outbreaks. Our aim is to enlighten the events that took place during the first days of the SARS-CoV-2 pandemic in Greece, focusing on the role of the first imported group of travelers. We used whole-genome SARS-CoV-2 sequences obtained from the infected travelers of the group as well as Greece-derived and globally subsampled sequences and applied dedicated phylogenetics and phylodynamics tools as well as in-house-developed bioinformatics pipelines. Our analyses reveal the genetic variants circulating in Greece during the first days of the pandemic and the role of the group's imported strains in the course of the first pandemic wave in Greece. The strain that dominated in Greece throughout the first wave, bearing the D614G mutation, was primarily imported from a certain group of travelers, while molecular and clinical data suggest that the infection of the travelers occurred in Egypt. Founder effects early in the pandemic are important for the success of certain strains, as those arriving early, several times, and to diverse locations lead to the formation of large transmission clusters that can be estimated using molecular epidemiology approaches and can be a useful surveillance tool for the prioritization of nonpharmaceutical interventions and combating present and future outbreaks. IMPORTANCE The strain that dominated in Greece during the first pandemic wave was primarily imported from a group of returning travelers in February 2020, while molecular and clinical data suggest that the origin of the transmission was Egypt. The observed molecular transmission clusters reflect the transmission dynamics of this particular strain bearing the D614G mutation while highlighting the necessity of their use as a surveillance tool for the prioritization of nonpharmaceutical interventions and combating present and future outbreaks.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Vasiliki Pogka
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Giannis Vatsellas
- Greek Genome Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Theodoros Loupis
- Greek Genome Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
- Haematology Research Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Emmanouil I. Athanasiadis
- Greek Genome Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Katerina Zoi
- Greek Genome Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
- Haematology Research Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Dimitris Thanos
- Greek Genome Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Mentis
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
5
|
Vassilaki N, Papadimitriou K, Ioannidis A, Papandreou NC, Milona RS, Iconomidou VA, Chatzipanagiotou S. SARS-CoV-2 Amino Acid Mutations Detection in Greek Patients Infected in the First Wave of the Pandemic. Microorganisms 2022; 10:microorganisms10071430. [PMID: 35889149 PMCID: PMC9322066 DOI: 10.3390/microorganisms10071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel virus that belongs to the Coronoviridae family, emerged in December 2019, causing the COVID-19 pandemic in March 2020. Unlike previous SARS and Middle East respiratory syndrome (MERS) outbreaks, this virus has a higher transmissibility rate, albeit a lower case fatality rate, which results in accumulation of a significant number of mutations and a faster evolution rate. Genomic studies on the mutation rate of the virus, as well as the identification of mutations that prevail and their impact on disease severity, are of great importance for pandemic surveillance and vaccine and drug development. Here, we aim to identify mutations on the SARS-CoV-2 viral genome and their effect on the proteins they are located in, in Greek patients infected in the first wave of the pandemic. To this end, we perform SARS-CoV-2 amplicon-based NGS sequencing on nasopharyngeal swab samples from Greek patients and bioinformatic analysis of the results. Although SARS-CoV-2 is considered genetically stable, we discover a variety of mutations on the viral genome. In detail, 18 mutations are detected in total on 10 SARS-CoV-2 isolates. The mutations are located on ORF1ab, S protein, M protein, ORF3a and ORF7a. Sixteen are also detected in patients from other regions around the world, and two are identified for the first time in the present study. Most of them result in amino acid substitutions. These substitutions are analyzed using computational tools, and the results indicate minor or major impact on the proteins’ structural stability, which could probably affect viral transmissibility and pathogenesis. The correlation of these variations with the viral load levels is examined, and their implication for disease severity and the biology of the virus are discussed.
Collapse
Affiliation(s)
- Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.V.); (R.S.M.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Anastasios Ioannidis
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Sehi Area, 22100 Tripoli, Greece;
| | - Nikos C. Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (N.C.P.); (V.A.I.)
| | - Raphaela S. Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.V.); (R.S.M.)
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (N.C.P.); (V.A.I.)
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Eginition Hospital, Athens Medical School, National and Kapodistrian University of Athens, 72–74 Vasilissis Sofias Avenue, 11528 Athens, Greece
- Correspondence:
| |
Collapse
|
6
|
SARS-CoV-2 Whole-Genome Sequencing by Ion S5 Technology—Challenges, Protocol Optimization and Success Rates for Different Strains. Viruses 2022; 14:v14061230. [PMID: 35746701 PMCID: PMC9227152 DOI: 10.3390/v14061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/14/2022] [Accepted: 06/04/2022] [Indexed: 01/18/2023] Open
Abstract
The COVID-19 pandemic demonstrated how rapidly various molecular methods can be adapted for a Public Health Emergency. Whether a need arises for whole-genome studies (next-generation sequencing), fast and high-throughput diagnostics (reverse-transcription real-time PCR) or global immunization (construction of mRNA or viral vector vaccines), the scientific community has been able to answer all these calls. In this study, we aimed at the assessment of effectiveness of the commercially available solution for full-genome SARS-CoV-2 sequencing (AmpliSeq™ SARS-CoV-2 Research Panel and Ion AmpliSeq™ Library Kit Plus, Thermo Fisher Scientific). The study is based on 634 samples obtained from patients from Poland, with varying viral load, assigned to a number of lineages. Here, we also present the results of protocol modifications implemented to obtain high-quality genomic data. We found that a modified library preparation protocol required less viral RNA input in order to obtain the optimal library quantity. Concurrently, neither concentration of cDNA nor reamplification of libraries from low-template samples improved the results of sequencing. On the basis of the amplicon success rates, we propose one amplicon to be redesigned, namely, the r1_1.15.1421280, for which less than 50 reads were produced by 44% of samples. Additionally, we found several mutations within different SARS-CoV-2 lineages that cause the neighboring amplicons to underperform. Therefore, due to constant SARS-CoV-2 evolution, we support the idea of conducting ongoing sequence-based surveillance studies to continuously validate commercially available RT-PCR and whole-genome sequencing solutions.
Collapse
|
7
|
González-Candelas F, Shaw MA, Phan T, Kulkarni-Kale U, Paraskevis D, Luciani F, Kimura H, Sironi M. One year into the pandemic: Short-term evolution of SARS-CoV-2 and emergence of new lineages. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 92:104869. [PMID: 33915216 PMCID: PMC8074502 DOI: 10.1016/j.meegid.2021.104869] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022]
Abstract
The COVID-19 pandemic was officially declared on March 11th, 2020. Since the very beginning, the spread of the virus has been tracked nearly in real-time by worldwide genome sequencing efforts. As of March 2021, more than 830,000 SARS-CoV-2 genomes have been uploaded in GISAID and this wealth of data allowed researchers to study the evolution of SARS-CoV-2 during this first pandemic year. In parallel, nomenclatures systems, often with poor consistency among each other, have been developed to designate emerging viral lineages. Despite general fears that the virus might mutate to become more virulent or transmissible, SARS-CoV-2 genetic diversity has remained relatively low during the first ~ 8 months of sustained human-to-human transmission. At the end of 2020/beginning of 2021, though, some alarming events started to raise concerns of possible changes in the evolutionary trajectory of the virus. Specifically, three new viral variants associated with extensive transmission have been described as variants of concern (VOC). These variants were first reported in the UK (B.1.1.7), South Africa (B.1.351) and Brazil (P.1). Their designation as VOCs was determined by an increase of local cases and by the high number of amino acid substitutions harboured by these lineages. This latter feature is reminiscent of viral sequences isolated from immunocompromised patients with long-term infection, suggesting a possible causal link. Here we review the events that led to the identification of these lineages, as well as emerging data concerning their possible implications for viral phenotypes, reinfection risk, vaccine efficiency and epidemic potential. Most of the available evidence is, to date, provisional, but still represents a starting point to uncover the potential threat posed by the VOCs. We also stress that genomic surveillance must be strengthened, especially in the wake of the vaccination campaigns.
Collapse
Affiliation(s)
- Fernando González-Candelas
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio) and CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Marie-Anne Shaw
- Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Tung Phan
- Division of Clinical Microbiology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Fabio Luciani
- University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School, Takasaki, Gunma 370-0006, Japan
| | - Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS E. MEDEA, Bosisio Parini (LC), Italy.
| |
Collapse
|
8
|
Kostaki EG, Pavlopoulos GA, Verrou KM, Ampatziadis-Michailidis G, Harokopos V, Hatzis P, Moulos P, Siafakas N, Pournaras S, Hadjichristodoulou C, Chatzopoulou F, Chatzidimitriou D, Panagopoulos P, Lourida P, Argyraki A, Lytras T, Sapounas S, Gerolymatos G, Panagiotakopoulos G, Prezerakos P, Tsiodras S, Sypsa V, Hatzakis A, Anastassopoulou C, Spanakis N, Tsakris A, Dimopoulos MA, Kotanidou A, Sfikakis P, Kollias G, Magiorkinis G, Paraskevis D. Molecular Epidemiology of SARS-CoV-2 in Greece Reveals Low Rates of Onward Virus Transmission after Lifting of Travel Restrictions Based on Risk Assessment during Summer 2020. mSphere 2021; 6:e0018021. [PMID: 34190583 PMCID: PMC8265632 DOI: 10.1128/msphere.00180-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022] Open
Abstract
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly during the first months of 2020 and continues to expand in multiple areas across the globe. Molecular epidemiology has provided an added value to traditional public health tools by identifying SARS-CoV-2 clusters or providing evidence that clusters based on virus sequences and contact tracing are highly concordant. Our aim was to infer the levels of virus importation and to estimate the impact of public health measures related to travel restrictions to local transmission in Greece. Our phylogenetic and phylogeographic analyses included 389 full-genome SARS-CoV-2 sequences collected during the first 7 months of the pandemic in Greece and a random collection in five replicates of 3,000 sequences sampled globally, as well as the best hits to our data set identified by BLAST. Phylogenetic trees were reconstructed by the maximum likelihood method, and the putative source of SARS-CoV-2 infections was inferred by phylogeographic analysis. Phylogenetic analyses revealed the presence of 89 genetically distinct viruses identified as independent introductions into Greece. The proportion of imported strains was 41%, 11.5%, and 8.8% during the three periods of sampling, namely, March (no travel restrictions), April to June (strict travel restrictions), and July to September (lifting of travel restrictions based on thorough risk assessment), respectively. The results of phylogeographic analysis were confirmed by a Bayesian approach. Our findings reveal low levels of onward transmission from imported cases during summer and underscore the importance of targeted public health measures that can increase the safety of international travel during a pandemic. IMPORTANCE Our study based on current state-of-the-art molecular epidemiology methods suggests that virus screening and public health measures after the lifting of travel restrictions prevented SARS-CoV-2 onward transmission from imported cases during summer 2020 in Greece. These findings provide important data on the efficacy of targeted public health measures and have important implications regarding the safety of international travel during a pandemic. Our results can provide a roadmap about prevention policy in the future regarding the reopening of borders in the presence of differences in vaccination coverage, the circulation of the virus, and the presence of newly emergent variants across the globe.
Collapse
Affiliation(s)
- Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios A. Pavlopoulos
- Center of New Biotechnologies & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming,” Vari, Greece
| | - Kleio-Maria Verrou
- Center of New Biotechnologies & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Giannis Ampatziadis-Michailidis
- Center of New Biotechnologies & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaggelis Harokopos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming,” Vari, Greece
| | - Pantelis Hatzis
- Center of New Biotechnologies & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming,” Vari, Greece
| | - Panagiotis Moulos
- Center of New Biotechnologies & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming,” Vari, Greece
| | - Nikolaos Siafakas
- Laboratory of Clinical Microbiology, ATTIKON University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Pournaras
- Laboratory of Clinical Microbiology, ATTIKON University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Dimitrios Chatzidimitriou
- Labnet, Laboratories, Thessaloniki, Greece
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Periklis Panagopoulos
- 2nd Department of Internal Medicine, General Hospital of Alexandroupoli, Democritus University of Thrace, Alexandroupoli, Greece
| | - Panagiota Lourida
- Infectious Diseases Clinic A, Thoracic Diseases General Hospital Sotiria, Athens, Greece
| | - Aikaterini Argyraki
- Infectious Diseases Clinic A, Thoracic Diseases General Hospital Sotiria, Athens, Greece
| | | | | | | | | | | | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vana Sypsa
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Spanakis
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Center of New Biotechnologies & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Kotanidou
- 1st Intensive Care Unit, General Hospital Evangelismos, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Sfikakis
- Center of New Biotechnologies & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Kollias
- Center of New Biotechnologies & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming,” Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Miljanovic D, Milicevic O, Loncar A, Abazovic D, Despot D, Banko A. The First Molecular Characterization of Serbian SARS-CoV-2 Isolates From a Unique Early Second Wave in Europe. Front Microbiol 2021; 12:691154. [PMID: 34220784 PMCID: PMC8250835 DOI: 10.3389/fmicb.2021.691154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
March 6, 2020 is considered as the official date of the beginning of the COVID-19 epidemic in Serbia. In late spring and early summer 2020, Europe recorded a decline in the rate of SARS-CoV-2 infection and subsiding of the first wave. This trend lasted until the fall, when the second wave of the epidemic began to appear. Unlike the rest of Europe, Serbia was hit by the second wave of the epidemic a few months earlier. Already in June 2020, newly confirmed cases had risen exponentially. As the COVID-19 pandemic is the first pandemic in which there has been instant sharing of genomic information on isolates around the world, the aim of this study was to analyze whole SARS-CoV-2 viral genomes from Serbia, to identify circulating variants/clade/lineages, and to explore site-specific mutational patterns in the unique early second wave of the European epidemic. This analysis of Serbian isolates represents the first publication from Balkan countries, which demonstrates the importance of specificities of local transmission especially when preventive measures differ among countries. One hundred forty-eight different genome variants among 41 Serbian isolates were detected in this study. One unique and seven extremely rare mutations were identified, with locally specific continuous dominance of the 20D clade. At the same time, amino acid substitutions of newly identified variants of concern were found in our isolates from October 2020. Future research should be focused on functional characterization of novel mutations in order to understand the exact role of these variations.
Collapse
Affiliation(s)
- Danijela Miljanovic
- Virology Laboratory, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Ognjen Milicevic
- Faculty of Medicine, Institute for Medical Statistics and Informatics, University of Belgrade, Belgrade, Serbia
| | - Ana Loncar
- Laboratory of Molecular Microbiology, Institute for Biocides and Medical Ecology, Belgrade, Serbia
| | - Dzihan Abazovic
- Biocell Hospital, Belgrade, Serbia
- Emergency Medical Centre of Montenegro, Podgorica, Montenegro
| | - Dragana Despot
- Laboratory of Molecular Microbiology, Institute for Biocides and Medical Ecology, Belgrade, Serbia
| | - Ana Banko
- Virology Laboratory, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|