1
|
Rosas-Hernández R, Bastián Y, Juárez Tello A, Ramírez-Saíto Á, Escobar García DM, Pozos-Guillén A, Mendez JA. AMPA receptors modulate the reorganization of F-actin in Bergmann glia cells through the activation of RhoA. J Neurochem 2019; 149:242-254. [PMID: 30589940 DOI: 10.1111/jnc.14658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/23/2023]
Abstract
Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors have been shown to modulate the morphology of the lamelar processes of Bergmann glia cells in the molecular layer of the cerebellum. Here we suggest that reorganization of F-actin may underlay the changes in the morphology of the lamelar processes. Using the fluorescent staining of F-actin with Phalloidin and the quantification of RhoA activation through immunoprecipitation or pull-down assays, we show that RhoA is activated after stimulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors and leads to the reorganization of the actin cytoskeleton of Bergmann fibers. This reorganization of the actin cytoskeleton is reflected in the form of an increase in the intensity of the F-actin staining as well as in the loss of the number of Bergmann fibers stained with Phalloidin. Moreover, using a pharmacological approach, we show that activation of RhoA and the change in the intensity of the F-actin staining depends on the activation of PI3-K, focal adhesion kinase, and protein kinase C, whereas changes in the number of Bergmann fibers depend on external calcium in a RhoA independent manner. Our findings show that glutamate may induce a form of structural plasticity in Bergmann glia cells through the reorganization of the actin cytoskeleton. This may have implications in the way the synaptic transmission is processed in the cerebellum.
Collapse
Affiliation(s)
| | - Yadira Bastián
- Unidad de Investigación Biomédica, IMSS, Zacatecas, México
| | - Andrea Juárez Tello
- Laboratory of Molecular Biophysics, Institute of Physics, San Luis Potosi, Mexico
| | | | - Diana María Escobar García
- Laboratory of Basic Sciences, Faculty of Stomatology, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Amaury Pozos-Guillén
- Laboratory of Basic Sciences, Faculty of Stomatology, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - J Alfredo Mendez
- Laboratory of Molecular Biophysics, Institute of Physics, San Luis Potosi, Mexico
| |
Collapse
|
2
|
Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 2013; 71:1839-54. [PMID: 24281762 DOI: 10.1007/s00018-013-1521-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 12/11/2022]
Abstract
Malignant gliomas are relentless tumors that offer a dismal clinical prognosis. They develop many biological advantages that allow them to grow and survive in the unique environment of the brain. The glutamate transporters system x c (-) and excitatory amino acid transporters (EAAT) are emerging as key players in the biology and malignancy of these tumors. Gliomas manipulate glutamate transporter expression and function to alter glutamate homeostasis in the brain, which supports their own growth, invasion, and survival. As a consequence, malignant cells are able to quickly destroy and invade surrounding normal brain. Recent findings are painting a larger picture of these transporters in glioma biology, and as such are providing opportunities for clinical intervention for patients. This review will detail the current understanding of glutamate transporters in the biology of malignant gliomas and highlight some of the unique aspects of these tumors that make them so devastating and difficult to treat.
Collapse
|
3
|
Martínez D, García L, Aguilera J, Ortega A. An Acute Glutamate Exposure Induces Long-Term Down Regulation of GLAST/EAAT1 Uptake Activity in Cultured Bergmann Glia Cells. Neurochem Res 2013; 39:142-9. [DOI: 10.1007/s11064-013-1198-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/30/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023]
|
4
|
Martínez-Lozada Z, Hernández-Kelly LC, Aguilera J, López-Bayghen E, Ortega A. Signaling through EAAT-1/GLAST in cultured Bergmann glia cells. Neurochem Int 2011; 59:871-9. [DOI: 10.1016/j.neuint.2011.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 12/22/2022]
|
5
|
Barrera I, Flores-Méndez M, Hernández-Kelly LC, Cid L, Huerta M, Zinker S, López-Bayghen E, Aguilera J, Ortega A. Glutamate regulates eEF1A phosphorylation and ribosomal transit time in Bergmann glial cells. Neurochem Int 2010; 57:795-803. [DOI: 10.1016/j.neuint.2010.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/17/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022]
|
6
|
Zepeda RC, Barrera I, Castelán F, Suárez-Pozos E, Melgarejo Y, González-Mejia E, Hernández-Kelly LC, López-Bayghen E, Aguilera J, Ortega A. Glutamate-dependent phosphorylation of the mammalian target of rapamycin (mTOR) in Bergmann glial cells. Neurochem Int 2009; 55:282-7. [DOI: 10.1016/j.neuint.2009.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 02/25/2009] [Accepted: 03/17/2009] [Indexed: 01/05/2023]
|
7
|
González-Mejia ME, Morales M, Hernández-Kelly LCR, Zepeda RC, Bernabé A, Ortega A. Glutamate-dependent translational regulation in cultured Bergmann glia cells: involvement of p70S6K. Neuroscience 2006; 141:1389-98. [PMID: 16766130 DOI: 10.1016/j.neuroscience.2006.04.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/20/2006] [Accepted: 04/26/2006] [Indexed: 11/15/2022]
Abstract
Glutamate, the main excitatory amino acid transmitter in the vertebrate brain is involved in the dynamic changes in protein repertoire that underlie synaptic plasticity. Activity-dependent differential expression patterns occur not only in neurons but also in glial cells. In fact, a membrane to nuclei signaling has been described after ionotropic glutamate receptor stimulation in cultured chick cerebellar Bergmann glia cells. In order to characterize other levels of protein expression regulation, we explored the effect of glutamate treatment in [35S]-methionine incorporation into newly synthesized polypeptides. A time-dependent modification in protein synthesis was found. An important component of translational control is the ribosomal S6 protein kinase. Threonine phosphorylation renders the kinase active increasing translation initiation. Glutamate exposure results in ribosomal S6 protein kinase Thr389 phosphorylation in a dose and time-dependent manner that matches perfectly with the overall protein synthesis profile detected upon the excitatory amino acid. Pharmacological characterization of the receptors involved suggests the participation of both ionotropic as well as metabotropic glutamate receptors. The non-receptor tyrosine kinase Src, phosphatidylinositol 3-kinase, protein kinase B and the mammalian target of rapamycin are mediators of the glutamate effect. These results not only demonstrate that glutamate receptors activation is critically involved in translational control in glial cells adjacent to synaptic processes like cerebellar Bergmann glia cells, but also further strengthen the notion of an active participation of glial cells in synaptic transmission.
Collapse
Affiliation(s)
- M E González-Mejia
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Unidad Zacatenco, Apartado Postal 14-740, México DF 0300, Mexico
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Throughout the development of the cerebellar cortex, Purkinje neurones interact closely with Bergmann glial cells, a specialized form of astrocyte. This review summarizes the intimate developmental, anatomical and functional relationships between these two cell types, with particular emphasis on recent discoveries regarding glutamate release from climbing and parallel fibres as a pathway for signalling synaptic activity to Bergmann glia.
Collapse
Affiliation(s)
- Tomas C Bellamy
- Laboratory of Molecular Signalling, Babraham Institute, Babraham, Cambridge, UK
| |
Collapse
|
9
|
Morales M, González-Mejía ME, Bernabé A, Hernández-Kelly LCR, Ortega A. Glutamate Activates Protein Kinase B (PKB/Akt) through AMPA Receptors in Cultured Bergmann Glia Cells. Neurochem Res 2006; 31:423-9. [PMID: 16733819 DOI: 10.1007/s11064-005-9034-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2005] [Indexed: 11/28/2022]
Abstract
Glutamate is involved in gene expression regulation in neurons and glial cells through the activation of a diverse array of signaling cascades. In Bergmann glia, Ca2+ -permeable alpha-hydroxy-5-methyl-4-isoazole-propionic acid (AMPA) receptors become tyrosine phosphorylated after ligand binding and by these means form multiprotein signaling complexes. Of the various proteins that associate to these receptors, the phosphatidylinositol 3-kinase (PI-3K) deserves special attention since D3-phosphorylated phosphoinositides are docking molecules for signaling proteins with a pleckstrin homology domain. In order to characterize the role of PI-3K in AMPA receptors signaling, in the present report we analyze the involvement of the serine/threonine protein kinase B in this process. Our results demonstrate an augmentation in protein kinase B phosphorylation and activity after glutamate exposure. Interestingly, the effect is independent of Ca2+ influx, but sensitive to Src blockers. Our present findings broaden our current knowledge of glial glutamate receptors signaling and their involvement glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Moisés Morales
- Departamento de Genética y Biología Molecular, Cinvestav-Zacatenco, México , DF, México
| | | | | | | | | |
Collapse
|
10
|
Tirado R, Ortega A, Sarmiento RE, Gómez B. Interleukin-8 mRNA synthesis and protein secretion are continuously up-regulated by respiratory syncytial virus persistently infected cells. Cell Immunol 2005; 233:61-71. [PMID: 15936741 DOI: 10.1016/j.cellimm.2005.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/13/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate whether respiratory syncytial virus persistence regulates interleukin 8 (IL-8) mRNA synthesis and protein secretion in a human lung epithelial cell line (A549). Therefore, we established RSV persistence in these cells (A549per) and determined the levels of interleukin-8 mRNA by RT-PCR and of protein through ELISA. Interleukin-8 mRNA synthesis and protein secretion were continuously up-regulated in A549per cells during passages and in A549 cells that had been incubated with supernatants (cA549per) obtained from A549per passages. These results suggested that the enhancement of interleukin-8 was stimulated either by the presence of the RSV genome in the cell or by soluble mediator(s) induced by RSV, which, in turn, increased interleukin-8 mRNA synthesis and protein secretion. Soluble RSV F and G proteins were identified as mediators. Moreover, interleukin-8 enhancement was observed after 1-min incubation with the soluble mediators, thus suggesting that interleukin-8 up-regulation was triggered by receptor-ligand interaction.
Collapse
MESH Headings
- Antigens, Surface/analysis
- Antigens, Surface/physiology
- Antigens, Viral/analysis
- Cell Line, Tumor
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/pharmacology
- Culture Media, Conditioned/radiation effects
- Enzyme-Linked Immunosorbent Assay
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/virology
- Fractional Precipitation
- Gene Expression/drug effects
- Hot Temperature
- Humans
- Immunoprecipitation
- Interleukin-1/antagonists & inhibitors
- Interleukin-1/metabolism
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Polyethylene Glycols/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Respiratory Syncytial Virus, Human/metabolism
- Respiratory Syncytial Virus, Human/radiation effects
- Reverse Transcriptase Polymerase Chain Reaction
- Trypsin/metabolism
- Ultraviolet Rays
- Up-Regulation/drug effects
- Viral Envelope Proteins/metabolism
- Viral Envelope Proteins/pharmacology
- Viral Fusion Proteins/metabolism
- Viral Fusion Proteins/pharmacology
- Viral Proteins/analysis
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Rocio Tirado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Cd. Universitaria, Mexico D.F. 04510, Mexico
| | | | | | | |
Collapse
|
11
|
Millán A, Arias-Montaño JA, Méndez JA, Hernández-Kelly LCR, Ortega A. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors signaling complexes in Bergmann glia. J Neurosci Res 2005; 78:56-63. [PMID: 15372493 DOI: 10.1002/jnr.20237] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutamate, the major excitatory neurotransmitter, induces a wide array of signals from the membrane to the nucleus regulating gene expression. In Bergmann glia, Ca2+ -permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole- propionic acid (AMPA) receptors are involved in the short- and long-term interactions between these cells and the neurons that they surround. After activation, AMPA receptors become tyrosine phosphorylated and by these means form multiprotein signaling complexes. To characterize these events, cultured chick Bergmann glia cells as well as chick cerebellar slices were exposed to glutamate, and, by using a combination of immunoprecipitation assays coupled to Western blot analysis, we identified several signaling proteins that become associated with these receptors. A dose- and time-dependent association among AMPA receptors, the focal adhesion kinase pp125FAK, the phosphatidylinositol-3 kinase and paxillin was found. These results extend the concept of the transducisome to AMPA receptors and provide a framework in which a plausible control of the cytoskeletal network by glutamate is taking place, most possibly through AMPA receptors.
Collapse
Affiliation(s)
- Alejandro Millán
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | | | | | | | | |
Collapse
|
12
|
Méndez JA, López-Bayghen E, Ortega A. Glutamate activation of Oct-2 in cultured chick Bergmann glia cells: Involvement of NFκB. J Neurosci Res 2005; 81:21-30. [PMID: 15929072 DOI: 10.1002/jnr.20519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate, the major excitatory neurotransmitter in the central nervous system, is critically involved in gene expression regulation at the transcriptional and translational levels. Its activity through ionotropic as well as metabotropic receptors modifies the protein repertoire in neurons and glial cells. In avian cerebellar Bergmann glia cells, glutamate receptors trigger a diverse array of signaling cascades that include activity-dependent transcription factors such as the activator protein-1, the cAMP response-element binding protein, and Oct-2. We analyze the upstream regulatory elements involved in Oct-2 activation. Our results demonstrate that Ca2+ influx, protein kinase C, phosphatidylinositol-3 kinase, Src, and nuclear factor (NF)kappaB are involved in this signaling pathway. Our findings link alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation to a negative phase of chkbp gene regulation, controlled by NFkappaB.
Collapse
Affiliation(s)
- J Alfredo Méndez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios, Avanzados del Instituto Politécnico Nacional, México
| | | | | |
Collapse
|
13
|
López-Bayghen E, Aguirre A, Ortega A. Transcriptional regulation through glutamate receptors: Involvement of tyrosine kinases. J Neurosci Res 2004; 74:717-25. [PMID: 14635222 DOI: 10.1002/jnr.10807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate receptors play a key role in neuronal plasticity, learning and memory, and in several neuropathologies. Short-term and long-term changes in synaptic efficacy are triggered by glutamate. Although an enhanced glutamate-dependent tyrosine phosphorylation has been described in several systems, its role in membrane-to-nuclei signaling is unclear. Taking advantage of the fact that the gene encoding the chick kainate-binding protein undergoes a glutamate-dependent transcriptional regulation via an activator protein-1 (AP-1) site, we evaluated the involvement of tyrosine kinases in this process. We describe here the participation of receptor and non-receptor tyrosine kinases in the signaling cascade triggered by glutamate. Our results suggest that in Bergmann glia cells, glutamate receptors transactivate receptor tyrosine kinases, favoring the idea of a complex network of signals activated by this excitatory neurotransmitter that results in regulation of gene expression.
Collapse
Affiliation(s)
- Esther López-Bayghen
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México, D.F., México
| | | | | |
Collapse
|
14
|
The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter. J Neurosci 2002. [PMID: 12177201 DOI: 10.1523/jneurosci.22-16-07045.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Na+/Cl--dependent dopamine transporter (DAT) is critical in terminating dopaminergic transmission by removing the transmitter away from the synapse. Several lines of evidence suggest that transporter-interacting proteins may play a role in DAT function and regulation. In this report, using the yeast two-hybrid system, we have identified a novel interaction between DAT and the multiple Lin-11, Isl-1, and Mec-3 (LIM) domain-containing adaptor protein Hic-5. This association involves the N-terminal portion of the intracellular tail of DAT and the LIM region of Hic-5. In human embryonic kidney 293 cells, Hic-5 colocalizes with DAT at polarized sites and reduces DAT uptake activity through a mechanism involving a decrease in the cell-surface levels of the transporter. A fragment of Hic-5 containing the LIM domains is sufficient to bind DAT but lacks the ability to inhibit transporter activity. In addition, the LIM fragment prevents the effect of the full-length Hic-5 on DAT localization and function. In the brain, Hic-5 protein is expressed in the cerebral cortex, hippocampus, hypothalamus, cerebellum, and striatum, suggesting a role for this protein in the nervous system. The association of the endogenous Hic-5 and DAT proteins was confirmed biochemically by coimmunoprecipitation from brain striatal extracts. Moreover, immunostaining of rat midbrain neurons in culture revealed a presynaptic colocalization of Hic-5 and DAT. Because Hic-5 has been shown to interact with several signaling molecules, including the nonreceptor protein tyrosine kinases focal adhesion kinase and Fyn, this raises the possibility that this adaptor protein may link DAT to intracellular signaling pathways.
Collapse
|