1
|
Pereira JF, de Sousa Neves JC, Fonteles AA, Bezerra JR, Pires RC, da Silva ATA, Lima FAV, Neves KRT, Oriá RB, de Barros Viana GS, Tavares J, de Sousa Nascimento T, Oliveira AV, Parente ACB, Gomes JMP, de Andrade GM. Palmatine, a natural alkaloid, attenuates memory deficits and neuroinflammation in mice submitted to permanent focal cerebral ischemia. J Neuroimmunol 2023; 381:578131. [PMID: 37413943 DOI: 10.1016/j.jneuroim.2023.578131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
Ischemic stroke is one of the major causes of human morbidity and mortality. The pathophysiology of ischemic stroke involves complex events, including oxidative stress and inflammation, that lead to neuronal loss and cognitive deficits. Palmatine (PAL) is a naturally occurring (Coptidis rhizome) isoquinoline alkaloid that belongs to the class of protoberberines and has a wide spectrum of pharmacological and biological effects. In the present study, we evaluated the impact of Palmatine on neuronal damage, memory deficits, and inflammatory response in mice submitted to permanent focal cerebral ischemia induced by middle cerebral artery (pMCAO) occlusion. The animals were treated with Palmatine (0.2, 2 and 20 mg/kg/day, orally) or vehicle (3% Tween + saline solution) 2 h after pMCAO once daily for 3 days. Cerebral ischemia was confirmed by evaluating the infarct area (TTC staining) and neurological deficit score 24 h after pMCAO. Treatment with palmatine (2 and 20 mg/kg) reduced infarct size and neurological deficits and prevented working and aversive memory deficits in ischemic mice. Palmatine, at a dose of 2 mg/kg, had a similar effect of reducing neuroinflammation 24 h after cerebral ischemia, decreasing TNF-, iNOS, COX-2, and NF- κB immunoreactivities and preventing the activation of microglia and astrocytes. Moreover, palmatine (2 mg/kg) reduced COX-2, iNOS, and IL-1β immunoreactivity 96 h after pMCAO. The neuroprotective properties of palmatine make it an excellent adjuvant treatment for strokes due to its inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Juliana Fernandes Pereira
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil
| | - Juliana Catharina de Sousa Neves
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Analu Aragão Fonteles
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Jéssica Rabelo Bezerra
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Rayssa Costa Pires
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Ana Thais Araújo da Silva
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Francisco Arnaldo Viana Lima
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Kelly Rose Tavares Neves
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Reinaldo Barreto Oriá
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil
| | - Glauce Socorro de Barros Viana
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Juliete Tavares
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Tyciane de Sousa Nascimento
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Alfaete Vieira Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Ana Caroline Barros Parente
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Jessica Maria Pessoa Gomes
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Geanne Matos de Andrade
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil.
| |
Collapse
|
2
|
Sanberg PR, Morrison D, Bjugstad KB. 30 years of American Society for Neural Therapy and Repair (ASNTR): A Personal Perspective at the Intersection of Science, Politics, and Culture. Neurosci Biobehav Rev 2023; 151:105234. [PMID: 37196924 DOI: 10.1016/j.neubiorev.2023.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
The American Society for Neural Therapy and Repair (ASNTR) started 30 years ago in 1993 as the American Society for Neural Transplantation (ASNT), with an emphasis on neural transplantation. Through the years, the Society has been shaped as much by our expanding knowledge of neurodegenerative disorders and how to treat them as it has by politics and culture. What once felt like a leash on neuroscience research, has turned into an advantage as neural transplantation evolved into neural therapy and repair. This brief commentary provides a personalized account of our research during the Society's years.
Collapse
Affiliation(s)
- Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Depts of Neurosurgery and Brain Repair, Pathology and Cell Biology, and Psychiatry. University of South Florida, Morsani College of Medicine, Tampa, FL 33612.
| | - Donna Morrison
- Center of Excellence for Aging and Brain Repair, Depts of Neurosurgery and Brain Repair, Pathology and Cell Biology, and Psychiatry. University of South Florida, Morsani College of Medicine, Tampa, FL 33612
| | - Kimberly B Bjugstad
- Center of Excellence for Aging and Brain Repair, Depts of Neurosurgery and Brain Repair, Pathology and Cell Biology, and Psychiatry. University of South Florida, Morsani College of Medicine, Tampa, FL 33612
| |
Collapse
|
3
|
Rao RB, Shiao ML, Ennis-Czerniak KM, Low WC. Nonhematopoietic Umbilical Cord Blood Stem Cell Administration Improves Long-term Neurodevelopment After Periventricular-Intraventricular Hemorrhage in Neonatal Rats. Cell Transplant 2023; 32:9636897231189301. [PMID: 37493283 PMCID: PMC10387682 DOI: 10.1177/09636897231189301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
Periventricular-intraventricular hemorrhage (PIVH) is common in extremely low gestational age neonates (ELGAN) and leads to motor and behavioral impairments. Currently there is no effective treatment for PIVH. Whether human nonhematopoietic umbilical cord blood-derived stem cell (nh-UCBSC) administration reduces the severity of brain injury and improves long-term motor and behavioral function was tested in an ELGAN-equivalent neonatal rat model of PIVH. In a collagenase-induced unilateral PIVH on postnatal day (P) 2 model, rat pups received a single dose of nh-UCBSCs at a dose of 1 × 106 cells i.p. on P6 (PIVH + UCBSC group) or were left untreated (Untreated PIVH group). Motor deficit was determined using forelimb placement, edge-push, and elevated body swing tests at 2 months (N = 5-8). Behavior was evaluated using open field exploration and rearing tests at 4 months (N =10-12). Cavity volume and hemispheric volume loss on the PIVH side were determined at 7 months (N = 6-7). Outcomes were compared between the Untreated PIVH and PIVH + UCBSC groups and a Control group. Unilateral motor deficits were present in 60%-100% of rats in the Untreated PIVH group and 12.5% rats in the PIVH + UCBSC group (P = 0.02). Untreated PIVH group exhibited a higher number of quadrant crossings in open field exploration, indicating low emotionality and poor habituation, and had a cavitary lesion and hemispheric volume loss on the PIVH side. Performance in open field exploration correlated with cavity volume (r2 = 0.25; P < 0.05). Compared with the Untreated PIVH group, performance in open field exploration was better (P = 0.0025) and hemispheric volume loss was lower (19.9 ± 4.4% vs 6.1 ± 2.6%, P = 0.018) in the PIVH + UCBSC group. These results suggest that a single dose of nh-UCBSCs administered in the subacute period after PIVH reduces the severity of injury and improves neurodevelopment in neonatal rats.
Collapse
Affiliation(s)
- Raghavendra B. Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Maple L. Shiao
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Kathleen M. Ennis-Czerniak
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Bjugstad K, Sanberg P. The boundlessness of behavioral neuroscience: A look across 30 years. Neurosci Biobehav Rev 2022; 142:104910. [DOI: 10.1016/j.neubiorev.2022.104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
|
5
|
Kun Ma, Yuan X, Zhang Y, Ni Q, Guo J. Umbilical Cord Blood Mononuclear Cells Promote Microglial Survival by Modulating Autophagy after Bacterial Infection. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022130106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Safety of sibling cord blood cell infusion for children with cerebral palsy. Cytotherapy 2022; 24:931-939. [DOI: 10.1016/j.jcyt.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
|
7
|
Satani N, Parsha K, Savitz SI. Enhancing Stroke Recovery With Cellular Therapies. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Gautam J, Alaref A, Hassan A, Sharma Kandel R, Mishra R, Jahan N. Safety and Efficacy of Stem Cell Therapy in Patients With Ischemic Stroke. Cureus 2020; 12:e9917. [PMID: 32968578 PMCID: PMC7505641 DOI: 10.7759/cureus.9917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Stem cell therapy is emerging as a promising treatment strategy to treat patients with stroke. While there are established modes of treatment for stroke patients such as thrombolysis and endovascular intervention, most of the stroke patients frequently end up with major residual deficits or even death. The use of stem cells to treat stroke has been found to be beneficial in the animal models but strict evidence for the same in humans is still lacking. We reviewed 13 clinical trials of stem cell therapy in stroke patients conducted between 2014 and 2020 based on the search using the database PubMed, and the clinical trial registry (www.clinicaltrials.gov). We aimed to assess the safety and efficacy of stem cell treatment in stroke patients who participated in the trials. Quality assessment of the clinical trials revealed a sub-optimal score. We found mixed results regarding the efficacy of stem cells in the treatment of ischemic stroke although we could not do a quantitative analysis of the effect outcomes. Assessment for safety revealed promising results as there were only minor side effects related to cell therapy. Although stem cell therapy seems to be a promising strategy to treat stroke patients in the future, we concluded that the field needs more evidence regarding the safety and efficacy of the use of stem cells in stroke patients before we use them in the clinic.
Collapse
Affiliation(s)
- Jeevan Gautam
- Neurology, California Instititute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Amer Alaref
- Diagnostic Radiology, California institute of Behavioural Neurosciences and Psychology, Fairfield, USA
- Diagnostic Radiology, Thunder Bay Regional Health Sciences Centre, Thunder Bay, CAN
- Diagnostic Imaging, Northern Ontario School of Medicine, Sudbury, CAN
- Breast Imaging Services, Linda Buchan Centre, Thunder Bay, CAN
| | - Abdallah Hassan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rajan Sharma Kandel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rohi Mishra
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nusrat Jahan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
9
|
Enam SF, Kader SR, Bodkin N, Lyon JG, Calhoun M, Azrak C, Tiwari PM, Vanover D, Wang H, Santangelo PJ, Bellamkonda RV. Evaluation of M2-like macrophage enrichment after diffuse traumatic brain injury through transient interleukin-4 expression from engineered mesenchymal stromal cells. J Neuroinflammation 2020; 17:197. [PMID: 32563258 PMCID: PMC7306141 DOI: 10.1186/s12974-020-01860-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/29/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Appropriately modulating inflammation after traumatic brain injury (TBI) may prevent disabilities for the millions of those inflicted annually. In TBI, cellular mediators of inflammation, including macrophages and microglia, possess a range of phenotypes relevant for an immunomodulatory therapeutic approach. It is thought that early phenotypic modulation of these cells will have a cascading healing effect. In fact, an anti-inflammatory, "M2-like" macrophage phenotype after TBI has been associated with neurogenesis, axonal regeneration, and improved white matter integrity (WMI). There already exist clinical trials seeking an M2-like bias through mesenchymal stem/stromal cells (MSCs). However, MSCs do not endogenously synthesize key signals that induce robust M2-like phenotypes such as interleukin-4 (IL-4). METHODS To enrich M2-like macrophages in a clinically relevant manner, we augmented MSCs with synthetic IL-4 mRNA to transiently express IL-4. These IL-4 expressing MSCs (IL-4 MSCs) were characterized for expression and functionality and then delivered in a modified mouse TBI model of closed head injury. Groups were assessed for functional deficits and MR imaging. Brain tissue was analyzed through flow cytometry, multi-plex ELISA, qPCR, histology, and RNA sequencing. RESULTS We observed that IL-4 MSCs indeed induce a robust M2-like macrophage phenotype and promote anti-inflammatory gene expression after TBI. However, here we demonstrate that acute enrichment of M2-like macrophages did not translate to improved functional or histological outcomes, or improvements in WMI on MR imaging. To further understand whether dysfunctional pathways underlie the lack of therapeutic effect, we report transcriptomic analysis of injured and treated brains. Through this, we discovered that inflammation persists despite acute enrichment of M2-like macrophages in the brain. CONCLUSION The results demonstrate that MSCs can be engineered to induce a stronger M2-like macrophage response in vivo. However, they also suggest that acute enrichment of only M2-like macrophages after diffuse TBI cannot orchestrate neurogenesis, axonal regeneration, or improve WMI. Here, we also discuss our modified TBI model and methods to assess severity, behavioral studies, and propose that IL-4 expressing MSCs may also have relevance in other cavitary diseases or in improving biomaterial integration into tissues.
Collapse
Affiliation(s)
- Syed Faaiz Enam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Nicholas Bodkin
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Johnathan G Lyon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mark Calhoun
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Cesar Azrak
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Pooja Munnilal Tiwari
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Daryll Vanover
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haichen Wang
- Department of Neurology, Duke University, Durham, NC, USA
| | - Philip J Santangelo
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
10
|
Crompton K, Novak I, Fahey M, Badawi N, Wallace E, Lee K, Mechinaud-Heloury F, Colditz PB, Elwood N, Edwards P, Reddihough D. Single group multisite safety trial of sibling cord blood cell infusion to children with cerebral palsy: study protocol and rationale. BMJ Open 2020; 10:e034974. [PMID: 32152173 PMCID: PMC7064081 DOI: 10.1136/bmjopen-2019-034974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Cerebral palsy (CP) is the most common physical disability of childhood but has no cure. Stem cells have the potential to improve brain injury and are proposed as a therapy for CP. However, many questions remain unanswered about the most appropriate cell type, timing of infusions, dose required and associated risks. Therefore, human safety and efficacy trials are necessary to progress knowledge in the field. METHODS AND ANALYSIS This is a single group study with sample size n=12 to investigate safety of single-dose intravenous 12/12 human leucocyte antigen-matched sibling cord blood cell infusion to children with CP aged 1-16 years without immune suppression. The study is similar to a 3+3 design, where the first two groups of participants have severe CP, and the final six participants include children with all motor severities. Children will be monitored for adverse events and the duration that donor cells are detected. Assessments at baseline, 3 and 12 months will investigate safety and preliminary evidence of change in gross motor, fine motor, cognitive and quality of life outcomes. ETHICS AND DISSEMINATION Full approval was obtained from The Royal Children's Hospital Human Research Ethics Committee, and a clinical trial notification was accepted by Australia's Therapeutic Goods Administration. Participant guardian informed consent will be obtained before any study procedures. The main results of this study will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ACTRN12616000403437, NCT03087110.
Collapse
Affiliation(s)
- Kylie Crompton
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Neurodevelopment and Disability, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael Fahey
- Paediatric Neurology, Monash Health, Clayton, Victoria, Australia
- Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Grace Centre for Newborn Care, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Euan Wallace
- Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Katherine Lee
- Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | - Paul B Colditz
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Ngaire Elwood
- Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Cell Biology, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Priya Edwards
- Queensland Paediatric Rehabilitation Service, Children's Health Queensland Hospital and Health Service, Herston, Queensland, Australia
- Queensland Cerebral Palsy and Rehabilitation Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Dinah Reddihough
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Neurodevelopment and Disability, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Sanberg PR, Sanberg CD. A 'stroke' of genius: celebrating the 20-year anniversary of the Bernard Sanberg Memorial Award for Brain Repair. Regen Med 2019; 14:811-813. [PMID: 31464568 DOI: 10.2217/rme-2019-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd MDC 78, Tampa, FL 33612, USA
| | - Cyndy D Sanberg
- Muma College of Business, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA
| |
Collapse
|
12
|
Srivastava AK, Prabhakara KS, Kota DJ, Bedi SS, Triolo F, Brown KS, Skiles ML, Brown HL, Cox CS, Olson SD. Human umbilical cord blood cells restore vascular integrity in injured rat brain and modulate inflammation in vitro. Regen Med 2019; 14:295-307. [PMID: 31074319 DOI: 10.2217/rme-2018-0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Traumatic brain injury is a complex condition consisting of a mechanical injury with neurovascular disruption and inflammation with limited clinical interventions available. A growing number of studies report systemic delivery of human umbilical cord blood (HUCB) as a therapy for neural injuries. Materials & methods: HUCB cells from five donors were tested to improve blood-brain barrier integrity in a traumatic brain injury rat model at a dose of 2.5 × 107 cells/kg at 24 or 72 h postinjury and for immunomodulatory activity in vitro. Results & Conclusion: We observed that cells delivered 72 h postinjury significantly restored blood-brain barrier integrity. HUCB cells reduced the amount of TNF-α and IFN-γ released by activated primary rat splenocytes, which correlated with the expression of COX2 and IDO1.
Collapse
Affiliation(s)
- Amit K Srivastava
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Karthik S Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Daniel J Kota
- Emory Personalized Immunotherapy Core Labs, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Supinder S Bedi
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | | | | | | | - Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
13
|
Pischiutta F, Sammali E, Parolini O, Carswell HVO, Zanier ER. Placenta-Derived Cells for Acute Brain Injury. Cell Transplant 2019; 27:151-167. [PMID: 29562781 PMCID: PMC6434489 DOI: 10.1177/0963689717732992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute brain injury resulting from ischemic/hemorrhagic or traumatic damage is one of the leading causes of mortality and disability worldwide and is a significant burden to society. Neuroprotective options to counteract brain damage are very limited in stroke and traumatic brain injury (TBI). Given the multifaceted nature of acute brain injury and damage progression, several therapeutic targets may need to be addressed simultaneously to interfere with the evolution of the injury and improve the patient’s outcome. Stem cells are ideal candidates since they act on various mechanisms of protection and repair, improving structural and functional outcomes after experimental stroke or TBI. Stem cells isolated from placenta offer advantages due to their early embryonic origin, ease of procurement, and ethical acceptance. We analyzed the evidence for the beneficial effects of placenta-derived stem cells in acute brain injury, with the focus on experimental studies of TBI and stroke, the engineering strategies pursued to foster cell potential, and characterization of the bioactive molecules secreted by placental cells, known as their secretome, as an alternative cell-free strategy. Results from the clinical application of placenta-derived stem cells for acute brain injury and ongoing clinical trials are summarily discussed.
Collapse
Affiliation(s)
- Francesca Pischiutta
- 1 Department of Neuroscience, Laboratory of Acute Brain Injury and Therapeutic Strategies, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Eliana Sammali
- 1 Department of Neuroscience, Laboratory of Acute Brain Injury and Therapeutic Strategies, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.,2 Department of Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ornella Parolini
- 3 Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.,4 Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Hilary V O Carswell
- 5 Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - Elisa R Zanier
- 1 Department of Neuroscience, Laboratory of Acute Brain Injury and Therapeutic Strategies, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
14
|
Cui L, Moisan A, Jolkkonen J. Intravascular cell therapy in stroke: predicting the future trends. Regen Med 2018; 14:63-68. [PMID: 30561248 DOI: 10.2217/rme-2018-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This short review examines the trends that have taken place during the last two decades in selecting delivery route and cell product in confirmatory preclinical stroke research. If there had been a major change, this might indicate a strategy with a high potential to enter early-phase clinical studies. The retrospective data show that intravenous cell delivery of mesenchymal stem cells remains the most popular approach in experimental research, clearly dominating early phase clinical studies. The advantages and risks of current practices are discussed in the hope that these will improve translational success and accelerate clinical development of safe and efficient cell products.
Collapse
Affiliation(s)
- Lili Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anaïck Moisan
- Inserm U1216, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Cell Therapy and Engineering Unit, French Blood Company, Etablissement Français du Sang, Saint-Ismier, France
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
15
|
Gao L, Xu W, Li T, Chen J, Shao A, Yan F, Chen G. Stem Cell Therapy: A Promising Therapeutic Method for Intracerebral Hemorrhage. Cell Transplant 2018; 27:1809-1824. [PMID: 29871521 PMCID: PMC6300771 DOI: 10.1177/0963689718773363] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/09/2018] [Accepted: 04/02/2018] [Indexed: 12/28/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is one type of the most devastating cerebrovascular diseases worldwide, which causes high morbidity and mortality. However, efficient treatment is still lacking. Stem cell therapy has shown good neuroprotective and neurorestorative effect in ICH and is a promising treatment. In this study, our aim was to review the therapeutic effects, strategies, related mechanisms and safety issues of various types of stem cell for ICH treatment. Numerous studies had demonstrated the therapeutic effects of diverse stem cell types in ICH. The potential mechanisms include tissue repair and replacement, neurotrophy, promotion of neurogenesis and angiogenesis, anti-apoptosis, immunoregulation and anti-inflammation and so forth. The microenvironment of the central nervous system (CNS) can also influence the effects of stem cell therapy. The detailed therapeutic strategies for ICH treatment such as cell type, the number of cells, time window, and the routes of medication delivery, varied greatly among different studies and had not been determined. Moreover, the safety issues of stem cell therapy for ICH should not be ignored. Stem cell therapy showed good therapeutic effect in ICH, making it a promising treatment. However, safety should be carefully evaluated, and more clinical trials are required before stem cell therapy can be extensively applied to clinical use.
Collapse
Affiliation(s)
- Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jingyin Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
16
|
Abd El-Fattah AI, Zaghloul MS, Eltablawy NA, Rashed LA. α-Lipoic acid and amlodipine/perindopril combination potentiate the therapeutic effect of mesenchymal stem cells on isoproterenol induced cardiac injury in rats. Biochimie 2018; 156:59-68. [PMID: 30308238 DOI: 10.1016/j.biochi.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/06/2018] [Indexed: 12/27/2022]
Abstract
Cardiac injury is a dangerous disease and become a greater issue in the forthcoming decades. The ultimate goal is to prevent the progression of heart failure and apoptotic processes. Cardiac tissue may regenerate itself but to certain extent depending on the number of resident stem cells that is limited. Thus, research had been focused on bone marrow derived stem cells (BM-MSCs) as a promising therapy in different types of tissues, including the heart. This study is designed not only to assess the therapeutic effect of BM-MSCs but also to improve their therapeutic effect in combination with antioxidant α-lipoic acid (ALA) and antihypertensive therapeutic drug form (AP) against isoproterenol-induced cardiac injury and compared with that of BM-MSCs alone. Cardiac injury was induced in 70 male rats by Isoproterenol (ISO was injected s.c. for four consecutive days). Experimental animals were divided into six ISO-treated groups beside a control non treated one. The six ISO-treated groups were divided into: ISO group, ISO+BM-MSCs group, ISO+ALA group, ISO+AP group, ISO+ALA+AP group and ISO+ALA+AP+BM-MSCs group, the last five groups were treated with the examined materials after one week of ISO injection. Isoproterenol significantly increased serum CK-MB, LDH activities, Troponin1 and TNF-α. Oxidative stress is evidenced by the increased MDA, NO and Caspase-3 activity associated with significant reduction of GSH content and SOD activity in cardiac tissue. Furthermore, mRNA expression of NFκB and iNOS were significantly up regulated and eNOS mRNA expression was down regulated. Administration of BM-MSCs, ALA and AP alone significantly mitigated the induced cardiac injury. Concomitant administration of ALA and AP after BM-MSCs induced a more pronounced improving effect on cardiac functions. In conclusion, the concomitant administration of ALA and AP after BM-MSCs infusion increases the cellular antioxidant levels of cardiac tissue that improves the repairing function of BM-MSCs.
Collapse
Affiliation(s)
- Abeer I Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - M S Zaghloul
- Biochemistry Division, National Organization for Drug Control and Research (NODCAR), Egypt.
| | - N A Eltablawy
- Biochemistry Division, National Organization for Drug Control and Research (NODCAR), Egypt
| | - L A Rashed
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Laskowitz DT, Bennett ER, Durham RJ, Volpi JJ, Wiese JR, Frankel M, Shpall E, Wilson JM, Troy J, Kurtzberg J. Allogeneic Umbilical Cord Blood Infusion for Adults with Ischemic Stroke: Clinical Outcomes from a Phase I Safety Study. Stem Cells Transl Med 2018; 7:521-529. [PMID: 29752869 PMCID: PMC6052613 DOI: 10.1002/sctm.18-0008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 12/16/2022] Open
Abstract
Stroke is a major cause of death and long‐term disability, affecting one in six people worldwide. The only currently available approved pharmacological treatment for ischemic stroke is tissue plasminogen activator; however, relatively few patients are eligible for this therapy. We hypothesized that intravenous (IV) infusion of banked unrelated allogeneic umbilical cord blood (UCB) would improve functional outcomes in patients with ischemic stroke. To investigate this, we conducted a phase I open‐label trial to assess the safety and feasibility of a single IV infusion of non‐human leukocyte antigen (HLA) matched, ABO matched, unrelated allogeneic UCB into adult stroke patients. Ten participants with acute middle cerebral artery ischemic stroke were enrolled. UCB units were matched for blood group antigens and race but not HLA, and infused 3–9 days post‐stroke. The adverse event (AE) profile over a 12 month postinfusion period indicated that the treatment was well‐tolerated in these stroke patients, with no serious AEs directly related to the study product. Study participants were also assessed using neurological and functional evaluations, including the modified Rankin Score (mRS) and National Institute of Health Stroke Scale (NIHSS). At 3 months post‐treatment, all participants had improved by at least one grade in mRS (mean 2.8 ± 0.9) and by at least 4 points in NIHSS (mean 5.9 ± 1.4), relative to baseline. Together, these data suggest that a single i.v. dose of allogeneic non‐HLA matched human UCB cells is safe in adults with ischemic stroke, and support the conduct of a randomized, placebo‐controlled phase 2 study. stemcellstranslationalmedicine2018;7:521–529
Collapse
Affiliation(s)
| | | | - Rebecca J. Durham
- Robertson Clinical and Translational Cell Therapy Program, Duke Translational Research Institute/Duke UniversityDurhamNorth CarolinaUSA
| | - John J. Volpi
- Eddy Scurlock Stroke Center, Houston Methodist Neurological InstituteHoustonTexasUSA
| | - Jonathan R. Wiese
- Eddy Scurlock Stroke Center, Houston Methodist Neurological InstituteHoustonTexasUSA
| | - Michael Frankel
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Elizabeth Shpall
- MD Anderson Cancer Center, The University of TexasHoustonTexasUSA
| | - Jeffry M. Wilson
- MD Anderson Cancer Center, The University of TexasHoustonTexasUSA
| | - Jesse Troy
- Robertson Clinical and Translational Cell Therapy Program, Duke Translational Research Institute/Duke UniversityDurhamNorth CarolinaUSA
| | - Joanne Kurtzberg
- Robertson Clinical and Translational Cell Therapy Program, Duke Translational Research Institute/Duke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
18
|
Eve DJ, Sanberg PR, Buzanska L, Sarnowska A, Domanska-Janik K. Human Somatic Stem Cell Neural Differentiation Potential. Results Probl Cell Differ 2018; 66:21-87. [DOI: 10.1007/978-3-319-93485-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
19
|
From cord to caudate: characterizing umbilical cord blood stem cells and their paracrine interactions with the injured brain. Pediatr Res 2018; 83:205-213. [PMID: 28981488 DOI: 10.1038/pr.2017.251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023]
Abstract
Stem cells are proving to be a promising therapy for a wide range of pediatric disorders, from neonatal hypoxic-ischemic encephalopathy to pediatric leukemia. Owing to their low immunogenicity and ease of availability, umbilical cord blood (UCB) progenitor cells are increasingly replacing fetal- and adult-derived cells in therapeutic settings. Multiple environmental and demographic factors affect the number and type of stem cells extracted from UCB, and these differences have been associated with disparities in outcomes after transplantation. To avoid variations in efficacy, as well as the potential adverse effects of stem cell transplantation, evaluation of the stem cell secretome is critical to identify key paracrine signals released by the stem cells that could be used to provide similar neuroprotective effects to stem cell transplantation. This article describes the cell types found in UCB and reviews the available literature surrounding the effects of collection timing and volume, maternal risk factors, delivery characteristics, and neonatal demographics on the cellular composition of UCB. In addition, the current findings regarding the stem cell secretome are discussed to identify factors that could be used to supplement or replace stem cell transplantation in pediatric neuroprotection.
Collapse
|
20
|
Stem Cell Therapies in Peripheral Vascular Diseases — Current Status. JOURNAL OF INTERDISCIPLINARY MEDICINE 2017. [DOI: 10.1515/jim-2017-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract
Peripheral artery diseases include all arterial diseases with the exception of coronary and aortic involvement, more specifically diseases of the extracranial carotids, upper limb arteries, mesenteric and renal vessels, and last but not least, lower limb arteries. Mononuclear stem cells, harvested from various sites (bone marrow, peripheral blood, mesenchymal cells, adipose-derived stem cells) have been studied as a treatment option for alleviating symptoms in peripheral artery disease, as potential stimulators for therapeutic angiogenesis, thus improving vascularization of the ischemic tissue. The aim of this manuscript was to review current medical literature on a novel treatment method — cell therapy, in patients with various peripheral vascular diseases, including carotid, renal, mesenteric artery disease, thromboangiitis obliterans, as well as upper and lower limb artery disease.
Collapse
|
21
|
Galieva LR, Mukhamedshina YO, Arkhipova SS, Rizvanov AA. Human Umbilical Cord Blood Cell Transplantation in Neuroregenerative Strategies. Front Pharmacol 2017; 8:628. [PMID: 28951720 PMCID: PMC5599779 DOI: 10.3389/fphar.2017.00628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
At present there is no effective treatment of pathologies associated with the death of neurons and glial cells which take place as a result of physical trauma or ischemic lesions of the nervous system. Thus, researchers have high hopes for a treatment based on the use of stem cells (SC), which are potentially able to replace dead cells and synthesize neurotrophic factors and other molecules that stimulate neuroregeneration. We are often faced with ethical issues when selecting a source of SC. In addition to precluding these, human umbilical cord blood (hUCB) presents a number of advantages when compared with other sources of SC. In this review, we consider the key characteristics of hUCB, the results of various studies focused on the treatment of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis), ischemic (stroke) and traumatic injuries of the nervous system and the molecular mechanisms of hUCB-derived mononuclear and stem cells.
Collapse
Affiliation(s)
- Luisa R Galieva
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Yana O Mukhamedshina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical UniversityKazan, Russia
| | - Svetlana S Arkhipova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Albert A Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| |
Collapse
|
22
|
Venkat P, Shen Y, Chopp M, Chen J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology 2017; 134:310-322. [PMID: 28867364 DOI: 10.1016/j.neuropharm.2017.08.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/09/2023]
Abstract
Ischemic stroke remains one of most common causes of death and disability worldwide. Stroke triggers a cascade of events leading to rapid neuronal damage and death. Neuroprotective agents that showed promise in preclinical experiments have failed to translate to the clinic. Even after decades of research, tPA remains the only FDA approved drug for stroke treatment. However, tPA is effective when administered 3-4.5 h after stroke onset and the vast majority of stroke patients do not receive tPA therapy. Therefore, there is a pressing need for novel therapies for ischemic stroke. Since stroke induces rapid cell damage and death, neuroprotective strategies that aim to salvage or replace injured brain tissue are challenged by treatment time frames. To overcome the barriers of neuroprotective therapies, there is an increasing focus on neurorestorative therapies for stroke. In this review article, we provide an update on neurorestorative treatments for stroke using cell therapy such as bone marrow derived mesenchymal stromal cells (BMSCs), human umbilical cord blood cells (HUCBCs) and select pharmacological approaches including Minocycline and Candesartan that have been employed in clinical trials. This review article discusses the present understanding of mechanisms of neurorestorative therapies and summarizes ongoing clinical trials. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Yi Shen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA; Gerontology Institute, Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA; Gerontology Institute, Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| |
Collapse
|
23
|
Newcomb JD, Sanberg PR, Klasko SK, Willing AE. Umbilical Cord Blood Research: Current and Future Perspectives. Cell Transplant 2017. [DOI: 10.3727/000000007783464623] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Umbilical cord blood (UCB) banking has become a new obstetrical trend. It offers expectant parents a biological insurance policy that can be used in the event of a child or family member's life-threatening illness and puts patients in a position of control over their own treatment options. However, its graduation to conventional therapy in the clinical realm relies on breakthrough research that will prove its efficacy for a range of ailments. Expanding the multipotent cells found within the mononuclear fraction of UCB so that adequate dosing can be achieved, effectively expanding desired cells ex vivo, establishing its safety and limitations in HLA-mismatched recipients, defining its mechanisms of action, and proving its utility in a wide variety of both rare and common illnesses and diseases are a few of the challenges left to tackle. Nevertheless, the field is moving fast and new UCB-based therapies are on the horizon.
Collapse
Affiliation(s)
- Jennifer D. Newcomb
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | - Stephen K. Klasko
- Department of Obstetrics and Gynecology, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | - Alison E. Willing
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
24
|
Emerich DF, Winn SR. Neuroprotective Effects of Encapsulated CNTF-Producing Cells in a Rodent Model of Huntington's Disease are Dependent on the Proximity of the Implant to the Lesioned Striatum. Cell Transplant 2017; 13:253-9. [PMID: 15191163 DOI: 10.3727/000000004783983981] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Huntington's disease (HD) is a devastating genetic disorder with no effective treatments for preventing or lessening the underlying neuronal degeneration. Intracerebral delivery of CNTF in animal models of HD has shown considerable promise as a means of protecting striatal neurons that would otherwise be destined to die. The present study examines whether the neuroprotective effects of CNTF require that the delivery be immediately proximal to the lesion site or whether protective effects can be exerted when the delivery site is more distal to the site of injury. Encapsulated CNTF-producing cells were implanted into the lateral ventricle either ipsilateral or contralateral to an intrastriatal quinolinic acid (QA) injection. A robust neuroprotective effect was observed only in those animals receiving CNTF implants ipsilateral to the QA injection. In these animals, the loss of striatal ChAT and GAD activity as well as the behavioral impairments that resulted from QA were completely prevented. In contrast, no neurochemical or behavioral benefits were produced by implants of CNTF-producing cells in the contralateral ventricle. These data continue to support the use of cellular delivery of CNTF for HD but caution that delivery directly to the striatum may be needed if any clinical benefits are to be seen.
Collapse
|
25
|
Abstract
Stroke remains a leading cause of death and disability worldwide. An increasing number of animal studies and preclinical trials have, however, provided evidence that regenerative cell-based therapies can lead to functional recovery in stroke patients. Stem cells can differentiate into neural lineages to replace lost neurons. Moreover, they provide trophic support to tissue at risk in the penumbra surrounding the infarct area, enhance vasculogenesis, and help promote survival, migration, and differentiation of the endogenous precursor cells after stroke. Stem cells are highly migratory and seem to be attracted to areas of brain pathology such as ischemic regions. The pathotropism may follow the paradigm of stem cell homing to bone marrow and leukocytes migrating to inflammatory tissue. The molecular signaling therefore may involve various chemokines, cytokines, and integrins. Among these, stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling is required for the interaction of stem cells and ischemia-damaged host tissues. SDF-1 is secreted primarily by bone marrow fibroblasts and is required for BMSC homing to bone marrow. Overexpression of SDF-1 in ischemic tissues has been found to enhance stem cell recruitment from peripheral blood and to induce neoangiogenesis. Furthermore, SDF-1 expression in the lesioned area peaked within 7 days postischemia, in concordance with the time window of G-CSF therapy for stroke. Recent data have shown that SDF-1 expression is directly proportional to reduced tissue oxygen tension. SDF-1 gene expression is regulated by hypoxic-inducible factor-1 (HIF-1), a hypoxia-dependent stabilization transcription factor. Thus, ischemic tissue may recruit circulating progenitors regulated by hypoxia through differential expression of HIF-1α and SDF-1. In addition to SDF-1, β2-integrins also play a role in the homing of hematopoietic progenitor cells to sites of ischemia and are critical for their neovascularization capacity. In our recent report, increased expression of β1-integrins apparently contributed to the local neovasculization of the ischemic brain as well as its functional recovery. Identification of the molecular pathways involved in stem cell homing into the ischemic areas could pave the way for the development of new treatment regimens, perhaps using small molecules, designed to enhance endogeneous mobilization of stem cells in various disease states, including chronic stroke and other neurodegenerative diseases. For maximal functional recovery, however, regenerative therapy may need to follow combinatorial approaches, which may include cell replacement, trophic support, protection from oxidative stress, and the neutralization of the growth-inhibitory components for endogenous neuronal stem cells.
Collapse
Affiliation(s)
- Ying-Chao Chang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Guang University College of Medicine, Kaohsiung, Taiwan
| | - Woei-Cherng Shyu
- Neuro-Medical Scientific Center, Tzu-Chi Buddhist General Hospital, Tzu-Chi University, Hualien, Taiwan
| | - Shinn-Zong Lin
- Neuro-Medical Scientific Center, Tzu-Chi Buddhist General Hospital, Tzu-Chi University, Hualien, Taiwan
| | - Hung Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
26
|
Newcomb JD, Ajmo CT, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE. Timing of Cord Blood Treatment after Experimental Stroke Determines Therapeutic Efficacy. Cell Transplant 2017; 15:213-23. [PMID: 16719056 DOI: 10.3727/000000006783982043] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Embolic stroke is thought to cause irreparable damage in the brain immediately adjacent to the region of reduced blood perfusion. Therefore, much of the current research focuses on treatments such as anti-inflammatory, neuroprotective, and cell replacement strategies to minimize behavioral and physiological consequences. In the present study, intravenous delivery of human umbilical cord blood cells (HUCBC) 48 h after a middle cerebral artery occlusion (MCAo) in a rat resulted in both behavioral and physiological recovery. Nissl and TUNEL staining demonstrated that many of the neurons in the core were rescued, indicating that while both necrotic and apoptotic cell death occur in ischemia, it is clear that apoptosis plays a larger role than first anticipated. Further, immunohistochemical and histochemical analysis showed a diminished and/or lack of granulocyte and monocyte infiltration and astrocytic and microglial activation in the parenchyma in animals treated with HUCBC 48 h poststroke. Successful treatment at this time point should offer encouragement to clinicians that a therapy with a broader window of efficacy may soon be available to treat stroke.
Collapse
Affiliation(s)
- Jennifer D Newcomb
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
27
|
Gaafar T, Attia W, Mahmoud S, Sabry D, Aziz OA, Rasheed D, Hamza H. Cardioprotective Effects of Wharton Jelly Derived Mesenchymal Stem Cell Transplantation in a Rodent Model of Myocardial Injury. Int J Stem Cells 2017; 10:48-59. [PMID: 28446005 PMCID: PMC5488776 DOI: 10.15283/ijsc16063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2017] [Indexed: 01/03/2023] Open
Abstract
Background Whartons jelly-derived mesenchymal stem cells are a valuable alternative source that possess multipotent properties, easy to obtain and available in large scale compared to BMMSCs. We investigated the possibility of cardiac function improvement post isoproterenol induced cardiac injury in a rat model following human WJMSCs transplantation. Materials and Methods MSCs were extracted and cultured from cord WJ, characterized by morphology, Immunophenotyping and differentiation to osteoblast and adipocytes. WJMSCs were labeled with PKH2 linker dye. Wistar rats were divided into control group, ISO group (injected with 2 doses of isoproterenol) to induce myocardial injury and ISO group transplanted with labelled WJMSCs. ECG, electrocardiographic patterns, cardiac marker enzymes, tracing of labeled MSCs and immunohistochemical analysis of myocardial cryosections were studied. Results and Conclusions WJ derived MSCs were expanded for more than 14 passages while maintaining their undifferentiated state, were positive for MSC markers and were able to differentiate into adipocyte and osteoblast. We demonstrated that intravenously administered WJMSCs were capable of homing predominently in the ischemic myocardium. Cardiac markers were positively altered in stem cell treated group compared to ISO group. ECG and ECHO changes were improved with higher survival rate. WJMSCs could differentiate into cardiac-like cells (positive for cardiac specific proteins) in vivo. WJMSCs infusion promoted cardiac protection and reduced mortality, emphasizing a promising therapeutic role for myocardial insufficiency.
Collapse
Affiliation(s)
- Taghrid Gaafar
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Wael Attia
- Department of Pediatric Cardiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shereen Mahmoud
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Osama Abdel Aziz
- Department of Pediatric Cardiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Rasheed
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hala Hamza
- Department of Pediatric Cardiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
28
|
Bhasin A, Kumaran SS, Bhatia R, Mohanty S, Srivastava MVP. Safety and Feasibility of Autologous Mesenchymal Stem Cell Transplantation in Chronic Stroke in Indian patients. A four-year follow up. J Stem Cells Regen Med 2017. [PMID: 28684893 PMCID: PMC5494434 DOI: 10.46582/jsrm.1301003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Stem cell (SC) therapy has been envisioned as a therapeutic vehicle to promote recovery in resistant neurological diseases. Knowing the logistics and paradigms in recovery processes after Stroke, clinicians have pioneered the transplantation therapy. This study presents four-year follow up of our previous trial transplanting bone-marrow-derived animal-free culture expanded intravenous mesenchymal stem cells (MSCs) in chronic stroke which was published in 2010. Methods: We performed an open-label, pilot trial on 12 patients with chronic stroke. Patients were allocated to two groups, those who received intravenous autologous ex vivo cultured mesenchymal stem cells (MSC group) or those who did not (control group), all followed for four years from the day of cell transplantation. Results: The reports have been optimistic regarding safety as we did not find any cell related side effects / mortality till 208th week. We observed that modified Barthel Index showed statistical significant improvement at 156 and 208 weeks of transplantation (95 % CI : -10.27 to 0.07; p =0.041) follow up in the MSC group as compared to controls. The 2nd and 3rd quartile for mBI in MSC group was 89 & 90 respectively suggesting good performance of patients in the stem cell group. The impairment scales i.e., Fugl Meyer, Ashworth tone scale, strength of hand muscles (MRC) did not show any significant improvement at 208th week which is similar to our previous published report. Conclusion: This follow up study primarily indicates safety, tolerance and applicability of autologous mesenchymal stem cells in Stroke. MSCs may act as "chaperones" or work through paracrine mechanisms leading to functional recovery post stroke.
Collapse
|
29
|
Garbuzova-Davis S, Ehrhart J, Sanberg PR. Cord blood as a potential therapeutic for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2017; 17:837-851. [DOI: 10.1080/14712598.2017.1323862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Jared Ehrhart
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
30
|
Kumar A, Prasad M, Jali VP, Pandit AK, Misra S, Kumar P, Chakravarty K, Kathuria P, Gulati A. Bone marrow mononuclear cell therapy in ischaemic stroke: a systematic review. Acta Neurol Scand 2017; 135:496-506. [PMID: 27558274 DOI: 10.1111/ane.12666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/20/2022]
Abstract
Bone marrow mononuclear cell (BM-MNC) therapy has emerged as a potential therapy for the treatment of stroke. We performed a systematic review of published studies using BM-MNC therapy in patients with ischaemic stroke (IS). Literature was searched using MEDLINE, PubMed, EMBASE, Trip Database, Cochrane library and clinicaltrial.gov to identify studies on BM-MNC therapy in IS till June, 2016. Data were extracted independently by two reviewers. STATA version 13 was used for carrying out meta-analysis. We included non-randomized open-label, single-arm and non-randomized comparative studies or randomized controlled trials (RCTs) if BM-MNCs were used to treat patients with IS in any phase after the index stroke. One randomized trial, two non-randomized comparative trials and four single-arm open-label trials (total seven studies) involving 227 subjects (137 patients and 90 controls) were included in the systematic review and meta-analysis. The pooled proportion for favourable clinical outcome (modified Rankin Scale score ≤2) in six studies involving 122 subjects was 29% (95% CI 0.16-0.43) who were exposed to BM-MNCs and pooled proportion for favourable clinical outcome of 69 subjects (taken from two trials) who did not receive BM-MNCs was 20% (95% CI 0.12-0.32). The pooled difference in the safety outcomes was not significant between both the groups. Our systematic review suggests that BM-MNC therapy is safe up to 1 year post-intervention and is feasible; however, its efficacy in the case of IS patients is debatable. Well-designed randomized controlled trials are required to provide more information on the efficacy of BM-MNC transplantation in patients with IS.
Collapse
Affiliation(s)
- A. Kumar
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - M. Prasad
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - V. P. Jali
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - A. K. Pandit
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - S. Misra
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - P. Kumar
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - K. Chakravarty
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - P. Kathuria
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - A. Gulati
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
31
|
Kasahara Y, Yamahara K, Soma T, Stern DM, Nakagomi T, Matsuyama T, Taguchi A. Transplantation of hematopoietic stem cells: intra-arterial versus intravenous administration impacts stroke outcomes in a murine model. Transl Res 2016; 176:69-80. [PMID: 27164406 DOI: 10.1016/j.trsl.2016.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 11/27/2022]
Abstract
Based on results of hematopoietic stem cell transplantation in animal models of stroke, clinical trials with hematopoietic stem cells administered intra-arterially or intravenously have been initiated in patients. Although intra-arterial injection is expected to deliver transplanted cells more directly to the ischemic tissue, the optimal route for enhancing clinical outcomes has not been identified in the setting of stroke. In this study, we compared the therapeutic potential of intra-arterial versus intravenous injection of bone marrow derived-mononuclear cells (BM-MNCs) and CD133-positive (CD133(+)) cells in a murine stroke model. We have found that intra-arterial injection of BM-MNCs exaggerates inflammation with accompanying loss of microvascular structures in poststroke brain and no improvement in cortical function. In contrast, intravenous injection of BM-MNCs did not similarly enhance inflammation and improved cortical function. Our results indicate that the optimal route of cell transplantation can vary with different cell populations and highlight possible issues that might arise with intra-arterial cell administration for acute ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- Yukiko Kasahara
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Kenichi Yamahara
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Toshihiro Soma
- Department of Hematology, Hyogo College of Medicine, Nishinomiya, Japan
| | - David M Stern
- Executive Dean's office, University of Tennessee, Tennessee, USA
| | - Takayuki Nakagomi
- Department of Neurogenesis and CNS repair, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomohiro Matsuyama
- Department of Neurogenesis and CNS repair, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan.
| |
Collapse
|
32
|
Peña ID, Borlongan CV. Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke. Transl Stroke Res 2016; 6:421-9. [PMID: 26482176 DOI: 10.1007/s12975-015-0430-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 01/26/2023]
Abstract
Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis,and produce behavioral and functional improvement through their "bystander effects." Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., co-transplantation of stem cells or adjunct treatment with pharmacological agents and substrates,which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of cotreatment with granulocyte-colony stimulating factor (GCSF)and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here,we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of GCSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells(EPCs), as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing the effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further studies are also required to determine the safety and efficacy of this intervention in both preclinical and clinical stroke studies.
Collapse
|
33
|
Kidani Y, Miki Y, Nomimura N, Minakawa S, Tanaka N, Miyoshi H, Wakabayashi K, Kudo Y. The therapeutic effect of CD133+ cells derived from human umbilical cord blood on neonatal mouse hypoxic-ischemic encephalopathy model. Life Sci 2016; 157:108-115. [DOI: 10.1016/j.lfs.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/26/2016] [Accepted: 06/04/2016] [Indexed: 12/22/2022]
|
34
|
Ferreira EDO, Fernandes MYSD, Lima NMRD, Neves KRT, Carmo MRSD, Lima FAV, Fonteles AA, Menezes APF, Andrade GMD. Neuroinflammatory response to experimental stroke is inhibited by eriodictyol. Behav Brain Res 2016; 312:321-32. [PMID: 27353856 DOI: 10.1016/j.bbr.2016.06.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebral ischemia is a common disease and one of the most common causes of death and disability worldwide. The lack of glucose and oxygen in neuronal tissue leads to a series of inflammatory events, culminating in neuronal death. Eriodictyol is a flavonoid isolated from the Chinese herb Dracocephalum rupestre that has been proven to have anti-inflammatory properties. HYPOTHESIS/PURPOSE Thus, the present study was designed to explore whether eriodictyol has neuroprotective effects against the neuronal damage, motor and memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) in mice. STUDY DESIGN Animals were orally treated with eriodictyol (1, 2 and 4mg/kg) or vehicle (saline) 30min before pMCAO, 2h after, and then once daily for the following five days. METHODS The parameters studied were neuronal viability, brain infarcted area; sensorimotor deficits; exploratory activity; working and aversive memory; myeloperoxidase (MPO) activity; TNFα, iNOS and GFAP immunoreactivity. RESULTS The treatment with eriodictyol prevented neuronal death, reduced infarct area and improved neurological and memory deficits induced by brain ischemia. The increase of MPO activity and TNF-α, iNOS and GFAP expression were also reduced by eriodictyol treatment. CONCLUSION These findings demonstrate that eriodictyol exhibit promising neuroprotection effects against the permanent focal ischemia cerebral injury in the mice experimental model and the underlying mechanisms might be mediated through inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Emerson de Oliveira Ferreira
- Post-Graduate Programme in Medical Sciences, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Mara Yone Soares Dias Fernandes
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Neila Maria Rocha de Lima
- Post-Graduate Programme in Medical Sciences, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Kelly Rose Tavares Neves
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Marta Regina Santos do Carmo
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Francisco Arnaldo Viana Lima
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Analu Aragão Fonteles
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Ana Paula Fontenele Menezes
- Post-Graduate Programme in Medical Sciences, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Geanne Matos de Andrade
- Post-Graduate Programme in Medical Sciences, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Brazil; Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil; Institute of Biomedicine of Brazilian Semi-arid, Brazil.
| |
Collapse
|
35
|
Besalti O, Aktas Z, Can P, Akpinar E, Elcin AE, Elcin YM. The use of autologous neurogenically-induced bone marrow-derived mesenchymal stem cells for the treatment of paraplegic dogs without nociception due to spinal trauma. J Vet Med Sci 2016; 78:1465-1473. [PMID: 27301583 PMCID: PMC5059374 DOI: 10.1292/jvms.15-0571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to investigate the effects of percutaneous transplanted autologous neurogenically-induced bone marrow-derived mesenchymal stem cells (NIBM-MSCs) in paraplegic dogs without deep pain perception (DPP) secondary to external spinal trauma. Thirteen client owned dogs that had failed in improvement neurologically at least 42 days after conservative management, decompression and decompression-stabilization were included in the study. Each dog received two doses of autologous 5.0 × 106 NIBM-MSCs suspension, which were positive to 2',3'-Cyclic-nucleotide-3'-phosphodiesterase (CNPase) and Microtubule-associated protein 2 (MAP-2), as well as to Glial fibrillary acidic protein (GFAP) and beta III tubulin. The cells were injected into the spinal cord through the hemilaminectomy or laminectomy defects percutaneously with 21 days interval for 2 times. The results were evaluated using Texas Spinal Cord Injury Scale (TSCIS), somatosensory evoked potentials (SEP) and motor evoked potentials (MEP) at the admission time, cell transplantation procedures and during 2, 5, 7 and 12th months after the second cell transplantation. Improvement after cell transplantation in gait, nociception, proprioception, SEP and MEP results was observed in just 2 cases, and only gait score improvement was seen in 6 cases, and no improvement was recorded in 5 cases. All progresses were observed until 2nd month after the second cell transplantation, however, there was no improvement after this period. In conclusion, percutaneous transplantation of autologous NIBM-MSCs is a promising candidate modality for cases with spinal cord injury after spinal trauma and poor prognosis.
Collapse
Affiliation(s)
- Omer Besalti
- Ankara University Faculty of Veterinary Medicine, Department of Surgery, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Cerebral palsy is the most common cause of childhood-onset, lifelong physical disability in most countries, affecting about 1 in 500 neonates with an estimated prevalence of 17 million people worldwide. Cerebral palsy is not a disease entity in the traditional sense but a clinical description of children who share features of a non-progressive brain injury or lesion acquired during the antenatal, perinatal or early postnatal period. The clinical manifestations of cerebral palsy vary greatly in the type of movement disorder, the degree of functional ability and limitation and the affected parts of the body. There is currently no cure, but progress is being made in both the prevention and the amelioration of the brain injury. For example, administration of magnesium sulfate during premature labour and cooling of high-risk infants can reduce the rate and severity of cerebral palsy. Although the disorder affects individuals throughout their lifetime, most cerebral palsy research efforts and management strategies currently focus on the needs of children. Clinical management of children with cerebral palsy is directed towards maximizing function and participation in activities and minimizing the effects of the factors that can make the condition worse, such as epilepsy, feeding challenges, hip dislocation and scoliosis. These management strategies include enhancing neurological function during early development; managing medical co-morbidities, weakness and hypertonia; using rehabilitation technologies to enhance motor function; and preventing secondary musculoskeletal problems. Meeting the needs of people with cerebral palsy in resource-poor settings is particularly challenging.
Collapse
|
37
|
Savitz SI, Parsha K. Enhancing Stroke Recovery with Cellular Therapies. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Marrow-Derived Mesenchymal Stromal Cells in the Treatment of Stroke. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Repeated autologous umbilical cord blood infusions are feasible and had no acute safety issues in young babies with congenital hydrocephalus. Pediatr Res 2015; 78:712-6. [PMID: 26331765 DOI: 10.1038/pr.2015.161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Babies with congenital hydrocephalus often experience developmental disabilities due to brain injury associated with prolonged increased pressure on the developing brain parenchyma. Umbilical cord blood (CB) infusion has favorable effects in animal models of brain hypoxia and stroke and is being investigated in clinical trials of brain injury in both children and adults. We sought to establish the safety and feasibility of repeated intravenous infusions of autologous CB in young babies with congenital hydrocephalus. METHODS Infants with severe congenital hydrocephalus and an available qualified autologous CB unit traveled to Duke for evaluation and CB infusion. When possible, the CB unit was utilized for multiple infusions. Patient and CB data were obtained at the time of infusion and analyzed retrospectively. RESULTS From October 2006 to August 2014, 76 patients with congenital hydrocephalus received 143 autologous CB infusions. Most babies received repeated doses, for a total of two (n = 45), three (n = 18), or four (n = 4) infusions. There were no infusion-related adverse events. As expected, all babies experienced developmental delays. CONCLUSION Cryopreserved CB products may be effectively manipulated to provide multiple CB doses. Repeated intravenous infusion of autologous CB is safe and feasible in young babies with congenital hydrocephalus.
Collapse
|
40
|
Jablonska A, Drela K, Wojcik-Stanaszek L, Janowski M, Zalewska T, Lukomska B. Short-Lived Human Umbilical Cord-Blood-Derived Neural Stem Cells Influence the Endogenous Secretome and Increase the Number of Endogenous Neural Progenitors in a Rat Model of Lacunar Stroke. Mol Neurobiol 2015; 53:6413-6425. [PMID: 26607630 PMCID: PMC5085993 DOI: 10.1007/s12035-015-9530-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/08/2015] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of severe disability, and lacunar stroke is related to cognitive decline and hemiparesis. There is no effective treatment for the majority of patients with stroke. Thus, stem cell-based regenerative medicine has drawn a growing body of attention due to the capabilities for trophic factor expression and neurogenesis enhancement. Moreover, it was shown in an experimental autoimmune encephalomyelitis (EAE) model that even short-lived stem cells can be therapeutic, and we have previously observed that phenomenon indirectly. Here, in a rat model of lacunar stroke, we investigated the molecular mechanisms underlying the positive therapeutic effects of short-lived human umbilical cord-blood-derived neural stem cells (HUCB-NSCs) through the distinct measurement of exogenous human and endogenous rat trophic factors. We have also evaluated neurogenesis and metalloproteinase activity as cellular components of therapeutic activity. As expected, we observed an increased proliferation and migration of progenitors, as well as metalloproteinase activity up to 14 days post transplantation. These changes were most prominent at the 7-day time point when we observed 30 % increases in the number of bromodeoxyuridine (BrdU)-positive cells in HUCB-NSC transplanted animals. The expression of human trophic factors was present until 7 days post transplantation, which correlated well with the survival of the human graft. For these 7 days, the level of messenger RNA (mRNA) in the analyzed trophic factors was from 300-fold for CNTF to 10,000-fold for IGF, much higher compared to constitutive expression in HUCB-NSCs in vitro. What is interesting is that there was no increase in the expression of rat trophic factors during the human graft survival, compared to that in non-transplanted animals. However, there was a prolongation of a period of increased trophic expression until 14 days post transplantation, while, in non-transplanted animals, there was a significant drop in rat trophic expression at that time point. We conclude that the positive therapeutic effect of short-lived stem cells may be related to the net increase in the amount of trophic factors (rat + human) until graft death and to the prolonged increase in rat trophic factor expression subsequently.
Collapse
Affiliation(s)
- Anna Jablonska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Drela
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Luiza Wojcik-Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
41
|
Ghaffaripour HA, Jalali M, Nikravesh MR, Seghatoleslam M, Sanchooli J. Neuronal cell reconstruction with umbilical cord blood cells in the brain hypoxia-ischemia. IRANIAN BIOMEDICAL JOURNAL 2015; 19:29-34. [PMID: 25605487 PMCID: PMC4322230 DOI: 10.6091/ibj.1376.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline solution or 4 × 105 HUCB cells i.v. Rats in control group did not receive any injection. After two weeks, rats were assessed using two motor tests. Subsequently, rats were scarified for histological and immunohistochemical analyses. Results: Our immunohistochemical findings demonstrated selective migration of the injected HUCB cells to the ischemic area as well as reduction in infarct volume. Seven days after surgery, we found significant recovery in the behavioral performance in the test group (12.7 +/- 0.3) compared to the sham group (10.0 +/-0.05), a trend which continued to day 14 (15.3 ± 0.3 vs. 11.9 ± 0.5, P<0.05). Postural and motor asymmetries at days 7 and 14 in the test group showed a significant decrease in the percentage of right turns in comparison to the sham group (75% and 59% vs. 97% and 96%, P<0.05). Conclusion: The results show the potential of HUCB stem cells in reduction of neurologic deficits associated with neonatal hypoxia-ischemia.
Collapse
Affiliation(s)
| | - Mehdi Jalali
- Dept. of Anatomy and Cell Biology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Nikravesh
- Dept. of Anatomy and Cell Biology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Seghatoleslam
- Dept. of Anatomy and Cell Biology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Sanchooli
- Dept. of Biochemistry and Immunology, Medical School, Zabol Medical Science University, Zabol, Iran
| |
Collapse
|
42
|
Ingberg E, Gudjonsdottir J, Theodorsson E, Theodorsson A, Ström JO. Elevated body swing test after focal cerebral ischemia in rodents: methodological considerations. BMC Neurosci 2015; 16:50. [PMID: 26242584 PMCID: PMC4525734 DOI: 10.1186/s12868-015-0189-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/28/2015] [Indexed: 01/06/2023] Open
Abstract
Background The elevated body swing test (EBST) is a behavioral test used to evaluate experimental stroke in rodents. The basic idea is that when the animal is suspended vertically by the tail, it will swing its head laterally to the left or right depending on lesion side. In a previous study from our lab using the EBST after middle cerebral artery occlusion (MCAo), rats swung contralateral to the infarct day 1 post-MCAo, but ipsilateral day 3 post-MCAo. This shift was unexpected and prompted us to perform the present study. First, the literature was systematically reviewed to elucidate whether a similar shift had been noticed before, and if consensus existed regarding swing direction. Secondly, an experiment was conducted to systematically investigate the suggested behavior. Eighty-three adult male and female Sprague–Dawley rats were subjected to MCAo or sham surgery and the EBST was performed up to 7 days after the lesion. Results Both experimentally and through systematic literature review, the present study shows that the direction of biased swing activity in the EBST for rodents after cerebral ischemia can differ and even shift over time in some situations. The EBST curve for females was significantly different from that of males after the same occlusion time (p = 0.023). Conclusions This study highlights the importance of adequate reporting of behavioral tests for lateralization and it is concluded that the EBST cannot be recommended as a test for motor asymmetry after MCAo in rats.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Department of Clinical Chemistry, Faculty of Health Sciences, Center for Diagnostics, Linköping University, Region Östergötland, Linköping, Sweden.
| | - Johanna Gudjonsdottir
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Department of Clinical Chemistry, Faculty of Health Sciences, Center for Diagnostics, Linköping University, Region Östergötland, Linköping, Sweden.
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Department of Clinical Chemistry, Faculty of Health Sciences, Center for Diagnostics, Linköping University, Region Östergötland, Linköping, Sweden.
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Department of Clinical Chemistry, Faculty of Health Sciences, Center for Diagnostics, Linköping University, Region Östergötland, Linköping, Sweden. .,Division of Neuroscience, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Linköping University, Region Östergötland, Linköping, Sweden.
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Department of Clinical Chemistry, Faculty of Health Sciences, Center for Diagnostics, Linköping University, Region Östergötland, Linköping, Sweden. .,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden. .,School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
43
|
Darlington D, Li S, Hou H, Habib A, Tian J, Gao Y, Ehrhart J, Sanberg PR, Sawmiller D, Giunta B, Mori T, Tan J. Human umbilical cord blood-derived monocytes improve cognitive deficits and reduce amyloid-β pathology in PSAPP mice. Cell Transplant 2015; 24:2237-50. [PMID: 26230612 DOI: 10.3727/096368915x688894] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is the fourth major cause of mortality in the elderly in the US and the leading cause of dementia worldwide. While pharmacological targets have been discovered, there are no true disease-modifying therapies. We have recently discovered that multiple low-dose infusions of human umbilical cord blood cells (HUCBCs) ameliorate cognitive impairments and reduce Aβ-associated neuropathology in PSAPP transgenic mice. However, the mechanism for these effects of HUCBCs remains unclear. In the present study, we examined whether monocytes, as important components of HUCBCs, would have beneficial outcomes on the reduction of AD-like pathology and associated cognitive impairments in PSAPP transgenic AD model mice. PSAPP mice and their wild-type littermates were treated monthly with an infusion of peripheral human umbilical cord blood cell (HUCBC)-derived monocytes over a period of 2 and 4 months, followed by behavioral evaluations, biochemical, and histological analyses. The principal findings of the present study confirmed that monocytes derived from HUCBCs (CB-M) play a central role in HUCBC-mediated cognition-enhancing and Aβ pathology-ameliorating activities. Most importantly, we found that compared with CB-M, aged monocytes showed an ineffective phagocytosis of Aβ, while exogenous soluble amyloid precursor protein α (sAPPα) could reverse this deficiency. Pretreating monocytes with sAPPα upregulates Aβ internalization. Our further studies suggested that sAPPα could form a heterodimer with Aβs, with the APP672-688 (Aβ1-16) region being responsible for this effect. This in turn promoted binding of these heterodimers to monocyte scavenger receptors and thus promoted enhanced Aβ clearance. In summary, our findings suggest an interesting hypothesis that peripheral monocytes contribute to Aβ clearance through heterodimerization of sAPPα with Aβ. Further, declined or impaired sAPPα production, or reduced heterodimerization with Aβ, would cause a deficiency in Aβ clearance and thus accelerate the pathogenesis of AD.
Collapse
Affiliation(s)
- Donna Darlington
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Sean I Savitz
- From the Department of Neurology, University of Texas Medical School at Houston.
| |
Collapse
|
45
|
Sun JM, Kurtzberg J. Cord blood for brain injury. Cytotherapy 2015; 17:775-785. [PMID: 25800775 DOI: 10.1016/j.jcyt.2015.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 12/13/2022]
Abstract
Recovery from neurological injuries is typically incomplete and often results in significant and permanent disabilities. Currently, most available therapies are limited to supportive or palliative measures, aimed at managing the symptoms of the condition. Because restorative therapies targeting the underlying cause of most neurological diseases do not exist, cell therapies targeting anti-inflammatory, neuroprotective and regenerative potential hold great promise. Cord blood (CB) cells can induce repair through mechanisms that involve trophic or cell-based paracrine effects or cellular integration and differentiation. Both may be operative in emerging CB therapies for neurologic conditions, and there are numerous potential applications of CB-based regenerative therapies in neurological diseases, including genetic diseases of childhood, ischemic events such as stroke and neurodegenerative diseases of adulthood. CB appears to hold promise as an effective therapy for patients with brain injuries. In this Review, we describe the state of science and clinical applications of CB therapy for brain injury.
Collapse
Affiliation(s)
- Jessica M Sun
- Pediatric Blood and Marrow Transplant Program, Duke University, Durham, North Carolina, USA; The Robertston Clinical and Translational Cell Therapy Program, Duke University, Durham, North Carolina, USA.
| | - Joanne Kurtzberg
- Pediatric Blood and Marrow Transplant Program, Duke University, Durham, North Carolina, USA; The Robertston Clinical and Translational Cell Therapy Program, Duke University, Durham, North Carolina, USA; The Carolinas Cord Blood Bank, Durham, North Carolina, USA
| |
Collapse
|
46
|
Wang J, Liu X, Lu H, Jiang C, Cui X, Yu L, Fu X, Li Q, Wang J. CXCR4(+)CD45(-) BMMNC subpopulation is superior to unfractionated BMMNCs for protection after ischemic stroke in mice. Brain Behav Immun 2015; 45:98-108. [PMID: 25526817 PMCID: PMC4342301 DOI: 10.1016/j.bbi.2014.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023] Open
Abstract
Cell-based therapy is considered to be a promising therapeutic strategy for stroke treatment. Although unfractionated bone marrow mononuclear cells (BMMNCs) have been tried in both preclinical and clinical trials, the effective subpopulations need to be identified. In this study, we used fluorescence-activated cell sorting to harvest the CXCR4(+)CD45(+) and CXCR4(+)CD45(-) BMMNC subpopulations from transgenic mice that express enhanced green fluorescent protein. We then allogeneically grafted unfractionated BMMNCs or a subpopulation into mice subjected to transient middle cerebral artery occlusion (tMCAO) and compared the effects on stroke outcomes. We found that CXCR4(+)CD45(-) BMMNCs, but not CXCR4(+)CD45(+) BMMNCs, more effectively reduced infarction volume and neurologic deficits than did unfractionated BMMNCs. Brain tissue from the ischemic hemisphere of mice treated with CXCR4(+)CD45(-) BMMNCs had higher levels of vascular endothelial growth factor and lower levels of TNF-α than did tissue from mice treated with unfractionated BMMNCs. In contrast, CXCR4(+)CD45(+) BMMNCs showed an increase in TNF-α. Additionally, CXCR4(+)CD45(+) and CXCR4(+)CD45(-) populations exhibited more robust migration into the lesion areas and were better able to express cell-specific markers of different linages than were the unfractionated BMMNCs. Endothelial and astrocyte cell markers did not colocalize with eGFP(+) cells in the brains of tMCAO mice that received CXCR4(+)CD45(+) BMMNCs. In vitro, the CXCR4(+)CD45(-) BMMNCs expressed significantly more Oct-4 and Nanog mRNA than did the unfractionated BMMNCs. However, we did not detect gene expression of these two pluripotent markers in CXCR4(+)CD45(+) BMMNCs. Taken together, our study shows for the first time that the CXCR4(+)CD45(-) BMMNC subpopulation is superior to unfractionated BMMNCs in ameliorating cerebral damage in a mouse model of tMCAO and could represent a new therapeutic approach for stroke treatment.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Xi Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiaobing Cui
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lie Yu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaojie Fu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qian Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
47
|
Fan HC, Ho LI, Chi CS, Cheng SN, Juan CJ, Chiang KL, Lin SZ, Harn HJ. Current proceedings of cerebral palsy. Cell Transplant 2015; 24:471-85. [PMID: 25706819 DOI: 10.3727/096368915x686931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is a complicated disease with varying causes and outcomes. It has created significant burden to both affected families and societies, not to mention the quality of life of the patients themselves. There is no cure for the disease; therefore, development of effective therapeutic strategies is in great demand. Recent advances in regenerative medicine suggest that the transplantation of stem cells, including embryonic stem cells, neural stem cells, bone marrow mesenchymal stem cells, induced pluripotent stem cells, umbilical cord blood cells, and human embryonic germ cells, focusing on the root of the problem, may provide the possibility of developing a complete cure in treating CP. However, safety is the first factor to be considered because some stem cells may cause tumorigenesis. Additionally, more preclinical and clinical studies are needed to determine the type of cells, route of delivery, cell dose, timing of transplantation, and combinatorial strategies to achieve an optimal outcome.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cell-based therapy for acute organ injury: preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology 2014; 121:1099-121. [PMID: 25211170 DOI: 10.1097/aln.0000000000000446] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Critically ill patients often suffer from multiple organ failures involving lung, kidney, liver, or brain. Genomic, proteomic, and metabolomic approaches highlight common injury mechanisms leading to acute organ failure. This underlines the need to focus on therapeutic strategies affecting multiple injury pathways. The use of adult stem cells such as mesenchymal stem or stromal cells (MSC) may represent a promising new therapeutic approach as increasing evidence shows that MSC can exert protective effects following injury through the release of promitotic, antiapoptotic, antiinflammatory, and immunomodulatory soluble factors. Furthermore, they can mitigate metabolomic and oxidative stress imbalance. In this work, the authors review the biological capabilities of MSC and the results of clinical trials using MSC as therapy in acute organ injuries. Although preliminary results are encouraging, more studies concerning safety and efficacy of MSC therapy are needed to determine their optimal clinical use. (ANESTHESIOLOGY 2014; 121:1099-121).
Collapse
|
49
|
Detante O, Jaillard A, Moisan A, Barbieux M, Favre I, Garambois K, Hommel M, Remy C. Biotherapies in stroke. Rev Neurol (Paris) 2014; 170:779-98. [DOI: 10.1016/j.neurol.2014.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/29/2014] [Accepted: 10/08/2014] [Indexed: 12/31/2022]
|
50
|
Willing AE, Garbuzova-Davis SN, Zayko O, Derasari HM, Rawls AE, James CR, Mervis RF, Sanberg CD, Kuzmin-Nichols N, Sanberg PR. Repeated Administrations of Human Umbilical Cord Blood Cells Improve Disease Outcomes in a Mouse Model of Sanfilippo Syndrome Type III B. Cell Transplant 2014; 23:1613-30. [DOI: 10.3727/096368914x676916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sanfilippo syndrome type III B (MPS III B) is an inherited disorder characterized by a deficiency of α- N-acetylglucosaminidase (Naglu) enzyme leading to accumulation of heparan sulfate in lysosomes and severe neurological deficits. We have previously shown that a single administration of human umbilical cord mononuclear cells (hUCB MNCs) into Naglu knockout mice decreased behavioral abnormalities and tissue pathology. In this study, we tested whether repeated doses of hUCB MNCs would be more beneficial than a single dose of cells. Naglu mice at 3 months of age were randomly assigned to either a Media-only group or one of three hUCB MNC treatment groups-single low dose (3 × 106 cells), single high dose (1.8 × 107 cells), or multiple doses (3 × 106 cells monthly for 6 months) delivered intravenously; cyclosporine was injected intraperitoneally to immune suppress the mice for the duration of the study. An additional control group of wild-type mice was also used. We measured anxiety in an open field test and cognition in an active avoidance test prior to treatment and then at monthly intervals for 6 months. hUCB MNCs restored normal anxiety-like behavior in these mice ( p< 0.001). The repeated cell administrations also restored hippocampal cytoarchitecture, protected the dendritic tree, decreased GM3 ganglioside accumulation, and decreased microglial activation, particularly in the hippocampus and cortex. These data suggest that the neuroprotective effect of hUCB MNCs can be enhanced by repeated cell administrations.
Collapse
Affiliation(s)
- Alison E. Willing
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Svitlana N. Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Olga Zayko
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hiranya M. Derasari
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ashley E. Rawls
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Chris R. James
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ron F. Mervis
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Saneron CCEL Therapeutics, Inc., Tampa, FL, USA
| |
Collapse
|