1
|
Reappraisal of anoxic spreading depolarization as a terminal event during oxygen-glucose deprivation in brain slices in vitro. Sci Rep 2020; 10:18970. [PMID: 33149164 PMCID: PMC7643106 DOI: 10.1038/s41598-020-75975-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Anoxic spreading depolarization (aSD) has been hypothesized as a terminal event during oxygen–glucose deprivation (OGD) in submerged cortical slices in vitro. However, mechanical artifacts caused by aSD-triggered edema may introduce error in the assessment of neuronal viability. Here, using continuous patch-clamp recordings from submerged rat cortical slices, we first confirmed that vast majority of L4 neurons permanently lost their membrane potential during OGD-induced aSD. In some recordings, spontaneous transition from whole-cell to out-side out configuration occurred during or after aSD, and only a small fraction of neurons survived aSD with reperfusion started shortly after aSD. Secondly, to minimize artifacts caused by OGD-induced edema, cells were short-term patched following OGD episodes of various duration. Nearly half of L4 cells maintained membrane potential and showed the ability to spike-fire if reperfusion started less than 10 min after aSD. The probability of finding live neurons progressively decreased at longer reperfusion delays at a rate of about 2% per minute. We also found that neurons in L2/3 show nearly threefold higher resistance to OGD than neurons in L4. Our results suggest that in the OGD ischemia model, aSD is not a terminal event, and that the “commitment point” of irreversible damage occurs at variable delays, in the range of tens of minutes, after OGD-induced aSD in submerged cortical slices.
Collapse
|
2
|
Lopez JR, Kolster J, Uryash A, Estève E, Altamirano F, Adams JA. Dysregulation of Intracellular Ca 2+ in Dystrophic Cortical and Hippocampal Neurons. Mol Neurobiol 2016; 55:603-618. [PMID: 27975174 DOI: 10.1007/s12035-016-0311-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited X-linked disorder characterized by skeletal muscle wasting, cardiomyopathy, as well as cognitive impairment. Lack of dystrophin in striated muscle produces dyshomeostasis of resting intracellular Ca2+ ([Ca2+]i), Na+ ([Na+]i), and oxidative stress. Here, we test the hypothesis that similar to striated muscle cells, an absence of dystrophin in neurons from mdx mice (a mouse model for DMD) is also associated with dysfunction of [Ca2+]i homeostasis and oxidative stress. [Ca2+]i and [Na+]i in pyramidal cortical and hippocampal neurons from 3 and 6 months mdx mice were elevated compared to WT in an age-dependent manner. Removal of extracellular Ca2+ reduced [Ca2+]i in both WT and mdx neurons, but the decrease was greater and age-dependent in the latter. GsMTx-4 (a blocker of stretch-activated cation channels) significantly decreased [Ca2+]i and [Na+]i in an age-dependent manner in all mdx neurons. Blockade of ryanodine receptors (RyR) or inositol triphosphate receptors (IP3R) reduced [Ca2+]i in mdx. Mdx neurons showed elevated and age-dependent reactive oxygen species (ROS) production and an increase in neuronal damage. In addition, mdx mice showed a spatial learning deficit compared to WT. GsMTx-4 intraperitoneal injection reduced neural [Ca2+]i and improved learning deficit in mdx mice. In summary, mdx neurons show an age-dependent dysregulation in [Ca2+]i and [Na+]i which is mediated by plasmalemmal cation influx and by intracellular Ca2+ release through the RyR and IP3R. Also, mdx neurons have elevated ROS production and more extensive cell damage. Finally, a reduction of [Ca2+]i improved cognitive function in mdx mice.
Collapse
Affiliation(s)
- José R Lopez
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.
| | - Juan Kolster
- Centro de Investigaciones Biomédicas, Mexico, México
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| | - Eric Estève
- HP2 INSERM 1042 Institut Jean Roget, Université Grenoble Alpes, BP170, 38042, Grenoble Cedex, France
| | - Francisco Altamirano
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.,Department of Internal Medicine - Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - José A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| |
Collapse
|
3
|
Duncan T, Lowe A, Dalton MA, Valenzuela M. Isolation and Expansion of Adult Canine Hippocampal Neural Precursors. J Vis Exp 2016. [PMID: 27929471 DOI: 10.3791/54953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The rate of neurogenesis within the adult hippocampus has been shown to vary across mammalian species. The canine hippocampus, demonstrating a structural intermediacy between the rodent and human hippocampi, is therefore a valuable model in which to study adult neurogenesis. In vitro culture assays are an essential component of characterizing neurogenesis and adult neural precursor cells, allowing for precise control over the cellular environment. To date however, culture protocols for canine cells remain under-represented in the literature. Detailed here are systematic protocols for the isolation and culture of hippocampal neural precursor cells from the adult canine brain. We demonstrate the expansion of canine neural precursor cells as floating neurospheres and as an adherent monolayer culture, producing stable cell lines that are able to differentiation into mature neural cell types in vitro. Adult canine neural precursors are an underused resource that may provide a more faithful analogue for the study of human neural precursors and the cellular mechanisms of adult neurogenesis.
Collapse
Affiliation(s)
- Thomas Duncan
- Regenerative Neuroscience Group, University of Sydney;
| | - Aileen Lowe
- Regenerative Neuroscience Group, University of Sydney
| | - Marshall A Dalton
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London
| | | |
Collapse
|
4
|
Recovery of fibroblast-like cells from refrigerated goat skin up to 41 d of animal death. In Vitro Cell Dev Biol Anim 2014; 51:463-9. [PMID: 25539865 DOI: 10.1007/s11626-014-9856-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Successful cloning of animals using somatic cell nuclear transfer requires undamaged nuclear DNA from desired donor cell types. In vitro culture of cells is one way of ensuring nuclear integrity. The goal of this study was to evaluate the limits of postmortem cell survival/culture in refrigerated goat ear skin tissues which could be used for long-term storage and cloning of animals in future. To achieve this, 60 explants from 6 different goats were cultured after 0, 3, 6, 9, 13, 16, 20, 23, 27, 30, 33, 37, and 41 d postmortem and observed under inverted microscope for outgrowth of fibroblast-like cells, after 10-12 d of culture. Explants from all time points including 19% from 41-dpm tissues exhibited outgrowth. However, the percentage of outgrowth positive explants, as well as culture confluence, reduced with increasing postmortem time interval. Cell cultures established from primary outgrowth of 41-dpm tissues when compared for their growth profile with similarly obtained 0-dpm cultures revealed similar growth curve and cell morphology. Cytogenetic analysis of 41-dpm tissue-derived cell populations revealed a normal female karyotype with 60 XX homologous chromosomes indicating genetic stability of the cell population. In conclusion, these results show that refrigerated skin tissue remains alive for more than a month and that the cells derived from such tissues are normal and can be cryopreserved for long-term storage and future cloning of animals with desired genetics.
Collapse
|
5
|
Effect of postmortem time interval on in vitro culture potential of goat skin tissues stored at room temperature. In Vitro Cell Dev Biol Anim 2012; 48:478-82. [PMID: 22872525 DOI: 10.1007/s11626-012-9539-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
Animal cloning using somatic cell nuclear transfer technology has renewed the interest in postmortem tissue storage, since these tissues can be used to reintroduce the lost genes back into the breeding pool in animal agriculture, preserve the genetic diversity, and revive the endangered species. However, for successful cloning of animals, integrity of nuclear DNA is essential. Cell viability and their potential to in vitro culture ensure nuclear integrity. The aim of this study was to determine the limits of postmortem time interval within which live cells can be recovered from goat skin tissues. To test the postmortem tissue storage limits, we cultured 2-3 mm(2) skin pieces (n = 70) from the ears of three breeds of goats (n = 7) after 0, 2, 4, and 6 days of postmortem storage at 24°C. After 10 days of culture, outgrowth of fibroblast-like cells (>50 cells) around the explants was scored. All the explants irrespective of breed displayed outgrowth of cells on the dish containing fresh tissues (i.e., day 0 of storage). However, the number of explants exhibiting outgrowth reduced with increasing time interval. Only 53.85 % explants displayed outgrowth after 2 days of tissue storage. The number of explants displaying outgrowth was much smaller after 4 (16.67 %) and 6 days (13.3 %) of storage. In general, the number of outgrowing cells per explant, on a given day, also decreased with increasing postmortem storage time interval. To test the differences between cell cultures, we established secondary cultures from one of the goats exhibiting outgrowth of cells after 6 days of tissue storage and compared them to similar cells from fresh tissues. Comparison of both the cell lines revealed similar cell morphology and growth curves and had doubling times of 23.04 and 22.56 h, respectively. These results suggest that live cells can be recovered from goat (and perhaps other animal) tissues stored at room temperature even after 6 days of their death with comparable growth profiles and, thus, can be used for tissue banking for preservation of superior genetics, genetic diversity, and cloning of animals.
Collapse
|
6
|
Lopez JR, Lyckman A, Oddo S, Laferla FM, Querfurth HW, Shtifman A. Increased intraneuronal resting [Ca2+] in adult Alzheimer's disease mice. J Neurochem 2007; 105:262-71. [PMID: 18021291 DOI: 10.1111/j.1471-4159.2007.05135.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurodegeneration in Alzheimer's disease (AD) has been linked to intracellular accumulation of misfolded proteins and dysregulation of intracellular Ca2+. In the current work, we determined the contribution of specific Ca2+ pathways to an alteration in Ca2+ homeostasis in primary cortical neurons from an adult triple transgenic (3xTg-AD) mouse model of AD that exhibits intraneuronal accumulation of beta-amyloid proteins. Resting free Ca2+ concentration ([Ca2+](i)), as measured with Ca2+-selective microelectrodes, was greatly elevated in neurons from 3xTg-AD and APP(SWE) mouse strains when compared with their respective non-transgenic neurons, while there was no alteration in the resting membrane potential. In the absence of the extracellular Ca2+, the [Ca2+](i) returned to near normal levels in 3xTg-AD neurons, demonstrating that extracellular Ca2+contributed to elevated [Ca2+](i). Application of nifedipine, or a non-L-type channel blocker, SKF-96365, partially reduced [Ca2+](i). Blocking the ryanodine receptors, with ryanodine or FLA-365 had no effect, suggesting that these channels do not contribute to the elevated [Ca2+](i). Conversely, inhibition of inositol trisphosphate receptors with xestospongin C produced a partial reduction in [Ca2+](i). These results demonstrate that an elevation in resting [Ca2+](i), contributed by aberrant Ca2+entry and release pathways, should be considered a major component of the abnormal Ca2+ homeostasis associated with AD.
Collapse
Affiliation(s)
- José R Lopez
- Department of Anesthesia, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
7
|
Broadbelt K, Ramprasaud A, Jones LB. Evidence of altered neurogranin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex. Schizophr Res 2006; 87:6-14. [PMID: 16797925 DOI: 10.1016/j.schres.2006.04.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/17/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Schizophrenia is a complex and poorly understood neuropsychiatric disorder. Much research has begun to implicate the prefrontal cortex in the disease. Using immunocytochemistry we determined if neurogranin, a protein found in dendrites, spines and cell bodies and an upstream regulator of calcium was altered in areas 9 and 32 of schizophrenic prefrontal cortex. We examined its expression in pyramidal cells in layers III and V. Tissues from 7 controls and 7 schizophrenics (from our original MAP2 study, Jones, L., Johnson, N., Byne, W., 2002. Alterations in MAP2 staining in area 9 and 32 of schizophrenic prefrontal cortex. Psych. Res. 114, 137-148) matched for age, sex and postmortem interval were examined. Using area fraction analysis we quantified the immunostaining. Additionally, we counted the number of positively stained pyramidal cells in the same 7 pairs. Neurogranin immunostaining was dramatically reduced in both layers III (72%) and V (50%) in area 9. In area 32 there was a more modest reduction in both layers III (36%) and V (40%). There was no difference in either brain region or layer in the density of positively stained pyramidal cells. These data confirm mounting evidence suggesting dendritic loss in the prefrontal cortex and suggest that the loss of protein does not appear to be due to a change in the number of cells producing the protein but rather in the amount of protein being produced. Additionally, these data suggest that the loss of neurogranin may alter the calcium-calmodulin dependent pathways due to its role as a regulator of calmodulin suggesting a link between structural and functional alterations of the pyramidal cells in the prefrontal cortex.
Collapse
Affiliation(s)
- Kevin Broadbelt
- Lehman College, CUNY, Department of Biological Sciences, 250 Bedford Park Blvd., Bronx, NY 10468, USA
| | | | | |
Collapse
|
8
|
Yip PK, Wong LF, Pattinson D, Battaglia A, Grist J, Bradbury EJ, Maden M, McMahon SB, Mazarakis ND. Lentiviral vector expressing retinoic acid receptor beta2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord. Hum Mol Genet 2006; 15:3107-18. [PMID: 16984961 DOI: 10.1093/hmg/ddl251] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinal cord injury often results in permanent and devastating neurological deficits and disability. This is due to the limited regenerative capacity of neurones in the central nervous system (CNS). We recently demonstrated that a transcription factor retinoic acid receptor beta2 (RARbeta2) promoted axonal regeneration in adult sensory neurones located peripherally. However, it is not known if RARbeta2 can promote axonal regeneration in cortical neurones of the CNS. Here, we demonstrate that delivery of RARbeta2 via a lentiviral vector to adult dissociated cortical neurones significantly enhances neurite outgrowth on adult cortical cryosections, which normally provide an unfavourable substrate for growth. We also show that lentiviral-mediated transduction of corticospinal neurones resulted in robust transgene expression in layer V corticospinal neurones and their axonal projections in the corticospinal tract (CST) of the spinal cord. Expression of RARbeta2 in these neurones enhanced regeneration of the descending CST fibres after injury to these axons in the mid-cervical spinal cord. Furthermore, we observed functional recovery in sensory and locomotor behavioural tests in RARbeta2-treated animals. These results suggest that a direct and selective delivery of RARbeta2 to the corticospinal neurones promotes long-distance functional regeneration of axons in the spinal cord and may thus offer new therapeutic gene strategy for the treatment of human spinal cord injuries.
Collapse
Affiliation(s)
- Ping K Yip
- Neurorestoration Group, Wolfson CARD, 2 MRC Centre for Developmental Biology, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Viel JJ, McManus DQ, Brewer GJ. Postmortem effect of pentobarbital anesthetic on survival of adult cortical neurons in primary culture. Brain Res 2004; 1009:219-22. [PMID: 15120600 DOI: 10.1016/j.brainres.2004.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2004] [Indexed: 11/21/2022]
Abstract
We determined whether pentobarbital anesthetic is required to culture postmortem adult rat neurons. Pentobarbital treatment resulted in two-fold increases in neuron survival in culture after 2 and 4 h postmortem compared to non-anesthetic controls, but was not as effective as simple postmortem treatment on ice and therefore not essential.
Collapse
Affiliation(s)
- John J Viel
- Department of Medical Microbiology and Immunology, School of Medicine, Southern Illinois University, Springfield, IL 62794-9626, USA
| | | | | |
Collapse
|
10
|
Silvestre MA, Saeed AM, Cervera RP, Escribá MJ, García-Ximénez F. Rabbit and pig ear skin sample cryobanking: effects of storage time and temperature of the whole ear extirpated immediately after death. Theriogenology 2003; 59:1469-77. [PMID: 12527093 DOI: 10.1016/s0093-691x(02)01185-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The post-mortem temporal and thermal limits within which there will be ample guarantees of rescuing living skin cells from dead specimens of two species, rabbit and pig, were studied. Post-mortem extirpated whole ears were stored (in non-aseptic conditions) either at 4 degrees C or at room temperature (from 22 to 25 degrees C) or at 35 degrees C for different time lapses after animal death. In both species, the post-mortem maximum time lapses where cell viability was not significantly reduced were 240, 72, and 24 h post-mortem (hpm) for 4, 22-25 and 35 degrees C, respectively. Once the post-mortem temporal limits for each tested thermal level at which cells from skin samples are able to grow in culture were defined, the survival ability of skin samples submitted to these temporal limits and cryopreserved were tested. In the pig, skin samples stored at the three tested thermal levels survived after vitrification-warming, reaching confluence in culture. In rabbit, only tissue samples from ears stored at 35 degrees C for 24 hpm did not survive after vitrification-warming. In conclusion, we should remark that cell survival rates obtained according to the assayed post-mortem time lapses and thermal levels are sufficient to collect and to cryopreserve skin samples from the majority of dead specimens.
Collapse
Affiliation(s)
- M A Silvestre
- Laboratorio de Reproducción y Biotecnología Animal (LARB-UPV), Dpto Ciencia Animal, Universidad Politécnica de Valencia, Camino de Vera 14, 46071, Valencia, Spain.
| | | | | | | | | |
Collapse
|
11
|
Jones LB, Johnson N, Byne W. Alterations in MAP2 immunocytochemistry in areas 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res 2002; 114:137-48. [PMID: 12113896 DOI: 10.1016/s0925-4927(02)00022-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A variety of lines of converging evidence implicate the prefrontal cortex (PFC) in schizophrenia. Studies employing Nissl stains have suggested that PFC dendrites may be atrophic in schizophrenia; however, Nissl stains do not reveal dendrites. We employed MAP2 immunocytochemistry, which stains dendrites to examine cortical layers III and V in two areas of the PFC (areas 9 and 32). Occipital cortex (area 17) was examined as a control region. Tissues from seven schizophrenics and seven non-psychiatric controls were examined. Immunostaining was quantitated by area fraction analysis. MAP2 area fraction was decreased in both layers in both regions of PFC, but not in occipital cortex. Area 9 exhibited a 42% reduction in layer V and a 36% reduction in layer III. Area 32 exhibited a 31% reduction in layer V and a 36% reduction in layer III. Neither region exhibited a significant change in the density of pyramidal cells. These data are consistent with the hypothesis of a schizophrenia-associated decrease in dendritic material in the PFC.
Collapse
Affiliation(s)
- Liesl B Jones
- Lehman College, Department Biological Sciences, 250 Bedford Park Blvd., NY 10468, Bronx, USA.
| | | | | |
Collapse
|
12
|
Verwer RWH, Hermens WTJMC, Dijkhuizen P, ter Brake O, Baker RE, Salehi A, Sluiter AA, Kok MJM, Muller LJ, Verhaagen J, Swaab DF. Cells in human postmortem brain tissue slices remain alive for several weeks in culture. FASEB J 2002; 16:54-60. [PMID: 11772936 DOI: 10.1096/fj.01-0504com] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Animal models for human neurological and psychiatric diseases only partially mimic the underlying pathogenic processes. Therefore, we investigated the potential use of cultured postmortem brain tissue from adult neurological patients and controls. The present study shows that human brain tissue slices obtained by autopsy within 8 h after death can be maintained in vitro for extended periods (up to 78 days) and can be manipulated experimentally. We report for the first time that 1) neurons and glia in such cultures could be induced to express the reporter gene LacZ after transduction with adeno-associated viral vectors and 2) cytochrome oxidase activity could be enhanced by the addition of pyruvate to the medium. These slice cultures offer new opportunities to study the cellular and molecular mechanisms of neurological and psychiatric diseases and new therapeutic strategies.
Collapse
|
13
|
Viel JJ, McManus DQ, Smith SS, Brewer GJ. Age- and concentration-dependent neuroprotection and toxicity by TNF in cortical neurons from beta-amyloid. J Neurosci Res 2001; 64:454-65. [PMID: 11391700 DOI: 10.1002/jnr.1097] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The induction of an inflammatory response and release of cytokines such as TNF may be involved in the age-related etiology of Alzheimer disease (AD). In the brain, microglia have been shown to produce a wide variety of immune mediators, including the pro-inflammatory cytokine tumor necrosis factor (TNF). We hypothesize that with age there is increased ability of microglia to produce TNF or that age decreases the neuroprotective effect of TNF against beta-amyloid (Abeta) toxicity in neurons. We investigated the effects of Abeta(1-40) on TNF secretion from forebrain cultures of microglia from embryonic, middle-age (9-month) and old (36-month) rats. Over the first 12 hr of exposure to 10 microM Abeta (1-40), microglia from embryonic and old rats increase TNF secretion, although microglia from middle-age rats did not produce detectable levels of TNF. When low concentrations of TNF are added to neurons together with Abeta (1-40) in the absence of exogenous antioxidants, neuroprotection for old neurons is significantly less than neuroprotection for middle-age neurons. In neurons from old rats, high levels of TNF together with Abeta are more toxic than in neurons from middle-age or embryonic rats. These results are discussed in relation to neuroprotection and toxicity of the age-related pathology of AD.
Collapse
MESH Headings
- Age Factors
- Aging/metabolism
- Aging/pathology
- Alzheimer Disease/etiology
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Peptides/toxicity
- Animals
- Antigens, CD/genetics
- Antigens, Neoplasm
- Antigens, Surface
- Avian Proteins
- Basigin
- Blood Proteins
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cells, Cultured/pathology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- Dose-Response Relationship, Drug
- Drug Interactions/physiology
- Fetus
- Glial Fibrillary Acidic Protein/metabolism
- Immunohistochemistry
- Membrane Glycoproteins/metabolism
- Microglia/drug effects
- Microglia/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neuroprotective Agents/pharmacology
- Neurotoxins/toxicity
- Peptide Fragments/metabolism
- Peptide Fragments/toxicity
- Phosphopyruvate Hydratase/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Rats, Sprague-Dawley
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- J J Viel
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, IL 62794-9626, USA
| | | | | | | |
Collapse
|
14
|
Brewer GJ, Espinosa J, McIlhaney MP, Pencek TP, Kesslak JP, Cotman C, Viel J, McManus DC. Culture and regeneration of human neurons after brain surgery. J Neurosci Methods 2001; 107:15-23. [PMID: 11389937 DOI: 10.1016/s0165-0270(01)00342-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cortical human brain tissue was obtained from 11 craniotomies for intractable epilepsy or tumor resection. Neuregen transport medium preserved viability at 4 degrees C during transfer to the culture laboratory. Cells were isolated and cultured by methods previously developed for adult rat neurons (Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J. Neurosci. Meth. 1997:71:143-55). In about 40% of the cases, cultures regenerated with a majority of neuron-like cells that stained for neurofilament and not GFAP. After 3 weeks of culture from a 70 year old meningioma case, synapse-like structures were revealed by electron microscopy. Trophic support from basic human recombinant fibroblast growth factor was synergistically improved with the steroid hormone dehydroepiandrosterone 3-sulfate. Another 40% of the cases resulted in cultures that were predominantly GFAP positive astroglia. The remaining 20% of the cases did not regenerate cells with neuron-like or glial processes. Three postmortem cases did not regenerate neurites. These methods may aid development of human culture models of epilepsy as well as human pharmacology, toxicology and development of improved methods for brain grafts.
Collapse
Affiliation(s)
- G J Brewer
- Molecular Biology, Microbiology and Biochemistry, Southern Illinois University School of Medicine, Springfield, IL 62794-9626, USA.
| | | | | | | | | | | | | | | |
Collapse
|