1
|
Huh E, Agosto MA, Wensel TG, Lichtarge O. Coevolutionary signals in metabotropic glutamate receptors capture residue contacts and long-range functional interactions. J Biol Chem 2023; 299:103030. [PMID: 36806686 PMCID: PMC10060750 DOI: 10.1016/j.jbc.2023.103030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Upon ligand binding to a G protein-coupled receptor, extracellular signals are transmitted into a cell through sets of residue interactions that translate ligand binding into structural rearrangements. These interactions needed for functions impose evolutionary constraints so that, on occasion, mutations in one position may be compensated by other mutations at functionally coupled positions. To quantify the impact of amino acid substitutions in the context of major evolutionary divergence in the G protein-coupled receptor subfamily of metabotropic glutamate receptors (mGluRs), we combined two phylogenetic-based algorithms, Evolutionary Trace and covariation Evolutionary Trace, to infer potential structure-function couplings and roles in mGluRs. We found a subset of evolutionarily important residues at known functional sites and evidence of coupling among distinct structural clusters in mGluR. In addition, experimental mutagenesis and functional assays confirmed that some highly covariant residues are coupled, revealing their synergy. Collectively, these findings inform a critical step toward understanding the molecular and structural basis of amino acid variation patterns within mGluRs and provide insight for drug development, protein engineering, and analysis of naturally occurring variants.
Collapse
Affiliation(s)
- Eunna Huh
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Olivier Lichtarge
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
2
|
Fan YN, Li C, Huang L, Chen L, Tang Z, Han G, Liu Y. Characterization of Group I Metabotropic Glutamate Receptors in Rat and Human Adrenal Glands. Front Physiol 2020; 11:401. [PMID: 32536873 PMCID: PMC7267184 DOI: 10.3389/fphys.2020.00401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
Glutamate and its receptors have been demonstrated to promote both basal and nicotine-evoked catecholamine release in bovine chromaffin cells. Multiple glutamate receptors, including metabotropic glutamate receptors (mGluRs), are found in the adrenal glands of several species, as well as in chromaffin cells. However, there is limited information available regarding the expression of glutamate metabotropic receptor (GRM)1-8 mRNAs and the detailed localization of group I mGluRs (mGluR1 and mGluR5) in the rat and human adrenal cortex and medulla. Therefore, we examined mRNA expression of GRM1-8 subunits using reverse transcription-polymerase chain reaction (RT-PCR) and the distribution of mGluR1 and mGluR5 by immunostaining. The results showed that the GRM1-8 mRNAs were expressed in both the cortex and medulla of rat and human adrenal glands with the exception of GRM1, which was not detectable in the rat adrenal cortex. Immunostaining of mGluR1 revealed that it was localized only in the adrenal medulla of rats but was present in both the adrenal cortex and medulla in humans. In the adrenal medulla, the central part of the adrenal glands, mGluR1 was detected in chromaffin cells but not in nerve fibers and ganglion cells. Immunoactivity of mGluR5 was visible in the capillary wall throughout the adrenal cortex and medulla in rat and human samples. Its immunoactivity was also observed in ganglion cells in the rat adrenal medulla. There was no mGluR5 immunoactivity detected in chromaffin cells and nerve fibers in the rat and human adrenal medulla. Using dissected rat adrenal medulla as a model, we found that treatment with a mGluR1 agonist activated extracellular signal-regulated kinase (ERK) 1/2 and increased the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine synthesis. Moreover, these results showed that mGluR1 signaling was involved in hypoxia-induced upregulation of TH in the rat adrenal medulla. This study shows the expression of GRM1-8 mRNAs in rat and human adrenal glands and indicates that glutamate, through the activation of mGluRs, may play various physiological roles in the adrenal gland. Furthermore, mGluR1 may be involved in catecholamine biosynthesis by regulating TH, and mGluR5 may affect cortical and medullar hormone levels by regulating microvascular function.
Collapse
Affiliation(s)
- Ya-Nan Fan
- Henan Key Laboratory of Neural Regeneration and Repairment, The First Affiliated Hospital of Xinxiang Medical University, Henan Neurology Institute, Weihui, China
| | - Chaohong Li
- Henan Key Laboratory of Neural Regeneration and Repairment, The First Affiliated Hospital of Xinxiang Medical University, Henan Neurology Institute, Weihui, China
| | - Lu Huang
- Henan Key Laboratory of Neural Regeneration and Repairment, The First Affiliated Hospital of Xinxiang Medical University, Henan Neurology Institute, Weihui, China
| | - Lingyun Chen
- Operating Room, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhao Tang
- Department of Urology Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Guangye Han
- Department of Urology Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yuzhen Liu
- Henan Key Laboratory of Neural Regeneration and Repairment, The First Affiliated Hospital of Xinxiang Medical University, Henan Neurology Institute, Weihui, China
| |
Collapse
|
3
|
Effect of developmental NMDAR antagonism with CGP 39551 on aspartame-induced hypothalamic and adrenal gene expression. PLoS One 2018; 13:e0194416. [PMID: 29561882 PMCID: PMC5862471 DOI: 10.1371/journal.pone.0194416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/04/2018] [Indexed: 01/16/2023] Open
Abstract
Rationale Aspartame (L-aspartyl phenylalanine methyl ester) is a non-nutritive sweetener (NNS) approved for use in more than 6000 dietary products and pharmaceuticals consumed by the general public including adults and children, pregnant and nursing mothers. However a recent prospective study reported a doubling of the risk of being overweight amongst 1-year old children whose mothers consumed NNS-sweetened beverages daily during pregnancy. We have previously shown that chronic aspartame (ASP) exposure commencing in utero may detrimentally affect adulthood adiposity status, glucose metabolism and aspects of behavior and spatial cognition, and that this can be modulated by developmental N-methyl-D-aspartate receptor (NMDAR) blockade with the competitive antagonist CGP 39551 (CGP). Since glucose homeostasis and certain aspects of behavior and locomotion are regulated in part by the NMDAR-rich hypothalamus, which is part of the hypothalamic-pituitary-adrenal- (HPA) axis, we have elected to examine changes in hypothalamic and adrenal gene expression in response to ASP exposure in the presence or absence of developmental NMDAR antagonism with CGP, using Affymetrix microarray analysis. Results Using 2-factor ANOVA we identified 189 ASP-responsive differentially expressed genes (DEGs) in the adult male hypothalamus and 2188 in the adrenals, and a further 23 hypothalamic and 232 adrenal genes significantly regulated by developmental treatment with CGP alone. ASP exposure robustly elevated the expression of a network of genes involved in hypothalamic neurosteroidogenesis, together with cell stress and inflammatory genes, consistent with previous reports of aspartame-induced CNS stress and oxidative damage. These genes were not differentially expressed in ASP mice with CGP antagonism. In the adrenal glands of ASP-exposed mice, GABA and Glutamate receptor subunit genes were amongst those most highly upregulated. Developmental NMDAR antagonism alone had less effect on adulthood gene expression and affected mainly hypothalamic neurogenesis and adrenal steroid metabolism. Combined ASP + CGP treatment mainly upregulated genes involved in adrenal drug and cholesterol metabolism. Conclusion ASP exposure increased the expression of functional networks of genes involved in hypothalamic neurosteroidogenesis and adrenal catecholamine synthesis, patterns of expression which were not present in ASP-exposed mice with developmental NMDAR antagonism.
Collapse
|
4
|
Horváth HR, Fazekas CL, Balázsfi D, Jain SK, Haller J, Zelena D. Contribution of Vesicular Glutamate Transporters to Stress Response and Related Psychopathologies: Studies in VGluT3 Knockout Mice. Cell Mol Neurobiol 2018; 38:37-52. [PMID: 28776199 DOI: 10.1007/s10571-017-0528-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Maintenance of the homeostasis in a constantly changing environment is a fundamental process of life. Disturbances of the homeostatic balance is defined as stress response and is induced by wide variety of challenges called stressors. Being the main excitatory neurotransmitter of the central nervous system glutamate is important in the adaptation process of stress regulating both the catecholaminergic system and the hypothalamic-pituitary-adrenocortical axis. Data are accumulating about the role of different glutamatergic receptors at all levels of these axes, but little is known about the contribution of different vesicular glutamate transporters (VGluT1-3) characterizing the glutamatergic neurons. Here we summarize basic knowledge about VGluTs, their role in physiological regulation of stress adaptation, as well as their contribution to stress-related psychopathology. Most of our knowledge comes from the VGluT3 knockout mice, as VGluT1 and 2 knockouts are not viable. VGluT3 was discovered later than, and is not as widespread as the VGluT1 and 2. It may co-localize with other transmitters, and participate in retrograde signaling; as such its role might be unique. Previous reports using VGluT3 knockout mice showed enhanced anxiety and innate fear compared to wild type. Moreover, these knockout animals had enhanced resting corticotropin-releasing hormone mRNA levels in the hypothalamus and disturbed glucocorticoid stress responses. In conclusion, VGluT3 participates in stress adaptation regulation. The neuroendocrine changes observed in VGluT3 knockout mice may contribute to their anxious, fearful phenotype.
Collapse
Affiliation(s)
- Hanga Réka Horváth
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Diána Balázsfi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 26, Üllői út, 1085, Budapest, Hungary
| | | | - József Haller
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary.
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
5
|
Xia H, Zhao YN, Yu CH, Zhao YL, Liu Y. Inhibition of metabotropic glutamate receptor 1 suppresses tumor growth and angiogenesis in experimental non-small cell lung cancer. Eur J Pharmacol 2016; 783:103-11. [DOI: 10.1016/j.ejphar.2016.04.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023]
|
6
|
Pokusa M, Prokopova B, Hlavacova N, Makatsori A, Jezova D. Effect of blockade of mGluR5 on stress hormone release and its gene expression in the adrenal gland. Can J Physiol Pharmacol 2014; 92:686-92. [PMID: 25019607 DOI: 10.1139/cjpp-2014-0030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to verify the presence of metabotropic glutamate receptor subtype 5 (mGluR5) in the adrenal gland of male rats of 2 different strains, and to test the hypothesis that treatment with mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) affects hormone release and adrenal gene expression of mGluR5 under conditions of stress. The results clearly show the gene expression of mGluR5 in the adrenal gland in both the adrenal cortex and medulla. Treatment with the glutamate release inhibitor riluzole (4 mg·(kg body mass)(-1)·day(-1) for 2 weeks) failed to modify mRNA levels of either the mGluR5 or NR1 subunit of the NMDA receptor in the adrenal glands, as measured by real-time PCR. Blockade of mGluR5 with MPEP (1 mg·kg(-1) for 4 days) increased corticosterone but not catecholamine release during restraint stress (20 min). Treatment with MPEP had no effect on mRNA levels coding for steroidogenic factors StAR and SF-1, and decreased mGluR5 gene expression in the adrenal gland. In conclusion, mGluR5 is not likely to play a significant role in stress-induced catecholamine release. Pharmacological blockade of mGluR5 has a modest influence on the hypothalamic-pituitary-adrenocortical axis, as reflected in adrenal hypertrophy and increased corticosterone concentrations.
Collapse
Affiliation(s)
- Michal Pokusa
- a Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, Bratislava 83306, Slovakia
| | | | | | | | | |
Collapse
|
7
|
Pérez-Rodríguez R, Oliván AM, Roncero C, Morón-Oset J, González MP, Oset-Gasque MJ. Glutamate triggers neurosecretion and apoptosis in bovine chromaffin cells through a mechanism involving NO production by neuronal NO synthase activation. Free Radic Biol Med 2014; 69:390-402. [PMID: 24486340 DOI: 10.1016/j.freeradbiomed.2014.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/30/2022]
Abstract
Previous work from our group stated that nitric oxide (NO), via cytokines, induces apoptosis in chromaffin cells by a mechanism involving iNOS, nNOS, and NF-κB. In this paper the involvement of glutamate as a possible intracellular trigger of neurosecretion and NO-mediated apoptosis has been evaluated. We show that chromaffin cells express different ionotropic and metabotropic glutamate receptors, this exerting different effects on the regulation of basal and glutamate-induced catecholamine secretion, via NO/cGMP. In addition, we studied the effects of endogenously generated NO, both basal and glutamate-stimulated, on apoptosis of chromaffin cells. Our results show that glutamate agonists are able to induce cell death and apoptosis in bovine chromaffin cells, parallel to an increase in NO production. Such effects were reversed by NOS inhibitors and glutamate receptor antagonists. Under basal conditions, iNOS inhibitors did not have any effect on apoptosis, whereas nNOS inhibitors induced apoptosis, indicating a neuroprotective effect of constitutive nNOS-generated NO. In contrast, glutamate-induced apoptosis was strongly reversed by nNOS inhibitors and weakly by iNOS inhibitors, thus indicating nNOS involvement in glutamate-mediated apoptosis. These results were confirmed by the fact that nNOS expression, but not iNOS, is specifically activated by glutamate. Finally, our results suggest the participation of PKG, PKA, PKC, and MAPK pathways in glutamate-mediated nNOS activation in chromaffin cells and point out the involvement of both PKA and PKC signaling pathways in the apoptotic effect of glutamate.
Collapse
Affiliation(s)
- R Pérez-Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, E-28040 Madrid, Spain
| | - A M Oliván
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, E-28040 Madrid, Spain
| | - C Roncero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, E-28040 Madrid, Spain
| | - J Morón-Oset
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, E-28040 Madrid, Spain
| | - M P González
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, E-28040 Madrid, Spain
| | - M J Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
8
|
|
9
|
Julio-Pieper M, Flor PJ, Dinan TG, Cryan JF. Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol Rev 2011; 63:35-58. [PMID: 21228260 DOI: 10.1124/pr.110.004036] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors are G-protein-coupled receptors expressed primarily on neurons and glial cells, where they are located in the proximity of the synaptic cleft. In the central nervous system (CNS), mGlu receptors modulate the effects of l-glutamate neurotransmission in addition to that of a variety of other neurotransmitters. However, mGlu receptors also have a widespread distribution outside the CNS that has been somewhat neglected to date. Based on this expression, diverse roles of mGlu receptors have been suggested in a variety of processes in health and disease including controlling hormone production in the adrenal gland and pancreas, regulating mineralization in the developing cartilage, modulating lymphocyte cytokine production, directing the state of differentiation in embryonic stem cells, and modulating gastrointestinal secretory function. Understanding the role of mGlu receptors in the periphery will also provide a better insight into potential side effects of drugs currently being developed for neurological and psychiatric conditions. This review summarizes the new potential roles of mGlu receptors and raises the possibility of novel pharmacological targets for various disorders.
Collapse
Affiliation(s)
- Marcela Julio-Pieper
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
10
|
Oliván A, Pérez-Rodríguez R, Roncero C, Arce C, González M, Oset-Gasque M. Plasma membrane and vesicular glutamate transporter expression in chromaffin cells of bovine adrenal medulla. J Neurosci Res 2010; 89:44-57. [DOI: 10.1002/jnr.22529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Rosa AO, Rapoport SI. Intracellular- and extracellular-derived Ca(2+) influence phospholipase A(2)-mediated fatty acid release from brain phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:697-705. [PMID: 19327408 DOI: 10.1016/j.bbalip.2009.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/01/2009] [Accepted: 03/11/2009] [Indexed: 02/01/2023]
Abstract
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are found in high concentrations in brain cell membranes and are important for brain function and structure. Studies suggest that AA and DHA are hydrolyzed selectively from the sn-2 position of synaptic membrane phospholipids by Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) and Ca(2+)-independent phospholipase A(2) (iPLA(2)), respectively, resulting in increased levels of the unesterified fatty acids and lysophospholipids. Cell studies also suggest that AA and DHA release depend on increased concentrations of Ca(2+), even though iPLA(2) has been thought to be Ca(2+)-independent. The source of Ca(2+) for activation of cPLA(2) is largely extracellular, whereas Ca(2+) released from the endoplasmic reticulum can activate iPLA(2) by a number of mechanisms. This review focuses on the role of Ca(2+) in modulating cPLA(2) and iPLA(2) activities in different conditions. Furthermore, a model is suggested in which neurotransmitters regulate the activity of these enzymes and thus the balanced and localized release of AA and DHA from phospholipid in the brain, depending on the primary source of the Ca(2+) signal.
Collapse
Affiliation(s)
- Angelo O Rosa
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
12
|
Pérez-Rodríguez R, Roncero C, Oliván AM, González MP, Oset-Gasque MJ. Signaling mechanisms of interferon gamma induced apoptosis in chromaffin cells: involvement of nNOS, iNOS, and NFκB. J Neurochem 2009; 108:1083-96. [DOI: 10.1111/j.1471-4159.2008.05862.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
García AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J. Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells. Physiol Rev 2006; 86:1093-131. [PMID: 17015485 DOI: 10.1152/physrev.00039.2005] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels; in bovine and humans, P/Q channels predominate, whereas in felines and murine species, L-type channels predominate. The calcium channels in chromaffin cells are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca2+]c. Chromaffin cells have been particularly useful in studying calcium channel current autoregulation by materials coreleased with catecholamines, such as ATP and opiates. Depending on the preparation (cultured cells, adrenal slices) and the stimulation pattern (action potentials, depolarizing pulses, high K+, acetylcholine), the role of each calcium channel in controlling catecholamine release can change drastically. Targeted aequorin and confocal microscopy shows that Ca2+entry through calcium channels can refill the endoplasmic reticulum (ER) to nearly millimolar concentrations, and causes the release of Ca2+(CICR). Depending on its degree of filling, the ER may act as a sink or source of Ca2+that modulates catecholamine release. Targeted aequorins with different Ca2+affinities show that mitochondria undergo surprisingly rapid millimolar Ca2+transients, upon stimulation of chromaffin cells with ACh, high K+, or caffeine. Physiological stimuli generate [Ca2+]cmicrodomains in which the local subplasmalemmal [Ca2+]crises abruptly from 0.1 to ∼50 μM, triggering CICR, mitochondrial Ca2+uptake, and exocytosis at nearby secretory active sites. The fact that protonophores abolish mitochondrial Ca2+uptake, and increase catecholamine release three- to fivefold, support the earlier observation. This increase is probably due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; this transport might be controlled by Ca2+redistribution to the cytoskeleton, through CICR, and/or mitochondrial Ca2+release. We propose that chromaffin cells have developed functional triads that are formed by calcium channels, the ER, and the mitochondria and locally control the [Ca2+]cthat regulate the early and late steps of exocytosis.
Collapse
Affiliation(s)
- Antonio G García
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, and Servicio de Farmacología Clínica e Instituto Universitario de Investigación Gerontológica y Metabólica, Hospital Universitario de la Princesa, Madrid, Spain.
| | | | | | | | | |
Collapse
|
14
|
Miglio G, Varsaldi F, Dianzani C, Fantozzi R, Lombardi G. Stimulation of group I metabotropic glutamate receptors evokes calcium signals and c-jun and c-fos gene expression in human T cells. Biochem Pharmacol 2005; 70:189-99. [PMID: 15935992 DOI: 10.1016/j.bcp.2005.04.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 04/13/2005] [Indexed: 11/28/2022]
Abstract
To study if the activation of group I mGlu receptors in human T cells modifies intracellular Ca2+ concentration ([Ca2+](i)) and cell function, we measured [Ca2+](i) on cell suspensions (spectrofluorimetric method) or single cell (digital Ca2+ imaging system) using fura-2 as indicator. Early-inducible gene (c-jun and c-fos) expression was studied by reverse transcriptase-polymerase chain reaction assay as representative of Ca(2+)-sensitive gene expression. (1S,3R)-ACPD (100 microM), the selective mGlu receptor agonist, evoked a significant increase (34.1+/-4.9%) of [Ca2+](i), pharmacologically characterized as mediated by group I mGlu receptors, since both (S)-3,5-DHPG (100 microM), a selective group I mGlu receptor agonist and CHPG (1mM), the specific mGlu5 receptor agonist, reproduced the effects, that were abolished by AIDA (1mM), a selective group I mGlu receptor antagonist. (S)-3,5-DHPG-induced a rapid [Ca2+](i) rise (initial phase) followed by a slow decrease (second phase) to the baseline. Both extracellular Ca2+ and Ca2+ released from intracellular stores contribute to the [Ca2+](i) increase which depend on PLC activation. In a Ca(2+)-free buffer, the second phase rapidly return to the baseline; LaCl3 (1-10 microM), an inhibitor of extracellular Ca2+ influx, significantly reduced the second phase only; thapsigargin (1microM), by discharging intracellular Ca2+ stores, U 73122 (10 microM) and D609 (300 microM), by inhibiting PLC activity, prevented both phases. In our system, PTX pre-treatment increased (S)-3,5-DHPG effects, demonstrating that PXT-sensitive G(i/o) proteins are involved. Finally, specific stimulation of these receptors in Jurkat cells upregulates c-jun and c-fos gene expression, thus activating multiple downstream signalling regulating important T cell functions.
Collapse
Affiliation(s)
- Gianluca Miglio
- DISCAFF, "Amedeo Avogadro" University of Eastern Piedmont, Via Bovio 6, 28100 Novara, Italy
| | | | | | | | | |
Collapse
|
15
|
Marchetti C, Taccola G, Nistri A. Activation of group I metabotropic glutamate receptors depresses recurrent inhibition of motoneurons in the neonatal rat spinal cord in vitro. Exp Brain Res 2005; 164:406-10. [PMID: 15991027 DOI: 10.1007/s00221-005-2368-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 03/21/2005] [Indexed: 11/26/2022]
Abstract
This study examined whether activation of group I metabotropic glutamate receptors (mGluRs) could modulate synaptic inhibition of spinal motoneurons in the neonatal rat isolated spinal cord. Recurrent inhibitory postsynaptic potentials (IPSPs) generated by Renshaw cells were evoked via antidromic stimulation of motor axon collaterals and recorded intracellularly from lumbar motoneurons. The selective agonist of group I mGluRs DHPG (5 micromol L-1) depressed the recurrent IPSP, an effect prevented by the selective antagonist AIDA (500 micromol L-1). The depression by DHPG was use-independent and could be partly counteracted by increasing stimulus strength. Paired pulse depression observed at <or=50-ms intervals was blocked by DHPG in an AIDA-sensitive manner. These results suggest that, in the presence of DHPG, smaller recurrent IPSPs can contribute to the excitatory action of mGluR activation on spinal networks, including the generation of synchronous oscillations recorded from motoneurons.
Collapse
Affiliation(s)
- Cristina Marchetti
- Neurobiology Sector and Istituto Nazionale di Fisica della Materia Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014, Trieste, Italy
| | | | | |
Collapse
|