1
|
Vukolova MN, Yen LY, Khmyz MI, Sobolevsky AI, Yelshanskaya MV. Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis-emerging role of AMPA and kainate subtypes of ionotropic glutamate receptors. Front Cell Dev Biol 2023; 11:1252953. [PMID: 38033869 PMCID: PMC10683763 DOI: 10.3389/fcell.2023.1252953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission and are implicated in various neurological disorders. In this review, we discuss the role of the two fastest iGluRs subtypes, namely, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, in the pathogenesis and treatment of Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis. Although both AMPA and kainate receptors represent promising therapeutic targets for the treatment of these diseases, many of their antagonists show adverse side effects. Further studies of factors affecting the selective subunit expression and trafficking of AMPA and kainate receptors, and a reasonable approach to their regulation by the recently identified novel compounds remain promising directions for pharmacological research.
Collapse
Affiliation(s)
- Marina N Vukolova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University, New York, NY, United States
| | - Margarita I Khmyz
- N. V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Prior-González M, Lazo-Gómez R, Tapia R. Sodium butyrate does not protect spinal motor neurons from AMPA-induced excitotoxic degeneration in vivo. Dis Model Mech 2023; 16:dmm049851. [PMID: 37756598 PMCID: PMC10581382 DOI: 10.1242/dmm.049851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Motor neuron (MN) loss is the primary pathological hallmark of amyotrophic lateral sclerosis (ALS). Histone deacetylase 4 (HDAC4) is one of several factors involved in nerve-muscle communication during MN loss, hindering muscle reinnervation, as shown in humans and in animal models of ALS, and may explain the differential progression observed in patients with ALS - rapid versus slow progression. In this work, we inhibited HDAC4 activity through the administration of a pan-histone deacetylase inhibitor, sodium butyrate, in an in vivo model of chronic spinal MN death induced by AMPA-mediated excitotoxicity. We infused AMPA into the spinal cord at low and high doses, which mimic the rapid and slow progression observed in humans, respectively. We found that muscle HDAC4 expression was increased by high-dose infusion of AMPA. Treatment of animals with sodium butyrate further decreased expression of muscle HDAC4, although non-significantly, and did not prevent the paralysis or the MN loss induced by AMPA infusion. These results inform on the role of muscle HDAC4 in MN degeneration in vivo and provide insights for the search for more suitable therapeutic strategies.
Collapse
Affiliation(s)
- Mara Prior-González
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Rafael Lazo-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Tzeplaeff L, Wilfling S, Requardt MV, Herdick M. Current State and Future Directions in the Therapy of ALS. Cells 2023; 12:1523. [PMID: 37296644 PMCID: PMC10252394 DOI: 10.3390/cells12111523] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder affecting upper and lower motor neurons, with death resulting mainly from respiratory failure three to five years after symptom onset. As the exact underlying causative pathological pathway is unclear and potentially diverse, finding a suitable therapy to slow down or possibly stop disease progression remains challenging. Varying by country Riluzole, Edaravone, and Sodium phenylbutyrate/Taurursodiol are the only drugs currently approved in ALS treatment for their moderate effect on disease progression. Even though curative treatment options, able to prevent or stop disease progression, are still unknown, recent breakthroughs, especially in the field of targeting genetic disease forms, raise hope for improved care and therapy for ALS patients. In this review, we aim to summarize the current state of ALS therapy, including medication as well as supportive therapy, and discuss the ongoing developments and prospects in the field. Furthermore, we highlight the rationale behind the intense research on biomarkers and genetic testing as a feasible way to improve the classification of ALS patients towards personalized medicine.
Collapse
Affiliation(s)
- Laura Tzeplaeff
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, 81675 München, Germany
| | - Sibylle Wilfling
- Department of Neurology, University of Regensburg, 93053 Regensburg, Germany;
- Center for Human Genetics Regensburg, 93059 Regensburg, Germany
| | - Maria Viktoria Requardt
- Formerly: Department of Neurology with Institute of Translational Neurology, Münster University Hospital (UKM), 48149 Münster, Germany;
| | - Meret Herdick
- Precision Neurology, University of Lübeck, 23562 Luebeck, Germany
| |
Collapse
|
4
|
Wright AL, Della Gatta PA, Le S, Berning BA, Mehta P, Jacobs KR, Gul H, San Gil R, Hedl TJ, Riddell WR, Watson O, Keating SS, Venturato J, Chung RS, Atkin JD, Lee A, Shi B, Blizzard CA, Morsch M, Walker AK. Riluzole does not ameliorate disease caused by cytoplasmic TDP-43 in a mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 2021; 54:6237-6255. [PMID: 34390052 DOI: 10.1111/ejn.15422] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease commonly treated with riluzole, a small molecule that may act via modulation of glutamatergic neurotransmission. However, riluzole only modestly extends lifespan for people living with ALS, and its precise mechanisms of action remain unclear. Most ALS cases are characterised by accumulation of cytoplasmic TAR DNA binding protein of 43 kDa (TDP-43), and understanding the effects of riluzole in models that closely recapitulate TDP-43 pathology may provide insights for development of improved therapeutics. We therefore investigated the effects of riluzole in female transgenic mice that inducibly express nuclear localisation sequence (NLS)-deficient human TDP-43 in neurons (NEFH-tTA/tetO-hTDP-43ΔNLS, 'rNLS8', mice). Riluzole treatment from the first day of hTDP-43ΔNLS expression did not alter disease onset, weight loss or performance on multiple motor behavioural tasks. Riluzole treatment also did not alter TDP-43 protein levels, solubility or phosphorylation. Although we identified a significant decrease in GluA2 and GluA3 proteins in the cortex of rNLS8 mice, riluzole did not ameliorate this disease-associated molecular phenotype. Likewise, riluzole did not alter the disease-associated atrophy of hindlimb muscle in rNLS8 mice. Finally, riluzole treatment beginning after disease onset in rNLS8 mice similarly had no effect on progression of late-stage disease or animal survival. Together, we demonstrate specific glutamatergic receptor alterations and muscle fibre-type changes reminiscent of ALS in female rNLS8 mice, but riluzole had no effect on these or any other disease phenotypes. Future targeting of pathways related to accumulation of TDP-43 pathology may be needed to develop better treatments for ALS.
Collapse
Affiliation(s)
- Amanda L Wright
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Sheng Le
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Britt A Berning
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Prachi Mehta
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kelly R Jacobs
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Hossai Gul
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rebecca San Gil
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Thomas J Hedl
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Winonah R Riddell
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Owen Watson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sean S Keating
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Juliana Venturato
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Bingyang Shi
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Adam K Walker
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
5
|
Irwin MN, VandenBerg A. Retracing our steps to understand ketamine in depression: A focused review of hypothesized mechanisms of action. Ment Health Clin 2021; 11:200-210. [PMID: 34026396 PMCID: PMC8120982 DOI: 10.9740/mhc.2021.05.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction MDD represents a significant burden worldwide, and while a number of approved treatments exist, there are high rates of treatment resistance and refractoriness. Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, is a novel, rapid-acting antidepressant, however the mechanisms underlying the efficacy of ketamine are not well understood and many other mechanisms outside of NMDAR antagonism have been postulated based on preclinical data. This focused review aims to present a summary of the proposed mechanisms of action by which ketamine functions in depressive disorders supported by preclinical data and clinical studies in humans. Methods A literature search was completed using the PubMed and Google Scholar databases. Results were limited to clinical trials and case studies in humans that were published in English. The findings were used to compile this article. Results The antidepressant effects associated with ketamine are mediated via a complex interplay of mechanisms; key steps include NMDAR blockade on γ-aminobutyric acid interneurons, glutamate surge, and subsequent activation and upregulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. Discussion Coadministration of ketamine for MDD with other psychotropic agents, for example benzodiazepines, may attenuate antidepressant effects. Limited evidence exists for these effects and should be evaluated on a case-by-case basis.
Collapse
Affiliation(s)
- Madison N Irwin
- Clinical Pharmacist Specialist in Psychology and Neurology, Department of Pharmacy, Michigan Medicine, Ann Arbor, Michigan
| | - Amy VandenBerg
- Clinical Pharmacist Specialist in Psychology and Neurology, Department of Pharmacy, Michigan Medicine, Ann Arbor, Michigan
| |
Collapse
|
6
|
Sakurai H, Dording C, Yeung A, Foster S, Jain F, Chang T, Trinh NH, Bernard R, Boyden S, Iqbal SZ, Wilkinson ST, Mathew SJ, Mischoulon D, Fava M, Cusin C. Longer-term open-label study of adjunctive riluzole in treatment-resistant depression. J Affect Disord 2019; 258:102-108. [PMID: 31400624 PMCID: PMC6710149 DOI: 10.1016/j.jad.2019.06.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/03/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND While riluzole has been investigated for the treatment of depression, little is known about its longer-term efficacy and optimal treatment duration in treatment-resistant depression (TRD). The objective of this study is to characterize the longer-term outcome of adjunctive riluzole therapy for TRD in an open-label extension of an 8-week acute treatment trial. METHODS The data from 66 patients with TRD who received adjunctive riluzole in a 12-week open-label extension phase were analyzed. Response rates (⩾50% reduction in the Mongomery-Asberg Depression Rating Scale [MADRS] score), relapse rates (a MADRS score of ⩾22 in patients who had previously achieved response), and adverse events were examined in patients who had achieved response at the end of the acute phase and those who had not. RESULTS Among acute phase responders, the maintained response rate was 66.7% (8/12) and the relapse rate was 8.3% (1/12). In acute phase non-responders, the response rate was 24.1% (13/54). The most commonly reported adverse event was fatigue (9.1%). Three cases were considered serious adverse events; vomiting (n = 1), shortness of breath (n = 1), and aborted suicide attempt (n = 1). LIMITATIONS This longer-term study was open-label and uncontrolled. The sample size was relatively small. CONCLUSIONS Longer-term adjunctive riluzole appears relatively well tolerated and beneficial for maintaining previous response. Additionally, approximately one fourth of patients who did not respond to 8-week antidepressant treatment might respond if treated with riluzole for 12 weeks. Those findings warrant further investigation because adjunctive riluzole could represent an option for treatment of depression when standard antidepressants have failed.
Collapse
Affiliation(s)
- Hitoshi Sakurai
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Christina Dording
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Albert Yeung
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Simmie Foster
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Felipe Jain
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Trina Chang
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Nhi-Ha Trinh
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Richard Bernard
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Sean Boyden
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Syed Z Iqbal
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sanjay J Mathew
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - David Mischoulon
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Maurizio Fava
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Cristina Cusin
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, 1 Bowdoin Square, 6th Floor, Boston, MA, USA.
| |
Collapse
|
7
|
Pagliaroli L, Widomska J, Nespoli E, Hildebrandt T, Barta C, Glennon J, Hengerer B, Poelmans G. Riluzole Attenuates L-DOPA-Induced Abnormal Involuntary Movements Through Decreasing CREB1 Activity: Insights from a Rat Model. Mol Neurobiol 2019; 56:5111-5121. [PMID: 30484112 PMCID: PMC6647536 DOI: 10.1007/s12035-018-1433-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022]
Abstract
Chronic administration of L-DOPA, the first-line treatment of dystonic symptoms in childhood or in Parkinson's disease, often leads to the development of abnormal involuntary movements (AIMs), which represent an important clinical problem. Although it is known that Riluzole attenuates L-DOPA-induced AIMs, the molecular mechanisms underlying this effect are not understood. Therefore, we studied the behavior and performed RNA sequencing of the striatum in three groups of rats that all received a unilateral lesion with 6-hydroxydopamine in their medial forebrain bundle, followed by the administration of saline, L-DOPA, or L-DOPA combined with Riluzole. First, we provide evidence that Riluzole attenuates AIMs in this rat model. Subsequently, analysis of the transcriptomics data revealed that Riluzole is predicted to reduce the activity of CREB1, a transcription factor that regulates the expression of multiple proteins that interact in a molecular landscape involved in apoptosis. Although this mechanism underlying the beneficial effect of Riluzole on AIMs needs to be confirmed, it provides clues towards novel or existing compounds for the treatment of AIMs that modulate the activity of CREB1 and, hence, its downstream targets.
Collapse
Affiliation(s)
- Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ester Nespoli
- CNS Department, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Department of Child and Adolescent Psychiatry/Psychotherapy, University of Ulm, Ulm, Germany
| | - Tobias Hildebrandt
- Target Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Jeffrey Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastian Hengerer
- CNS Department, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Motor cortex metabolite alterations in amyotrophic lateral sclerosis assessed in vivo using edited and non-edited magnetic resonance spectroscopy. Brain Res 2019; 1718:22-31. [PMID: 31002818 DOI: 10.1016/j.brainres.2019.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/09/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Previous MRI and proton spectroscopy (1H-MRS) studies have revealed impaired neuronal integrity and altered neurometabolite concentrations in the motor cortex of patients with amyotrophic lateral sclerosis (ALS). Here, we aim to use MRI with conventional and novel MRS sequences to further investigate neurometabolic changes in the motor cortex of ALS patients and their relation to clinical parameters. We utilized the novel HERMES (Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy) MRS sequence to simultaneously quantify the inhibitory neurotransmitter GABA and antioxidant glutathione in ALS patients (n = 7) and healthy controls (n = 7). In addition, we have also quantified other MRS observable neurometabolites using a conventional point-resolved MR spectroscopy (PRESS) sequence in ALS patients (n = 20) and healthy controls (n = 20). We observed a trend towards decreasing glutathione concentrations in the motor cortex of ALS patients (p = 0.0842). In addition, we detected a 11% decrease in N-acetylaspartate (NAA) (p = 0.025), a 15% increase in glutamate + glutamine (Glx) (p = 0.0084) and a 21% increase in myo-inositol (mIns) (p = 0.0051) concentrations for ALS patients compared to healthy controls. Furthermore, significant positive correlations were found between GABA-NAA (p = 0.0480; Rρ = 0.7875) and NAA-mIns (p = 0.0448; Rρ = -0.4651) levels among the patients. NAA levels in the bulbar-onset patient group were found to be significantly (p = 0.0097) lower compared to the limb-onset group. A strong correlation (p < 0.0001; Rρ = -0,8801) for mIns and a weak correlation (p = 0.0066; Rρ = -0,6673) for Glx was found for the disease progression, measured by declining of the ALS Functional Rating Scale-Revised criteria (ALSFRS-R). Concentrations of mIns and Glx also correlated with disease severity measured by forced vital capacity (FVC). Results suggest that mean neurometabolite concentrations detected in the motor cortex may indicate clinical and pathological changes in ALS.
Collapse
|
9
|
Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 2018; 75:2917-2949. [PMID: 29766217 PMCID: PMC11105518 DOI: 10.1007/s00018-018-2837-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.
| |
Collapse
|
10
|
Persistent Sodium Current Drives Excitability of Immature Renshaw Cells in Early Embryonic Spinal Networks. J Neurosci 2018; 38:7667-7682. [PMID: 30012693 DOI: 10.1523/jneurosci.3203-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
Spontaneous network activity (SNA) emerges in the spinal cord (SC) before the formation of peripheral sensory inputs and central descending inputs. SNA is characterized by recurrent giant depolarizing potentials (GDPs). Because GDPs in motoneurons (MNs) are mainly evoked by prolonged release of GABA, they likely necessitate sustained firing of interneurons. To address this issue we analyzed, as a model, embryonic Renshaw cell (V1R) activity at the onset of SNA (E12.5) in the embryonic mouse SC (both sexes). V1R are one of the interneurons known to contact MNs, which are generated early in the embryonic SC. Here, we show that V1R already produce GABA in E12.5 embryo, and that V1R make synaptic-like contacts with MNs and have putative extrasynaptic release sites, while paracrine release of GABA occurs at this developmental stage. In addition, we discovered that V1R are spontaneously active during SNA and can already generate several intrinsic activity patterns including repetitive-spiking and sodium-dependent plateau potential that rely on the presence of persistent sodium currents (INap). This is the first demonstration that INap is present in the embryonic SC and that this current can control intrinsic activation properties of newborn interneurons in the SC of mammalian embryos. Finally, we found that 5 μm riluzole, which is known to block INaP, altered SNA by reducing episode duration and increasing inter-episode interval. Because SNA is essential for neuronal maturation, axon pathfinding, and synaptogenesis, the presence of INaP in embryonic SC neurons may play a role in the early development of mammalian locomotor networks.SIGNIFICANCE STATEMENT The developing spinal cord (SC) exhibits spontaneous network activity (SNA) involved in the building of nascent locomotor circuits in the embryo. Many studies suggest that SNA depends on the rhythmic release of GABA, yet intracellular recordings of GABAergic neurons have never been performed at the onset of SNA in the SC. We first discovered that embryonic Renshaw cells (V1R) are GABAergic at E12.5 and spontaneously active during SNA. We uncover a new role for persistent sodium currents (INaP) in driving plateau potential in V1R and in SNA patterning in the embryonic SC. Our study thus sheds light on a role for INaP in the excitability of V1R and the developing SC.
Collapse
|
11
|
Emon MAEK, Kodamullil AT, Karki R, Younesi E, Hofmann-Apitius M. Using Drugs as Molecular Probes: A Computational Chemical Biology Approach in Neurodegenerative Diseases. J Alzheimers Dis 2018; 56:677-686. [PMID: 28035920 PMCID: PMC5271458 DOI: 10.3233/jad-160222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases including Alzheimer’s disease are complex to tackle because of the complexity of the brain, both in structure and function. Such complexity is reflected by the involvement of various brain regions and multiple pathways in the etiology of neurodegenerative diseases that render single drug target approaches ineffective. Particularly in the area of neurodegeneration, attention has been drawn to repurposing existing drugs with proven efficacy and safety profiles. However, there is a lack of systematic analysis of the brain chemical space to predict the feasibility of repurposing strategies. Using a mechanism-based, drug-target interaction modeling approach, we have identified promising drug candidates for repositioning. Mechanistic cause-and-effect models consolidate relevant prior knowledge on drugs, targets, and pathways from the scientific literature and integrate insights derived from experimental data. We demonstrate the power of this approach by predicting two repositioning candidates for Alzheimer’s disease and one for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Mohammad Asif Emran Khan Emon
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany
| | - Reagon Karki
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany
| | - Erfan Younesi
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany
| |
Collapse
|
12
|
Hogg MC, Halang L, Woods I, Coughlan KS, PREHN JHM. Riluzole does not improve lifespan or motor function in three ALS mouse models. Amyotroph Lateral Scler Frontotemporal Degener 2017; 19:438-445. [DOI: 10.1080/21678421.2017.1407796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marion C. Hogg
- Centre for the Study of Neurological Disorders, Department of Physiology and Medical Physics, Royal College of Surgeons In Ireland, St. Stephen’s Green, Dublin, Ireland
| | - Luise Halang
- Centre for the Study of Neurological Disorders, Department of Physiology and Medical Physics, Royal College of Surgeons In Ireland, St. Stephen’s Green, Dublin, Ireland
| | - Ina Woods
- Centre for the Study of Neurological Disorders, Department of Physiology and Medical Physics, Royal College of Surgeons In Ireland, St. Stephen’s Green, Dublin, Ireland
| | - Karen S. Coughlan
- Centre for the Study of Neurological Disorders, Department of Physiology and Medical Physics, Royal College of Surgeons In Ireland, St. Stephen’s Green, Dublin, Ireland
| | - Jochen H. M. PREHN
- Centre for the Study of Neurological Disorders, Department of Physiology and Medical Physics, Royal College of Surgeons In Ireland, St. Stephen’s Green, Dublin, Ireland
| |
Collapse
|
13
|
Selection and Prioritization of Candidate Drug Targets for Amyotrophic Lateral Sclerosis Through a Meta-Analysis Approach. J Mol Neurosci 2017; 61:563-580. [PMID: 28236105 PMCID: PMC5359376 DOI: 10.1007/s12031-017-0898-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and incurable neurodegenerative disease. Although several compounds have shown promising results in preclinical studies, their translation into clinical trials has failed. This clinical failure is likely due to the inadequacy of the animal models that do not sufficiently reflect the human disease. Therefore, it is important to optimize drug target selection by identifying those that overlap in human and mouse pathology. We have recently characterized the transcriptional profiles of motor cortex samples from sporadic ALS (SALS) patients and differentiated these into two subgroups based on differentially expressed genes, which encode 70 potential therapeutic targets. To prioritize drug target selection, we investigated their degree of conservation in superoxide dismutase 1 (SOD1) G93A transgenic mice, the most widely used ALS animal model. Interspecies comparison of our human expression data with those of eight different SOD1G93A datasets present in public repositories revealed the presence of commonly deregulated targets and related biological processes. Moreover, deregulated expression of the majority of our candidate targets occurred at the onset of the disease, offering the possibility to use them for an early and more effective diagnosis and therapy. In addition to highlighting the existence of common key drivers in human and mouse pathology, our study represents the basis for a rational preclinical drug development.
Collapse
|
14
|
Schmidt J, Schmidt T, Golla M, Lehmann L, Weber J, Hübener-Schmid J, Riess O. In vivo
assessment of riluzole as a potential therapeutic drug for spinocerebellar ataxia type 3. J Neurochem 2016; 138:150-62. [DOI: 10.1111/jnc.13606] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Jana Schmidt
- Institute of Medical Genetics and Applied Genomics and Center for Rare Diseases; University of Tuebingen; Tuebingen Germany
| | - Thorsten Schmidt
- Institute of Medical Genetics and Applied Genomics and Center for Rare Diseases; University of Tuebingen; Tuebingen Germany
| | - Matthias Golla
- Institute of Medical Genetics and Applied Genomics and Center for Rare Diseases; University of Tuebingen; Tuebingen Germany
| | - Lisa Lehmann
- Institute of Medical Genetics and Applied Genomics and Center for Rare Diseases; University of Tuebingen; Tuebingen Germany
| | - Jonasz Jeremiasz Weber
- Institute of Medical Genetics and Applied Genomics and Center for Rare Diseases; University of Tuebingen; Tuebingen Germany
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics and Center for Rare Diseases; University of Tuebingen; Tuebingen Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics and Center for Rare Diseases; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
15
|
Transcriptional analysis reveals distinct subtypes in amyotrophic lateral sclerosis: implications for personalized therapy. Future Med Chem 2016; 7:1335-59. [PMID: 26144267 DOI: 10.4155/fmc.15.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable disease, caused by the loss of the upper and lower motor neurons. The lack of therapeutic progress is mainly due to the insufficient understanding of complexity and heterogeneity underlying the pathogenic mechanisms of ALS. Recently, we analyzed whole-genome expression profiles of motor cortex of sporadic ALS patients, classifying them into two subgroups characterized by differentially expressed genes and pathways. Some of the deregulated genes encode proteins, which are primary targets of drugs currently in preclinical or clinical studies for several clinical conditions, including neurodegenerative diseases. In this review, we discuss in-depth the potential role of these candidate targets in ALS pathogenesis, highlighting their possible relevance for personalized ALS treatments.
Collapse
|
16
|
Wang J, Jing L, Toledo-Salas JC, Xu L. Rapid-onset antidepressant efficacy of glutamatergic system modulators: the neural plasticity hypothesis of depression. Neurosci Bull 2014; 31:75-86. [PMID: 25488282 DOI: 10.1007/s12264-014-1484-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/15/2014] [Indexed: 12/28/2022] Open
Abstract
Depression is a devastating psychiatric disorder widely attributed to deficient monoaminergic signaling in the central nervous system. However, most clinical antidepressants enhance monoaminergic neurotransmission with little delay but require 4-8 weeks to reach therapeutic efficacy, a paradox suggesting that the monoaminergic hypothesis of depression is an oversimplification. In contrast to the antidepressants targeting the monoaminergic system, a single dose of the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid (within 2 h) and sustained (over 7 days) antidepressant efficacy in treatment-resistant patients. Glutamatergic transmission mediated by NMDARs is critical for experience-dependent synaptic plasticity and learning, processes that can be modified indirectly by the monoaminergic system. To better understand the mechanisms of action of the new antidepressants like ketamine, we review and compare the monoaminergic and glutamatergic antidepressants, with emphasis on neural plasticity. The pathogenesis of depression may involve maladaptive neural plasticity in glutamatergic circuits that may serve as a new class of targets to produce rapid antidepressant effects.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, China
| | | | | | | |
Collapse
|
17
|
Cellular changes in motor neuron cell culture produced by cytotoxic cerebrospinal fluid from patients with amyotrophic lateral sclerosis. NEUROLOGÍA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.nrleng.2013.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Yang DJ, Wang XL, Ismail A, Ashman CJ, Valori CF, Wang G, Gao S, Higginbottom A, Ince PG, Azzouz M, Xu J, Shaw PJ, Ning K. PTEN regulates AMPA receptor-mediated cell viability in iPS-derived motor neurons. Cell Death Dis 2014; 5:e1096. [PMID: 24577094 PMCID: PMC3944269 DOI: 10.1038/cddis.2014.55] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 11/09/2022]
Abstract
Excitatory transmission in the brain is commonly mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In amyotrophic lateral sclerosis (ALS), AMPA receptors allow cytotoxic levels of calcium into neurons, contributing to motor neuron injury. We have previously shown that oculomotor neurons resistant to the disease process in ALS show reduced AMPA-mediated inward calcium currents compared with vulnerable spinal motor neurons. We have also shown that PTEN (phosphatase and tensin homolog deleted on chromosome 10) knockdown via siRNA promotes motor neuron survival in models of spinal muscular atrophy (SMA) and ALS. It has been reported that inhibition of PTEN attenuates the death of hippocampal neurons post injury by decreasing the effective translocation of the GluR2 subunit into the membrane. In addition, leptin can regulate AMPA receptor trafficking via PTEN inhibition. Thus, we speculate that manipulation of AMPA receptors by PTEN may represent a potential therapeutic strategy for neuroprotective intervention in ALS and other neurodegenerative disorders. To this end, the first step is to establish a fibroblast-iPS-motor neuron in vitro cell model to study AMPA receptor manipulation. Here we report that iPS-derived motor neurons from human fibroblasts express AMPA receptors. PTEN depletion decreases AMPA receptor expression and AMPA-mediated whole-cell currents, resulting in inhibition of AMPA-induced neuronal death in primary cultured and iPS-derived motor neurons. Taken together, our results imply that PTEN depletion may protect motor neurons by inhibition of excitatory transmission that represents a therapeutic strategy of potential benefit for the amelioration of excitotoxicity in ALS and other neurodegenerative disorders.
Collapse
Affiliation(s)
- D-J Yang
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - X-L Wang
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - A Ismail
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - C J Ashman
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - C F Valori
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - G Wang
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - S Gao
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - A Higginbottom
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - P G Ince
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - M Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - J Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - P J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - K Ning
- 1] East Hospital, Tongji University School of Medicine, Shanghai, China [2] Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Medrano MC, Gerrikagoitia I, Martínez-Millán L, Mendiguren A, Pineda J. Functional and morphological characterization of glutamate transporters in the rat locus coeruleus. Br J Pharmacol 2014; 169:1781-94. [PMID: 23638698 DOI: 10.1111/bph.12235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/19/2013] [Accepted: 04/29/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Excitatory amino acid transporters (EAATs) in the CNS contribute to the clearance of glutamate released during neurotransmission. The aim of this study was to explore the role of EAATs in the regulation of locus coeruleus (LC) neurons by glutamate. EXPERIMENTAL APPROACH We measured the effect of different EAAT subtype inhibitors/enhancers on glutamate- and KCl-induced activation of LC neurons in rat slices. EAAT2-3 expression in the LC was also characterized by immunohistochemistry. KEY RESULTS The EAAT2-5 inhibitor DL-threo-β-benzyloxaspartic acid (100 μM), but not the EAAT2, 4, 5 inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (100 μM) or the EAAT2 inhibitor dihydrokainic acid (DHK; 100 μM), enhanced the glutamate- and KCl-induced activation of the firing rate of LC neurons. These effects were blocked by ionotropic, but not metabotrobic, glutamate receptor antagonists. DHK (100 μM) was the only EAAT inhibitor that increased the spontaneous firing rate of LC cells, an effect that was due to inhibition of EAAT2 and subsequent AMPA receptor activation. Chronic treatment with ceftriaxone (200 mg·kg(-1) i.p., once daily, 7 days), an EAAT2 expression enhancer, increased the actions of glutamate and DHK, suggesting a functional impact of EAAT2 up-regulation on the glutamatergic system. Immuhistochemical data revealed the presence of EAAT2 and EAAT3 surrounding noradrenergic neurons and EAAT2 on glial cells in the LC. CONCLUSIONS AND IMPLICATIONS These results remark the importance of EAAT2 and EAAT3 in the regulation of rat LC by glutamate. Neuronal EAAT3 would be responsible for terminating the action of synaptically released glutamate, whereas glial EAAT2 would regulate tonic glutamate concentrations in this nucleus.
Collapse
Affiliation(s)
- M C Medrano
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country (UPV/ EHU), Bizkaia, Spain
| | | | | | | | | |
Collapse
|
20
|
Abstract
Movement is accomplished by the controlled activation of motor unit populations. Our understanding of motor unit physiology has been derived from experimental work on the properties of single motor units and from computational studies that have integrated the experimental observations into the function of motor unit populations. The article provides brief descriptions of motor unit anatomy and muscle unit properties, with more substantial reviews of motoneuron properties, motor unit recruitment and rate modulation when humans perform voluntary contractions, and the function of an entire motor unit pool. The article emphasizes the advances in knowledge on the cellular and molecular mechanisms underlying the neuromodulation of motoneuron activity and attempts to explain the discharge characteristics of human motor units in terms of these principles. A major finding from this work has been the critical role of descending pathways from the brainstem in modulating the properties and activity of spinal motoneurons. Progress has been substantial, but significant gaps in knowledge remain.
Collapse
Affiliation(s)
- C J Heckman
- Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
21
|
Foerster BR, Pomper MG, Callaghan BC, Petrou M, Edden RAE, Mohamed MA, Welsh RC, Carlos RC, Barker PB, Feldman EL. An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T proton magnetic resonance spectroscopy. JAMA Neurol 2013; 70:1009-16. [PMID: 23797905 DOI: 10.1001/jamaneurol.2013.234] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE A lack of neuroinhibitory function may result in unopposed excitotoxic neuronal damage in amyotrophic lateral sclerosis (ALS). OBJECTIVE To determine whether there are reductions in γ-aminobutyric acid (GABA) levels and elevations in glutamate-glutamine (Glx) levels in selected brain regions of patients with ALS by use of proton magnetic resonance spectroscopy. DESIGN Case-control study using short echo time and GABA-edited proton magnetic resonance spectroscopy at 3 T with regions of interest in the left motor cortex, left subcortical white matter, and pons; data analyzed using logistic regression, t tests, and Pearson correlations; and post hoc analyses performed to investigate differences between riluzole-naive and riluzole-treated patients with ALS. SETTING Tertiary referral center. PARTICIPANTS Twenty-nine patients with ALS and 30 age- and sex-matched healthy controls. EXPOSURE Fifteen patients were taking 50 mg of riluzole twice a day as part of their routine clinical care for ALS. MAIN OUTCOMES AND MEASURES Levels of GABA, Glx, choline (a marker of cell membrane turnover), creatine (a marker of energy metabolism), myo-inositol (a marker of glial cells), and N-acetylaspartate (a marker of neuronal integrity). RESULTS Patients with ALS had significantly lower levels of GABA in the motor cortex than did healthy controls (P < .01). Patients with ALS also had significantly lower levels of N-acetylaspartate in the motor cortex (P < .01), subcortical white matter (P < .05), and pons (P < .01) and higher levels of myo-inositol in the motor cortex (P < .001) and subcortical white matter (P < .01) than did healthy controls. Riluzole-naive patients with ALS had higher levels of Glx than did riluzole-treated patients with ALS (P < .05 for pons and motor cortex) and healthy controls (P < .05 for pons and motor cortex). Riluzole-naive patients with ALS had higher levels of creatine in the motor cortex (P < .001 for both comparisons) and subcortical white matter (P ≤ .05 for both comparisons) than did riluzole-treated patients with ALS and healthy controls. Riluzole-naive patients with ALS had higher levels of N-acetylaspartate in the motor cortex than did riluzole-treated patients with ALS (P < .01). CONCLUSIONS AND RELEVANCE There are reduced levels of GABA in the motor cortex of patients with ALS. There are elevated levels of Glx in riluzole-naive patients with ALS compared with riluzole-treated patients with ALS and healthy controls. These results point to an imbalance between excitatory and inhibitory neurotransmitters as being important in the pathogenesis of ALS and an antiglutamatergic basis for the effects of riluzole, although additional research efforts are needed.
Collapse
Affiliation(s)
- Bradley R Foerster
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-5030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gomez-Pinedo U, Yáñez M, Matías-Guiu J, Galán L, Guerrero-Sola A, Benito-Martin MS, Vela A, Arranz-Tagarro JA, García AG. Cellular changes in motor neuron cell culture produced by cytotoxic cerebrospinal fluid from patients with amyotrophic lateral sclerosis. Neurologia 2013; 29:346-52. [PMID: 24144827 DOI: 10.1016/j.nrl.2013.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The neurotoxic effects of cerebrospinal fluid (CSF) from patients with amyotrophic lateral sclerosis (ALS) have been reported by various authors who have attributed this neurotoxicity to the glutamate in CSF-ALS. MATERIAL AND METHODS Cultures of rat embryonic cortical neurons were exposed to CSF from ALS patients during an incubation period of 24 hours. Optical microscopy was used to compare cellular changes to those elicited by exposure to 100μm glutamate, and confocal microscopy was used to evaluate immunohistochemistry for caspase-3, TNFα, and peripherin. RESULTS In the culture exposed to CSF-ALS, we observed cells with nuclear fragmentation and scarce or null structural modifications to the cytoplasmic organelles or to plasma membrane maintenance. This did not occur in the culture exposed to glutamate. The culture exposed to CSF-ALS also demonstrated increases in caspase-3, TNFα, and in peripherin co-locating with caspase-3, but not with TNFα, suggesting that TNFα may play an early role in the process of apoptosis. CONCLUSIONS CFS-ALS cytotoxicity is not related to glutamate. It initially affects the nucleus without altering the cytoplasmic membrane. It causes cytoplasmic apoptosis that involves an increase in caspase-3 co-located with peripherin, which is also overexpressed.
Collapse
Affiliation(s)
- U Gomez-Pinedo
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense, Madrid, España.
| | - M Yáñez
- Instituto Teófilo Hernando, Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, España
| | - J Matías-Guiu
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense, Madrid, España
| | - L Galán
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense, Madrid, España
| | - A Guerrero-Sola
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense, Madrid, España
| | - M S Benito-Martin
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense, Madrid, España
| | - A Vela
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense, Madrid, España
| | - J A Arranz-Tagarro
- Instituto Teófilo Hernando, Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, España
| | - A G García
- Instituto Teófilo Hernando, Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, España
| |
Collapse
|
23
|
The neuroprotective drug riluzole acts via small conductance Ca2+-activated K+ channels to ameliorate defects in spinal muscular atrophy models. J Neurosci 2013; 33:6557-62. [PMID: 23575853 DOI: 10.1523/jneurosci.1536-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinal muscular atrophy (SMA), a recessive neuromuscular disorder, is caused by diminished function of the Survival Motor Neuron (SMN) protein. To define the cellular processes pertinent to SMA, parallel genetic screens were undertaken in Drosophila and Caenorhabditis elegans SMA models to identify modifiers of the SMN loss of function phenotypes. One class of such genetic modifiers was the small conductance, Ca(2+)-activated K(+) (SK) channels. SK channels allow efflux of potassium ions when intracellular calcium increases and can be activated by the neuroprotective drug riluzole. The latter is the only drug with proven, albeit modest, efficacy in the treatment of amyotrophic lateral sclerosis. It is unclear if riluzole can extend life span or ameliorate symptoms in SMA patients as previous studies were limited and of insufficient power to draw any conclusions. The critical biochemical target of riluzole in motor neuron disease is not known, but the pharmacological targets of riluzole include SK channels. We examine here the impact of riluzole in two different SMA models. In vertebrate neurons, riluzole treatment restored axon outgrowth caused by diminished SMN. Additionally, riluzole ameliorated the neuromuscular defects in a C. elegans SMA model and SK channel function was required for this beneficial effect. We propose that riluzole improves motor neuron function by acting on SK channels and suggest that SK channels may be important therapeutic targets for SMA patients.
Collapse
|
24
|
Texidó L, Hernández S, Martín-Satué M, Povedano M, Casanovas A, Esquerda J, Marsal J, Solsona C. Sera from amyotrophic lateral sclerosis patients induce the non-canonical activation of NMDA receptors "in vitro". Neurochem Int 2011; 59:954-64. [PMID: 21782871 DOI: 10.1016/j.neuint.2011.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 11/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by the selective loss of both upper and lower motoneurons (MNs). The familial form of the illness is associated with mutations in the gene encoding Cu/Zn superoxide dismutase 1 (SOD-1) enzyme, but it accounts for fewer than 10% of cases; the rest, more than 90%, correspond to the sporadic form of ALS. Although many proposals have been suggested over the years, the mechanisms underlying the characteristic selective killing of MN in ALS remain unknown. In this study we tested the effect of sera from sporadic ALS patients on NMDA receptors (NMDAR). We hypothesize that an endogenous seric factor is implicated in neuronal death in ALS, mediated by the modulation of NMDAR. Sera from ALS patients and from healthy subjects were pretreated to inactivate complement pathways and dialyzed to remove glutamate and glycine. IgGs from ALS patients and healthy subjects were obtained by affinity chromatography and dialyzed against phosphate-buffered saline. Human NMDAR were expressed in Xenopus laevis oocytes, and ionic currents were recorded using the two-electrode voltage clamp technique. Sera from sporadic ALS patients induced transient oscillatory currents in oocytes expressing NMDAR with a significantly higher total electrical charge than that induced by sera from healthy subjects. Sera from patients with other neuromuscular diseases did not exert this effect. The currents were inhibited by MK-801, a noncompetitive blocker of NMDAR. The PLC inhibitor, U-73122, and the IP(3) receptor antagonist, 2-APB, also inhibited the sera-induced currents. The oscillatory signal recorded was due to internal calcium mobilization. Isolated IgGs from ALS patients significantly affected the activity of oocytes injected with NMDAR, causing a 2-fold increase over the response recorded for IgGs from healthy subjects. Our data support the notion that ALS sera contain soluble factors that mobilize intracellular calcium, not opening directly the ionic conductance, but through the non-canonical activation of NMDAR.
Collapse
Affiliation(s)
- Laura Texidó
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Medical School-Bellvitge Campus, University of Barcelona, C/Feixa Llarga s/n, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hassanzadeh K, Roshangar L, Habibi-asl B, Farajnia S, Izadpanah E, Nemati M, Arasteh M, Mohammadi S. Riluzole prevents morphine-induced apoptosis in rat cerebral cortex. Pharmacol Rep 2011; 63:697-707. [DOI: 10.1016/s1734-1140(11)70581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/28/2010] [Indexed: 11/28/2022]
|
26
|
Manuel M, Heckman CJ. Stronger is not always better: could a bodybuilding dietary supplement lead to ALS? Exp Neurol 2010; 228:5-8. [PMID: 21167830 DOI: 10.1016/j.expneurol.2010.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/11/2022]
Affiliation(s)
- Marin Manuel
- Northwestern University, Department of Physiology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | | |
Collapse
|
27
|
Intracerebroventricular administration of riluzole prevents morphine-induced apoptosis in the lumbar region of the rat spinal cord. Pharmacol Rep 2010; 62:664-73. [DOI: 10.1016/s1734-1140(10)70323-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/19/2010] [Indexed: 11/23/2022]
|
28
|
The AMPA receptor as a therapeutic target: current perspectives and emerging possibilities. Future Med Chem 2010; 2:877-91. [DOI: 10.4155/fmc.10.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is a subtype of the ionotropic glutamate receptors that plays a prominent role in neurotransmission and is widespread throughout the CNS. Because of this, its malfunction can result in a multitude of nervous system diseases. This review looks at compounds that are able to modulate AMPAR function by binding to one of several sites on the receptor that either downregulate its function (competitive, noncompetitive and uncompetitive antagonists) or upregulate its function (positive modulators). It will also give an account of the various diseases that have implicated AMPAR dysfunction and how specific types of AMPAR modulator may be beneficial in their treatment. The AMPAR remains an unexploited but important therapeutic target.
Collapse
|
29
|
Wallén-Mackenzie A, Wootz H, Englund H. Genetic inactivation of the vesicular glutamate transporter 2 (VGLUT2) in the mouse: what have we learnt about functional glutamatergic neurotransmission? Ups J Med Sci 2010; 115:11-20. [PMID: 20187846 PMCID: PMC2853350 DOI: 10.3109/03009730903572073] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
During the past decade, three proteins that possess the capability of packaging glutamate into presynaptic vesicles have been identified and characterized. These three vesicular glutamate transporters, VGLUT1-3, are encoded by solute carrier genes Slc17a6-8. VGLUT1 (Slc17a7) and VGLUT2 (Slc17a6) are expressed in glutamatergic neurons, while VGLUT3 (Slc17a8) is expressed in neurons classically defined by their use of another transmitter, such as acetylcholine and serotonin. As glutamate is both a ubiquitous amino acid and the most abundant neurotransmitter in the adult central nervous system, the discovery of the VGLUTs made it possible for the first time to identify and specifically target glutamatergic neurons. By molecular cloning techniques, different VGLUT isoforms have been genetically targeted in mice, creating models with alterations in their glutamatergic signalling. Glutamate signalling is essential for life, and its excitatory function is involved in almost every neuronal circuit. The importance of glutamatergic signalling was very obvious when studying full knockout models of both VGLUT1 and VGLUT2, none of which were compatible with normal life. While VGLUT1 full knockout mice die after weaning, VGLUT2 full knockout mice die immediately after birth. Many neurological diseases have been associated with altered glutamatergic signalling in different brain regions, which is why conditional knockout mice with abolished VGLUT-mediated signalling only in specific circuits may prove helpful in understanding molecular mechanisms behind such pathologies. We review the recent studies in which mouse genetics have been used to characterize the functional role of VGLUT2 in the central nervous system.
Collapse
Affiliation(s)
- Asa Wallén-Mackenzie
- Department of Neuroscience, Unit of Developmental Genetics, Biomedical Center, Box 593, Uppsala University, S-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
30
|
Hayashida KI, Parker RA, Eisenach JC. Activation of glutamate transporters in the locus coeruleus paradoxically activates descending inhibition in rats. Brain Res 2010; 1317:80-6. [PMID: 20059984 DOI: 10.1016/j.brainres.2009.12.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/15/2009] [Accepted: 12/29/2009] [Indexed: 02/01/2023]
Abstract
Descending noradrenergic inhibition is an important endogenous pain-relief mechanism which can be activated by local glutamate signaling. In the present study, we examined the effect of glutamate transporter activation by riluzole in the regulation of activity of locus coeruleus (LC) neurons, which provide the major inhibitory descending noradrenergic projection to the spinal cord. Local injection of riluzole into the LC dose-dependently reduced hypersensitivity in rats after L5-L6 spinal nerve ligation (SNL). This anti-hypersensitivity effect of LC-injected riluzole was blocked by intrathecal administration of the alpha2-adrenoceptor antagonist idazoxan and intra-LC co-injection of the AMPA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the gap-junction blockers, carbenoxolone (CBX) and meclofenamic acid (MEC). In brainstem slices from normal rats, riluzole increased phosphorylated cAMP response element binding protein (pCREB) expressing nuclei in dopamine-beta-hydroxylase (DbetaH) containing cells in the LC. This riluzole-induced pCREB activation in LC neurons was also blocked by CNQX and CBX. In the primary astrocyte culture, riluzole enhanced glutamate-induced glutamate release. Contrary to expectations, these results suggest that activation of glutamate transporters in the LC results in increase of extracellular glutamate signaling, possibly via facilitation of glutamate release from astrocytes, and activation of LC neurons to induce descending inhibition, and that this paradoxical action of glutamate transporters in the LC requires gap-junction connections.
Collapse
Affiliation(s)
- Ken-ichiro Hayashida
- Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157-1009, USA.
| | | | | |
Collapse
|
31
|
Wootz H, Enjin A, Wallén-Mackenzie A, Lindholm D, Kullander K. Reduced VGLUT2 expression increases motor neuron viability in Sod1(G93A) mice. Neurobiol Dis 2009; 37:58-66. [PMID: 19770042 DOI: 10.1016/j.nbd.2009.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/11/2009] [Accepted: 09/13/2009] [Indexed: 02/07/2023] Open
Abstract
Glutamate-induced excitotoxicity has been suggested to influence pathogenesis in amyotrophic lateral sclerosis (ALS). Vesicular glutamate transporters (VGLUTs) are responsible for transport of glutamate into synaptic vesicles. Nerve terminals that envelop motor neurons in the spinal cord contain VGLUT2 and are likely responsible for most glutamate release on motor neurons. The role of VGLUT2 in ALS and its potential role to influence motor neuron survival have not previously been studied. Here, in a mouse model of ALS, we show that genetic reduction of VGLUT2 protein levels rescues motor neurons in the lumbar spinal cord and in the brainstem as well as neuromuscular junctions in tibialis anterior. Although the number of remaining motor neurons increased, neither disease onset nor life span was affected. We also show that the motor neuron subpopulation-specific markers calcitonin/calcitonin-related polypeptide alpha (Calca) and estrogen related receptor beta (ERRbeta) respond in a similar way to reduced VGLUT2 as the whole motor neuron population suggesting that the rescued motor neurons are not of a particular motor unit type. Taken together, this suggests that reduced levels of VGLUT2 decrease motor neuron degeneration but do not prevent loss of motor neuron function in the SOD1(G93A) mouse model for ALS.
Collapse
Affiliation(s)
- Hanna Wootz
- Department of Neuroscience, Uppsala University, 75123 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
32
|
Habibi-Asl B, Hassanzadeh K, Charkhpour M. Central administration of minocycline and riluzole prevents morphine-induced tolerance in rats. Anesth Analg 2009; 109:936-42. [PMID: 19690270 DOI: 10.1213/ane.0b013e3181ae5f13] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Long-term exposure to opiates induces tolerance to the analgesic effect. The neurobiological mechanism of this phenomenon is not completely clear. In this study, we evaluated the effects of central administration of minocycline (a tetracycline derivative) and riluzole (an antiglutamatergic drug) on morphine-induced tolerance in rats. METHODS Groups of rats received daily morphine (10 mg/kg, IP) in combination with saline (10 microL/rat, intracerebroventricular [ICV]) or 1% Tween 80 (10 microL/rat, ICV) or minocycline (60, 120, and 240 microg/10 microL per rat, ICV) or riluzole (20, 40, 80 microg/10 microL per rat, ICV). Nociception was assessed using hotplate apparatus (55 degrees C +/- 0.5 degrees C). Hotplate latency was recorded when the rat licked its hindpaw. Baseline latencies were determined once per day for each rat, then morphine (10 mg/kg) was injected. After 20 min, the above-mentioned drugs were administered and postdrug latency was measured 10 min after the injection of drugs or vehicles. RESULTS Results showed that ICV administration of minocycline and riluzole delayed morphine-induced tolerance. Morphine tolerance was complete after 8 days in the control groups but was complete in the groups treated with minocycline (120 microg/10 microL per rat) and riluzole (80 microg/10 microL per rat) on the 13th day. In addition, our results showed that minocycline and riluzole increased the total analgesic effect of morphine (area under the curve of the percentage of maximal possible effect values). CONCLUSION The effects of minocycline on nitric oxide and the glutamatergic system and the effect of riluzole on the glutamate system are potentially important mechanisms in delaying morphine-induced tolerance.
Collapse
Affiliation(s)
- Bohlool Habibi-Asl
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
33
|
Del Signore SJ, Amante DJ, Kim J, Stack EC, Goodrich S, Cormier K, Smith K, Cudkowicz ME, Ferrante RJ. Combined riluzole and sodium phenylbutyrate therapy in transgenic amyotrophic lateral sclerosis mice. ACTA ACUST UNITED AC 2009; 10:85-94. [PMID: 18618304 DOI: 10.1080/17482960802226148] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent evidence suggests that transcriptional dysregulation may play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). The histone deacetylase inhibitor, sodium phenylbutyrate (NaPB), is neuroprotective and corrects aberrant gene transcription in ALS mice and has recently been shown to be safe and tolerable in ALS patients while improving hypoacetylation. Since many patients are already on riluzole, it is important to ensure that any proposed therapy does not result in negative synergy with riluzole. The combined treatment of riluzole and NaPB significantly extended survival and improved both the clinical and neuropathological phenotypes in G93A transgenic ALS mice beyond either agent alone. Combination therapy increased survival by 21.5%, compared to the separate administration of riluzole (7.5%) and NaPB (12.8%), while improving both body weight loss and grip strength. The data show that the combined treatment was synergistic. In addition, riluzole/NaPB treatment ameliorated gross lumbar and ventral horn atrophy, attenuated lumbar ventral horn neuronal cell death, and decreased reactive astrogliosis. Riluzole/NaPB administration increased acetylation at H4 and increased NF-kappaB p50 translocation to the nucleus in G93A mice, consistent with a therapeutic effect. These data suggest that NaPB may not interfere with the pharmacologic action of riluzole in ALS patients.
Collapse
|
34
|
Valentine GW, Sanacora G. Targeting glial physiology and glutamate cycling in the treatment of depression. Biochem Pharmacol 2009; 78:431-9. [PMID: 19376090 DOI: 10.1016/j.bcp.2009.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/23/2009] [Accepted: 04/09/2009] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates that dysfunction in amino acid neurotransmission contributes to the pathophysiology of depression. Consequently, the modulation of amino acid neurotransmission represents a new strategy for antidepressant development. While glutamate receptor ligands are known to have antidepressant effects, mechanisms regulating glutamate cycling and metabolism may be viable drug targets as well. In particular, excitatory amino acid transporters (EAATs) that are embedded in glial processes constitute the primary means of clearing extrasynaptic glutamate. Therefore, the decreased glial number observed in preclinical stress models, and in postmortem tissue from depressed patients provides intriguing, yet indirect evidence for a role of disrupted glutamate homeostasis in the pathophysiology of depression. More direct evidence for this hypothesis comes from studies using magnetic resonance spectroscopy (MRS), a technique that non-invasively measures in vivo concentrations of glutamate and other amino acids under different experimental conditions. Furthermore, when combined with the infusion of (13)C-labeled metabolic precursors, MRS can measure flux through discrete metabolic pathways. This approach has recently shown that glial amino acid metabolism is reduced by chronic stress, an effect that provides a link between environmental stress and the decreased EAAT activity observed under conditions of increased oxidative stress in the brain. Furthermore, administration of riluzole, a drug that enhances glutamate uptake through EAATs, reversed this stress-induced change in glial metabolism. Because riluzole has antidepressant effects in both animal models and human subjects, it may represent the prototype for a novel class of antidepressants with the modulation of glial physiology as a primary mechanism of action.
Collapse
Affiliation(s)
- Gerald W Valentine
- Yale University, Department of Psychiatry, CNRU, 34 Park Street, New Haven, CT 06508, USA
| | | |
Collapse
|
35
|
Stevenson A, Yates DM, Manser C, De Vos KJ, Vagnoni A, Leigh PN, McLoughlin DM, Miller CCJ. Riluzole protects against glutamate-induced slowing of neurofilament axonal transport. Neurosci Lett 2009; 454:161-4. [PMID: 19429076 DOI: 10.1016/j.neulet.2009.02.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 02/26/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
Abstract
Riluzole is the only drug approved for the treatment of amyotrophic lateral sclerosis (ALS) but its precise mode of action is not properly understood. Damage to axonal transport of neurofilaments is believed to be part of the pathogenic mechanism in ALS and this has been linked to defective glutamate handling and increased phosphorylation of neurofilament side-arm domains. Here, we show that riluzole protects against glutamate-induced slowing of neurofilament transport. Protection is associated with decreased neurofilament side-arm phosphorylation and inhibition of the activities of two neurofilament kinases, ERK and p38 that are activated in ALS. Thus, the anti-glutamatergic properties of riluzole include protection against glutamate-induced changes to neurofilament phosphorylation and transport.
Collapse
Affiliation(s)
- Alison Stevenson
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pieri M, Carunchio I, Curcio L, Mercuri NB, Zona C. Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis. Exp Neurol 2009; 215:368-79. [DOI: 10.1016/j.expneurol.2008.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/06/2008] [Accepted: 11/08/2008] [Indexed: 12/11/2022]
|
37
|
Carunchio I, Mollinari C, Pieri M, Merlo D, Zona C. GAB(A) receptors present higher affinity and modified subunit composition in spinal motor neurons from a genetic model of amyotrophic lateral sclerosis. Eur J Neurosci 2009; 28:1275-85. [PMID: 18973555 DOI: 10.1111/j.1460-9568.2008.06436.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the selective degeneration of motor neurons in the spinal cord, brainstem and cerebral cortex. In this study we have analysed the electrophysiological properties of GABA(A) receptors and GABA(A) alpha1 and alpha2 subunits expression in spinal motor neurons in culture obtained from a genetic model of ALS (G93A) and compared with transgenic wild type SOD1 (SOD1) and their corresponding non transgenic litter mates (Control). Although excitotoxic motor neuron death has been extensively studied in relation to Ca(2+)-dependent processes, strong evidence indicates that excitotoxic cell death is also remarkably dependent on Cl(-) ions and on GABA(A) receptor activation. In this study we have analysed the electrophysiological properties of GABA(A) receptors and the expression of GABA(A)alpha(1) and alpha(2) subunits in cultured motor neurons obtained from a genetic model of amyotrophic lateral sclerosis (G93A) and compared them with transgenic wild-type Cu,Zn superoxide dismutase and their corresponding non-transgenic littermates (Control). In all tested motor neurons, the application of gamma-aminobutyric acid (GABA) (0.5-100 mum) evoked an inward current that was reversibly blocked by bicuculline (100 mum), thus indicating that it was mediated by the activation of GABA(A) receptors. Our results indicate that the current density at high GABA concentrations is similar in control, Cu,Zn superoxide dismutase and G93A motor neurons. However, the dose-response curve significantly shifted toward lower concentration values in G93A motor neurons and the extent of desensitization also increased in these neurons. Finally, multiplex single-cell real-time polymerase chain reaction and immunofluorescence revealed that the amount of GABA(A)alpha(1) subunit was significantly increased in G93A motor neurons, whereas the levels of alpha(2) subunit were unchanged. These data show that the functionality and expression of GABA(A) receptors are altered in G93A motor neurons inducing a higher Cl(-) influx into the cell with a possible consequent neuronal excitotoxicity acceleration.
Collapse
Affiliation(s)
- Irene Carunchio
- Department of Neuroscience, University of Rome 'Tor Vergata', Via Montpellier 1, 00173 Rome, Italy
| | | | | | | | | |
Collapse
|
38
|
Pittenger C, Coric V, Banasr M, Bloch M, Krystal JH, Sanacora G. Riluzole in the treatment of mood and anxiety disorders. CNS Drugs 2008; 22:761-86. [PMID: 18698875 DOI: 10.2165/00023210-200822090-00004] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances implicate amino acid neurotransmission in the pathophysiology and treatment of mood and anxiety disorders. Riluzole, which is approved and marketed for the treatment of amyotrophic lateral sclerosis, is thought to be neuroprotective through its modulation of glutamatergic neurotransmission. Riluzole has multiple molecular actions in vitro; the two that have been documented to occur at physiologically realistic drug concentrations and are therefore most likely to be clinically relevant are inhibition of certain voltage-gated sodium channels, which can lead to reduced neurotransmitter release, and enhanced astrocytic uptake of extracellular glutamate.Although double-blind, placebo-controlled trials are lacking, several open-label trials have suggested that riluzole, either as monotherapy or as augmentation of standard therapy, reduces symptoms of obsessive-compulsive disorder, unipolar and bipolar depression, and generalized anxiety disorder. In studies of psychiatrically ill patients conducted to date, the drug has been quite well tolerated; common adverse effects include nausea and sedation. Elevation of liver function tests is common and necessitates periodic monitoring, but has been without clinical consequence in studies conducted to date in psychiatric populations. Case reports suggest utility in other conditions, including trichotillomania and self-injurious behaviour associated with borderline personality disorder. Riluzole may hold promise for the treatment of several psychiatric conditions, possibly through its ability to modulate pathologically dysregulated glutamate levels, and merits further investigation.
Collapse
Affiliation(s)
- Christopher Pittenger
- Clinical Neuroscience Research Unit, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Kim KJ, Cho HS, Choi SJ, Jeun SH, Kim SY, Sung KW. Direct effects of riluzole on 5-hydroxytryptamine (5-HT)3 receptor-activated ion currents in NCB-20 neuroblastoma cells. J Pharmacol Sci 2008; 107:57-65. [PMID: 18460823 DOI: 10.1254/jphs.fp0072095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The pharmacological action of riluzole, a drug that has been approved as a neuroprotective agent for the treatment of amyotrophic lateral sclerosis, has not yet been established. We examined the effects of riluzole on 5-hydroxytryptamine (5-HT)3) receptors in NCB-20 neuroblastoma cells using the whole-cell voltage clamp technique combined with a fast drug application method. Co-application of riluzole (1 - 300 microM, 5 s) produced a dose-dependent reduction in peak amplitudes and in the rise slope of the currents induced by 2 microM 5-HT. In addition, 5-HT3-mediated currents evoked by dopamine, a partial 5-HT3-receptor agonist, were inhibited by riluzole co-application. These inhibitory effects were clearly shown at low concentrations of 5-HT. The decay time constants of the receptor desensitization and deactivation were also significantly attenuated by riluzole. G-protein inhibitors (pertussis toxin and guanosine 5'-[beta-thio] diphosphate) did not completely block these inhibitory actions of riluzole. These results indicate that riluzole inhibits 5-HT3-induced ion currents directly by slowing channel activation in NCB-20 neuroblastoma cells.
Collapse
Affiliation(s)
- Ki Jung Kim
- Department of Pharmacology, Medical Research Center, College of Medicine, The Catholic University of Korea, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Increasing evidence demonstrates that neuroplasticity, a fundamental mechanism of neuronal adaptation, is disrupted in mood disorders and in animal models of stress. Here we provide an overview of the evidence that chronic stress, which can precipitate or exacerbate depression, disrupts neuroplasticity, while antidepressant treatment produces opposing effects and can enhance neuroplasticity. We discuss neuroplasticity at different levels: structural plasticity (such as plastic changes in spine and dendrite morphology as well as adult neurogenesis), functional synaptic plasticity, and the molecular and cellular mechanisms accompanying such changes. Together, these studies elucidate mechanisms that may contribute to the pathophysiology of depression. Greater appreciation of the convergence of mechanisms between stress, depression, and neuroplasticity is likely to lead to the identification of novel targets for more efficacious treatments.
Collapse
Affiliation(s)
- Christopher Pittenger
- Department of Psychiatry, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT 6508, USA
| | | |
Collapse
|
41
|
Joo IS, Hwang DH, Seok JI, Shin SK, Kim SU. Oral administration of memantine prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Clin Neurol 2007; 3:181-6. [PMID: 19513129 PMCID: PMC2686946 DOI: 10.3988/jcn.2007.3.4.181] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 11/12/2007] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE N-methyl-D-aspartate (NMDA)-mediated neurotoxicity and oxidative stress have been implicated in the etiology of amyotrophic lateral sclerosis (ALS). Memantine is a low-affinity, noncompetitive NMDA receptor antagonist that may protect against motor neuron degeneration. METHODS Thirty transgenic mice expressing the G93A SOD1 mutation were randomly divided into control, low-dose memantine (30 mg/kg/day), and high-dose memantine (90 mg/kg/day) groups, with memantine supplied daily with drinking water beginning at 75 days of age. Body weight, survival, and behavioral performances including a rotarod test, paw grip endurance, and hindlimb extension reflex were assessed in the control and memantine-diet groups. RESULTS Clinical symptoms were evident in the G93A transgenic mice by 11 weeks of age. Memantine was tolerated well. Compared to control, mice treated with memantine performed better in the rotarod test and hindlimb extension reflex. Moreover, low-dose memantine treatment significantly prolonged the survival of the transgenic mice relative to control mice (141 vs 134 days, p<0.05). CONCLUSIONS These findings suggest that memantine, even when administered at the time of symptom onset, has beneficial effects on patients with ALS.
Collapse
Affiliation(s)
- In-Soo Joo
- Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | |
Collapse
|
42
|
Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol 2007; 578:171-6. [PMID: 18036519 DOI: 10.1016/j.ejphar.2007.10.023] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/11/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Riluzole exerts a neuroprotective effect through different mechanisms, including action on glutamatergic transmission. We investigated whether this drug affects glutamate transporter-mediated uptake, using clonal cell lines stably expressing the rat glutamate transporters GLAST, GLT1 or EAAC1. We found that riluzole significantly increased glutamate uptake in a dose-dependent manner; kinetic analysis indicated that the apparent affinity of glutamate for the transporters was significantly increased, with similar effects in the three cell lines. This may facilitate the buffering of excessive extracellular glutamate under pathological conditions suggesting that riluzole's neuroprotective action might be partly mediated by its activating effect on glutamate uptake.
Collapse
|
43
|
Reimers S, Hartlage-Rübsamen M, Brückner G, Rossner S. Formation of perineuronal nets in organotypic mouse brain slice cultures is independent of neuronal glutamatergic activity. Eur J Neurosci 2007; 25:2640-8. [PMID: 17561838 DOI: 10.1111/j.1460-9568.2007.05514.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perineuronal nets (PNs) are a specialized form of the extracellular matrix and cover specific sets of neurons in distinct brain areas. Animal experiments on sensory visual deprivation have demonstrated that the generation of PNs around neurons of the visual cortex is dependent on neuronal activity during the critical period of visual experience. The importance of the activity of specific neurotransmitter systems for PN formation has, however, not yet been demonstrated. Based on the predominantly glutamatergic innervation of the visual cortex we hypothesized that reduced glutamatergic activity impairs the development of PNs. To address this question, genetic mouse models with compromised glutamate release [Munc13-1-knockout (KO) and Munc13-1/2 double-KO (DKO)] and chronic pharmacological treatments interfering with specific steps of glutamatergic transmission were used. Under experimental conditions of glutamatergic hypofunction PN formation was studied in organotypic brain slice cultures with Wisteria floribunda lectin binding and with aggrecan immunohistochemistry. After cultivation for 21 days a regular PN formation was observed in brain slices (i) derived from Munc13-1-KO and Munc13-1/2-DKO mice, (ii) after blockade of metabotropic and ionotropic glutamate receptors with MCPG and kynurenate, and (iii) after suppression of glutamate release by blockade of presynaptic Ca++ channels with riluzole. Nonselective suppression of neuronal activity by blockade of voltage-gated sodium channels with tetrodotoxin clearly inhibited PN formation. These results indicate that neuronal activity is required but that the glutamatergic system is not essential for PN development.
Collapse
Affiliation(s)
- Sabrina Reimers
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | | | | | | |
Collapse
|
44
|
Zhong G, Masino MA, Harris-Warrick RM. Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. J Neurosci 2007; 27:4507-18. [PMID: 17460064 PMCID: PMC6673000 DOI: 10.1523/jneurosci.0124-07.2007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The persistent sodium current (I(Na(P))) has been implicated in the regulation of synaptic integration, intrinsic membrane properties, and rhythm generation in many types of neurons. We characterized I(Na(P)) in commissural interneurons (CINs) in the neonatal (postnatal days 0-3) mouse spinal cord; it is activated at subthreshold potentials, inactivates slowly, and can be blocked by low concentrations of riluzole. The role of I(Na(P)) in locomotor pattern generation was examined by applying riluzole during fictive locomotion induced by NMDA, serotonin, and dopamine or by stimulation of the cauda equina. Blockade of I(Na(P)) has marginal effects on the locomotion frequency but progressively weakens the rhythmic firing and locomotor-related membrane oscillation of CINs and motoneurons (MNs) and the locomotor-like bursts in ventral roots, until the motor pattern ceases. Riluzole directly affects the intrinsic firing properties of CINs and MNs, reducing their ability to fire repetitively during tonic depolarizations and raising their spike threshold. At the same time, riluzole has little effects on the strength of spike-evoked synaptic transmission onto CINs and MNs. Our results suggest that I(Na(P)) is essential for the generation of the locomotor pattern and acts in part by regulating the frequency of interneuron firing in the central pattern generator for locomotion.
Collapse
Affiliation(s)
- Guisheng Zhong
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
45
|
Abstract
We previously showed in dissociated cultures of fetal rat spinal cord that disinhibition-induced bursting is based on intrinsic spiking, network recruitment, and a network refractory period after the bursts. A persistent sodium current (I(NaP)) underlies intrinsic spiking, which, by recurrent excitation, generates the bursting activity. Although full blockade of I(NaP) with riluzole disrupts such bursting, the present study shows that partial blockade of I(NaP) with low doses of riluzole maintains bursting activity with unchanged burst rate and burst duration. More important, low doses of riluzole turned bursts composed of persistent activity into bursts composed of oscillatory activity at around 5 Hz. In a search for the mechanisms underlying the generation of such intraburst oscillations, we found that activity-dependent synaptic depression was not changed with low doses of riluzole. On the other hand, low doses of riluzole strongly increased spike-frequency adaptation and led to early depolarization block when bursts were simulated by injecting long current pulses into single neurons in the absence of fast synaptic transmission. Phenytoin is another I(NaP) blocker. When applied in doses that reduced intrinsic activity by 80-90%, as did low doses of riluzole, it had no effect either on spike-frequency adaptation or on depolarization block. Nor did phenytoin induce intraburst oscillations after disinhibition. A theoretical model incorporating a depolarization block mechanism could reproduce the generation of intraburst oscillations at the network level. From these findings we conclude that riluzole-induced intraburst oscillations are a network-driven phenomenon whose major accommodation mechanism is depolarization block arising from strong sodium channel inactivation.
Collapse
Affiliation(s)
- Cédric Yvon
- Department of Physiology, University of Bern, Switzerland.
| | | | | |
Collapse
|
46
|
Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1068-82. [PMID: 16806844 DOI: 10.1016/j.bbadis.2006.05.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 05/04/2006] [Accepted: 05/10/2006] [Indexed: 12/14/2022]
Abstract
Unfortunately and despite all efforts, amyotrophic lateral sclerosis (ALS) remains an incurable neurodegenerative disorder characterized by the progressive and selective death of motor neurons. The cause of this process is mostly unknown, but evidence is available that excitotoxicity plays an important role. In this review, we will give an overview of the arguments in favor of the involvement of excitotoxicity in ALS. The most important one is that the only drug proven to slow the disease process in humans, riluzole, has anti-excitotoxic properties. Moreover, consumption of excitotoxins can give rise to selective motor neuron death, indicating that motor neurons are extremely sensitive to excessive stimulation of glutamate receptors. We will summarize the intrinsic properties of motor neurons that could render these cells particularly sensitive to excitotoxicity. Most of these characteristics relate to the way motor neurons handle Ca(2+), as they combine two exceptional characteristics: a low Ca(2+)-buffering capacity and a high number of Ca(2+)-permeable AMPA receptors. These properties most likely are essential to perform their normal function, but under pathological conditions they could become responsible for the selective death of motor neurons. In order to achieve this worst-case scenario, additional factors/mechanisms could be required. In 1 to 2% of the ALS patients, mutations in the SOD1 gene could shift the balance from normal motor neuron excitation to excitotoxicity by decreasing glutamate uptake in the surrounding astrocytes and/or by interfering with mitochondrial function. We will discuss point by point these different pathogenic mechanisms that could give rise to classical and/or slow excitotoxicity leading to selective motor neuron death.
Collapse
Affiliation(s)
- L Van Den Bosch
- Neurobiology, Campus Gasthuisberg O&N2, PB1022, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
47
|
Durand J, Amendola J, Bories C, Lamotte d'Incamps B. Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2006; 99:211-20. [PMID: 16448809 DOI: 10.1016/j.jphysparis.2005.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative and fatal human disorder characterized by progressive loss of motor neurons. Transgenic mouse models of ALS are very useful to study the initial mechanisms underlying this neurodegenerative disease. We will focus here on the earlier abnormalities observed in superoxide dismutase 1 (SOD1) mutant mice. Several hypotheses have been advanced to explain the selective loss of motor neurons such as apoptosis, neurofilament disorganisation, oxidative stress, mitochondrial dysfunction, astrogliosis and excitotoxicity. Although disease onset appears at adulthood, recent studies have detected abnormalities during embryonic and postnatal maturation in animal models of ALS. We reported that SOD1(G85R) mutant mice exhibit specific delays in acquiring sensory-motor skills during the first week after birth. In addition, physiological measurements on in vitro spinal cord preparations reveal defects in evoking rhythmic activity with N-methyl-DL-aspartate and serotonin at lumbar, but not sacral roots. This is potentially significant, as functions involving sacral roots are spared at late stages of the disease. Moreover, electrical properties of SOD1 lumbar motoneurons are altered as early as the second postnatal week when mice begin to walk. Alterations concern the input resistance and the gain of SOD1 motoneurons which are lower than in control motoneurons. Whether or not the early changes in discharge firing are responsible for the uncoupling between motor axon terminals and muscles is still an open question. A link between these early electrical abnormalities and the late degeneration of motoneurons is proposed in this short review. Our data suggest that ALS, as other neurodegenerative diseases, could be a consequence of an abnormal development of neurons and network properties. We hypothesize that the SOD1 mutation could induce early changes during the period of maturation of motor systems and that compensatory mechanisms-linked to developmental spinal plasticity-might explain the late onset of the disease.
Collapse
Affiliation(s)
- Jacques Durand
- CNRS UMR 6196, Plasticité et Physiopathologie de la Motricité, Université de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
48
|
Mathew SJ, Keegan K, Smith L. Glutamate modulators as novel interventions for mood disorders. BRAZILIAN JOURNAL OF PSYCHIATRY 2005; 27:243-8. [PMID: 16224615 DOI: 10.1590/s1516-44462005000300016] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED Recent evidence suggests that critical molecules in neurotrophic signaling cascades are long-term targets for currently available monoaminergic antidepressants. As chronic and severe mood disorders are characterized by impairments in neuronal resilience, pharmacological strategies that subserve a neuroprotective function might alter disorder pathophysiology and modify disease progression. Several promising approaches involve modulation of the glutamate neurotransmitter system, via post-synaptic receptor blockade or potentiation and presynaptic vesicular release inhibition. A focused review of the extant scientific literature was conducted, with a discussion of 3 compounds or classes of drugs currently undergoing clinical investigation: ketamine, riluzole, and AMPA receptor potentiators. Recent investigations in mood disordered patients suggest that the NMDA receptor antagonist ketamine might demonstrate rapid antidepressant properties. Riluzole has been shown to reverse glutamate-mediated impairments in neuronal plasticity and to stimulate the synthesis of brain derived neurotrophic factor. Open-label trials in treatment-resistant depression have yielded promising results. Likewise, AMPA receptor potentiators favorably impact neurotrophic factors as well as enhance cognition. CONCLUSIONS Pharmacological approaches that modulate components of the glutamate system offer novel targets for severe, recurrent mood disorders. Controlled studies are necessary.
Collapse
Affiliation(s)
- Sanjay J Mathew
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|