1
|
Platzl C, Kaser-Eichberger A, Wolfmeier H, Trost A, Schroedl F. Human intrinsic choroidal neurons do not alter the expression of intrinsic markers in response to pressure. Br J Ophthalmol 2023; 107:1209-1215. [PMID: 34933896 DOI: 10.1136/bjophthalmol-2021-320211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The choroid is densely innervated by all parts of the autonomic nervous system and further harbours a network of local nerve cells, the intrinsic choroidal neurons (ICN). Their function in ocular control is currently unknown. While morphological data assume a role in intraocular pressure regulation, we here test if increased pressure on isolated choroids may activate ICN. METHODS Donor tissue was transferred into a pressurisable tissue culture chamber, and nasal and temporal choroid halves incubated for 1 or 4 hours, with pressures set to 15 or 50 mm Hg, followed by qRT-PCR expression analysis of the ICN-specific markers VIP, UCN, NOS1, UCH-L1. POL2-normalised data in the different pressure settings, incubation times and localisations were statistically analysed. RESULTS The presence of the ICN-specific markers VIP, UCN, NOS1, UCH-L1 was confirmed using immunohistochemistry, and mRNA of all markers was detected in all experimental conditions. Marker analysis revealed no significant changes of mRNA expression levels between 15 and 50 mm Hg in the different incubation times. When comparing all samples over all experimental conditions, a significant increase of VIP and NOS1 mRNA was detected in temporal versus nasal choroids. CONCLUSION In this functional analysis of human ICN in vitro, higher amounts of VIP and NOS1 mRNA were detected in the temporal choroid, that is, the choroidal site with ICN accumulation. Further, our data indicate that elevated pressure is apparently not able to trigger ICN responses via the investigated markers. Alternative markers and stimuli need to be investigated in upcoming studies in order to unravel ICN function.
Collapse
Affiliation(s)
- Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Heidi Wolfmeier
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
2
|
Wang SC, Parpura V, Wang YF. Astroglial Regulation of Magnocellular Neuroendocrine Cell Activities in the Supraoptic Nucleus. Neurochem Res 2020; 46:2586-2600. [PMID: 33216313 DOI: 10.1007/s11064-020-03172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC's ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.
Collapse
Affiliation(s)
- Stephani C Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35242, USA.
| | - Yu-Feng Wang
- Department of Physiology School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150086, China.
| |
Collapse
|
3
|
Benabdesselam R, Rendon A, Dorbani-Mamine L, Hardin-Pouzet H. Effect of Dp71 deficiency on the oxytocin hypothalamic axis in osmoregulation function in mice. Acta Histochem 2019; 121:268-276. [PMID: 30642627 DOI: 10.1016/j.acthis.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 11/25/2022]
Abstract
Dp71 is the major form of dystrophins (Dp) in the supraoptic nucleus (SON) and in the neural lobe of hypophysis (NL/HP). Dp71-null mice exhibit a hypo-osmolar status attributed to an altered osmosensitivity of the SON and to a perturbed vasopressinergic axis. Because oxytocin (OT) is implicated in osmoregulation via natriuresis, this study explored the oxytocinergic axis in Dp71-null mice after salt-loading (SL). Under normosmolar conditions, OT-mRNA expression was higher in the Dp71-null SON compared to wild-type (wt) and the OT peptide level has not changed. Dp-immunostaining was localized in astrocytes end-feet surrounding vessels in wt SON. This distribution changed in Dp71-null SON, Dp being detected in OT-soma of MCNs. nNOS and NADPH-diaphorase levels increased in the OT area of the Dp71-null SON compared to wt. In the NL/HP, OT level reduced in Dp71-null mice and Dp localization changed from pituicytes end-feet in wt SON to OT terminals in Dp71-null SON. Salt-Loading resulted in an increase of OT-mRNA and peptide levels in wt SON but had no effect in Dp71-null SON. In the NL/HP, OT content was reduced after SL. For Dp71-null mice, OT level, already low in control, was not modified by SL. Dp level was not affected by SL in the SON nor in the NL/HP. Our data confirmed the importance of Dp71 for the SON functionality in osmoregulation. The localization of Dp71 at the glial-vascular interface could be associated with SON osmosensitivity, leading to an adequate OT synthesis in the SON and release from the NL/HP upon plasmatic hyperosmolality.
Collapse
|
4
|
Shakya M, Shrestha PK, Briski KP. Hindbrain 5'-Adenosine Monophosphate-activated Protein Kinase Mediates Short-term Food Deprivation Inhibition of the Gonadotropin-releasing Hormone-Luteinizing Hormone Axis: Role of Nitric Oxide. Neuroscience 2018; 383:46-59. [PMID: 29746990 DOI: 10.1016/j.neuroscience.2018.04.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
Hindbrain-derived stimuli restrain the gonadotropin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) reproductive neuroendocrine axis during energy insufficiency. Interruption of food intake, planned or unplanned, is emblematic of modern life. This study investigated the premise that the hindbrain energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) inhibits reproductive neuroendocrine function in short term, e.g. 18-h food-deprived (FD) estradiol (E)-implanted ovariectomized female rats. Intra-caudal fourth ventricular administration of the AMPK inhibitor Compound C (Cc) reversed FD-induced inhibition of rostral preoptic (rPO) GnRH protein expression and LH release in animals given E to replicate proestrus (high-E dose-, but not metestrus (low-E dose)-stage plasma steroid levels. FD caused Cc-reversible augmentation or diminution of preoptic norepinephrine (NE) activity in high- versus low-E rats, respectively, and AMPK-independent reductions in hypothalamic NE accumulation in the latter. Nitric oxide (NO) and kisspeptin are key stimulatory signals for the preovulatory LH surge. Here, FD inhibited rPO neuronal nitric oxide synthase protein expression in high-, but not low-E-dosed animals. Lateral ventricular delivery of the NO donor 3-morpholinosydnonimine (SIN-1) reversed inhibitory GnRH and LH responses to FD in high-E rats, and normalized rPO Vglut2, anteroventral periventricular KiSS1, and dorsomedial hypothalamic RFRP-3 mRNA and/or protein profiles. Data show that FD curtails reproductive neuroendocrine outflow by hindbrain AMPK-dependent mechanisms in the presence of peak estrous cycle E levels. Results indicate that neural networks linking this sensor to GnRH neurons likely involve NO signaling, which may function upstream of one or more neurotransmitters identified here by SIN-1-reversible inhibitory responses to FD.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
5
|
Gamil NM, Maklad YA, Ahmed MA, Nofal S, Ahmed AA. Modulatory effect of cilostazol on tramadol-induced behavioral and neurochemical alterations in rats challenged across the forced swim despair test. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
6
|
Morgese MG, Colaianna M, Mhillaj E, Zotti M, Schiavone S, D'Antonio P, Harkin A, Gigliucci V, Campolongo P, Trezza V, De Stradis A, Tucci P, Cuomo V, Trabace L. Soluble beta amyloid evokes alteration in brain norepinephrine levels: role of nitric oxide and interleukin-1. Front Neurosci 2015; 9:428. [PMID: 26594145 PMCID: PMC4633524 DOI: 10.3389/fnins.2015.00428] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022] Open
Abstract
Strong evidence showed neurotoxic properties of beta amyloid (Aβ) and its pivotal role in the Alzheimer's disease (AD) pathogenesis. Beside, experimental data suggest that Aβ may have physiological roles considering that such soluble peptide is produced and secreted during normal cellular activity. There is now suggestive evidence that neurodegenerative conditions, like AD, involve nitric oxide (NO) in their pathogenesis. Nitric oxide also possess potent neuromodulatory actions in brain regions, such as prefrontal cortex (PFC), hippocampus (HIPP), and nucleus accumbens (NAC). In the present study, we evaluated the effect of acute Aβ injection on norepinephrine (NE) content before and after pharmacological manipulations of nitrergic system in above mentioned areas. Moreover, effects of the peptide on NOS activity were evaluated. Our data showed that 2 h after i.c.v. soluble Aβ administration, NE concentrations were significantly increased in the considered areas along with increased iNOS activity. Pre-treatment with NOS inhibitors, 7-Nitroindazole (7-NI), and N6-(1-iminoethyl)-L-lysine-dihydrochloride (L-NIL), reversed Aβ-induced changes. Ultimately, pharmacological block of interleukin1 (IL-1) receptors prevented NE increase in all brain regions. Taken together our findings suggest that NO and IL-1 are critically involved in regional noradrenergic alterations induced by soluble Aβ injection.
Collapse
Affiliation(s)
- Maria G Morgese
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Marilena Colaianna
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy ; Department of Pathology and Immunology, University of Geneva Geneva, Switzerland
| | - Emanuela Mhillaj
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy ; Department of Physiology and Pharmacology, La Sapienza, University of Rome Rome, Italy
| | - Margherita Zotti
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Palma D'Antonio
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| | - Valentina Gigliucci
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, La Sapienza, University of Rome Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, University "Roma Tre," Rome, Italy
| | - Angelo De Stradis
- Department of Bio Agro-Food Sciences, The Institute of Sustainable Plant Protection, National Research Council Bari, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology, La Sapienza, University of Rome Rome, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
7
|
St-Louis R, Parmentier C, Grange-Messent V, Mhaouty-Kodja S, Hardin-Pouzet H. Reactive oxygen species are physiological mediators of the noradrenergic signaling pathway in the mouse supraoptic nucleus. Free Radic Biol Med 2014; 71:231-239. [PMID: 24681257 DOI: 10.1016/j.freeradbiomed.2014.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/20/2014] [Accepted: 03/18/2014] [Indexed: 11/21/2022]
Abstract
Free radicals are essential for the vasopressin (AVP) response to plasmatic hyperosmolarity. Noradrenergic afferents are the major projections on the supraoptic nucleus (SON) of the hypothalamus and stimulate the expression of AVP via a nitric oxide (NO) pathway. In this study, we investigated the mechanisms linking free radicals and noradrenaline (NA)-induced regulation of AVP. Analysis of Tg8 transgenic mice, invalidated for the monoamine oxidase-A gene and with consequently high levels of brain monoamines and AVP in the SON, showed that free radicals are more abundant in their SON than in that of wild-type mice (WT). Antioxidant superoxide dismutase 1 and 2 and catalase enzyme activities were also higher in these mice than in WT. This may explain the observed absence of cytotoxicity that would otherwise be associated with such high level of free radicals. Treatment of Tg8 mice with α-MPT, a blocking agent for NA synthesis, decreased both the production of free radicals and the AVP levels in the SON. Furthermore, incubation of ex vivo slices including the SON with NA increased the production of free radicals and AVP levels in wild-type mice. When NA was associated with α-lipoic acid, an antioxidant blocking the production of free radicals, AVP remained at its control level, indicating that free radicals are required for the effect of NA on the expression of AVP. In slices incubated with SNP, a producer of NO, free radicals and AVP levels increased. When NA was associated with L-NAME (a NO synthase blocker), the levels of free radicals and AVP were the same as in controls. Thus, the noradrenaline-NO pathway, which stimulates the expression of vasopressin, involves free radicals. This study provides further evidence of the physiological importance of free radicals, which should no longer be considered solely as cytotoxic factors.
Collapse
Affiliation(s)
- Ronald St-Louis
- UPMC Université Paris 06, F-75005 Paris, France; INSERM, UMRS 1130, F-75005 Paris, France; CNRS, UMR 8246, F-75005 Paris, France
| | - Caroline Parmentier
- UPMC Université Paris 06, F-75005 Paris, France; INSERM, UMRS 1130, F-75005 Paris, France; CNRS, UMR 8246, F-75005 Paris, France
| | - Valérie Grange-Messent
- UPMC Université Paris 06, F-75005 Paris, France; INSERM, UMRS 1130, F-75005 Paris, France; CNRS, UMR 8246, F-75005 Paris, France
| | - Sakina Mhaouty-Kodja
- UPMC Université Paris 06, F-75005 Paris, France; INSERM, UMRS 1130, F-75005 Paris, France; CNRS, UMR 8246, F-75005 Paris, France
| | - Hélène Hardin-Pouzet
- UPMC Université Paris 06, F-75005 Paris, France; INSERM, UMRS 1130, F-75005 Paris, France; CNRS, UMR 8246, F-75005 Paris, France.
| |
Collapse
|
8
|
Benabdesselam R, Dorbani-Mamine L, Benmessaoud-Mesbah O, Rendon A, Mhaouty-Kodja S, Hardin-Pouzet H. Dp71 gene disruption alters the composition of the dystrophin-associated protein complex and neuronal nitric oxide synthase expression in the hypothalamic supraoptic and paraventricular nuclei. J Endocrinol 2012; 213:239-49. [PMID: 22493004 DOI: 10.1530/joe-12-0066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DP71 is the major cerebral dystrophin isoform and exerts its multiple functions via the dystrophin-associated protein complex (DAPC), also comprised of β-dystroglycan (β-DG) and α1-syntrophin (α1-Syn). Since DP71 disruption leads to impairment in the central control of the osmoregulatory axis, we investigated: 1) the DAPC composition in the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) of Dp71-null mice; and 2) the expression and activity of neuronal nitric oxide synthase (nNOS), because it is a potential partner of the DAPC and a functional index of osmoregulatory axis activity. In wild-type mice, dystrophins and their autosomal homologs the utrophins, β-DG, and α1-Syn were localized in astrocyte end feet. In Dp71-null mice, the levels of β-DG and α1-Syn were lower and utrophin expression did not change. The location of the DAPC in astrocytic end feet suggests that it could be involved in hypothalamic osmosensitivity, which adapts the osmotic response. The altered composition of the DAPC in Dp71-null mice could thus explain why these mice manifest an hypo-osmolar status. In the SON and PVN neurons of Dp71-null mice, nNOS expression and activity were increased. Although we previously established that DP140 is expressed de novo in these neurons, the DAPC remained incomplete due to the low levels of β-DG and α1-Syn produced in these cells. Our data reveal the importance of DP71 for the constitution of a functional DAPC in the hypothalamus. Such DAPC disorganization may lead to modification of the microenvironment of the SON and PVN neurons and thus may result in a perturbed osmoregulation.
Collapse
Affiliation(s)
- Roza Benabdesselam
- Unité de Recherches, Faculté des Sciences Biologiques/UMMTO, BP 17, Tizi-Ouzou, Algeria
| | | | | | | | | | | |
Collapse
|
9
|
St-Louis R, Parmentier C, Raison D, Grange-Messent V, Hardin-Pouzet H. Reactive oxygen species are required for the hypothalamic osmoregulatory response. Endocrinology 2012; 153:1317-29. [PMID: 22202167 DOI: 10.1210/en.2011-1350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Free radicals, or reactive oxygen species (ROS), are highly reactive byproducts of oxygen degradation. They are well known for their cellular toxicity, but few studies have analyzed their potential role in homeostatic processes. We investigated ROS production and function during the arginine vasopressin (AVP) hypothalamic response to hyperosmolarity. Six-week-old male C3H/HeJ mice were subjected to salt loading for 2 or 8 d. The osmotic axis was progressively activated and reached a new steady-state status at 8 d as demonstrated by monitoring of plasmatic osmolality and c-Fos and AVP expression in the supraoptic nucleus (SON). Free radicals, visualized by dihydroethidine staining and measured by 2'-7'dichlorofluorescein diacetate assays, were detected after 2 d of salt loading. The activity and expression of superoxide dismutase 2 and catalase were concomitantly up-regulated in the SON, suggesting that free radicals are detoxified by endogenous antioxidant systems, thereby avoiding their deleterious effects. The early phase of the osmoregulatory response has been investigated using an acute hyperosmotic model; free radicals were produced 45 min after an ip injection of 1.5 m NaCl. This was followed by an increase in c-Fos and AVP expression and an increase in superoxide dismutase 2 and catalase activities. α-Lipoic acid, a ROS scavenger, administrated during the 3 d before the hypertonic ip injection, abolished the increase of AVP. These findings establish that hyperosmolarity causes ROS production in the SON, which is essential for AVP increase. This demonstrates the importance of free radicals as physiological signaling molecules in the regulation of body-fluid balance.
Collapse
Affiliation(s)
- Ronald St-Louis
- Université Pierre et Marie Curie Institut National de la Santé et de la Recherche Médicale Unité 952, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7224, Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
10
|
Marques RH, Reis FG, Starling CM, Cabido C, de Almeida-Reis R, Dohlnikoff M, Prado CM, Leick EA, Martins MA, Tibério IFLC. Inducible nitric oxide synthase inhibition attenuates physical stress-induced lung hyper-responsiveness and oxidative stress in animals with lung inflammation. Neuroimmunomodulation 2012; 19:158-70. [PMID: 22262048 DOI: 10.1159/000331264] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 07/14/2011] [Indexed: 11/19/2022] Open
Abstract
Mechanisms involved in stress-induced asthmatic alterations have been poorly characterised. We assessed whether inducible nitric oxide synthase (iNOS) inhibition modulates the stress-amplified lung parenchyma responsiveness, oxidative stress and extracellular matrix remodelling that was previously increased by chronic lung inflammation. Guinea pigs were subjected to 7 exposures to ovalbumin (1-5 mg/ml) or saline (OVA and SAL groups) over 4 weeks. To induce behavioural stress, animals were subjected to a forced swimming protocol (5 times/week, over 2 weeks; SAL-Stress and OVA-Stress groups) 24 h after the 4th inhalation. 1400W (iNOS-specific inhibitor) was administered intraperitoneally in the last 4 days of the protocol (SAL-1400W, OVA-1400W, SAL-Stress+1400W and OVA-Stress+1400W groups). Seventy-two hours after the last inhalation, animals were anaesthetised and exsanguinated, and adrenal glands were removed. Lung tissue resistance and elastance were evaluated by oscillatory mechanics and submitted for histopathological evaluation. Stressed animals had higher adrenal weights compared to non-stressed groups, which were reduced by 1400W treatment. Behavioural stress in sensitised animals amplified the resistance and elastance responses after antigen challenge, numbers of eosinophils and iNOS+ cells, actin content and 8-iso-PGF2α density in the distal lung compared to the OVA group. 1400W treatment in ovalbumin-exposed and stressed animals reduced lung mechanics, iNOS+ cell numbers and 8-iso-PGF2α density compared to sensitised and stressed animals that received vehicle treatment. We concluded that stress amplifies the distal lung constriction, eosinophilic inflammation, iNOS expression, actin content and oxidative stress previously induced by chronic lung inflammation. iNOS-derived NO contributes to stress-augmented lung tissue functional alterations in this animal model and is at least partially due to activation of the oxidative stress pathway.
Collapse
Affiliation(s)
- Ricardo Henrique Marques
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Aguila FA, Oliveira-Pelegrin GR, Yao ST, Murphy D, Rocha MJA. Anteroventral third ventricle (AV3V) lesion affects hypothalamic neuronal nitric oxide synthase (nNOS) expression following water deprivation. Brain Res Bull 2011; 86:239-45. [PMID: 21840380 DOI: 10.1016/j.brainresbull.2011.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) has been reported to be up-regulated in the hypothalamic supraoptic nucleus (SON) during dehydration which in turn could increase nitric oxide (NO) production and consequently affect arginine vasopressin (AVP) secretion. The anteroventral third ventricle (AV3V) region has strong afferent connections with the SON. Herein we describe our analysis of the effects of an AV3V lesion on AVP secretion, and c-fos and nNOS expression in the SON following dehydration. Male Wistar rats had their AV3V region electrolytically lesioned or were sham operated. After 21 days they were submitted to dehydration or left as controls (euhydrated). Two days later, one group was anaesthetized, perfused and the brains were processed for Fos protein and nNOS immunohistochemistry (IHC). Another group was decapitated, the blood collected for hematocrit, osmolality, serum sodium and AVP plasma level analysis. The brains were removed for measurement of neurohypophyseal AVP content, and the SON was punched out and processed for nNOS detection by western blotting. The AV3V lesion reduced AVP plasma levels and c-fos expression in the SON following dehydration (P<0.05). Western blotting revealed an up-regulation of nNOS in the SON of control animals following dehydration, whereas such up-regulation was not observed in AV3V-lesioned rats (P<0.05). We conclude that the AV3V region plays a role in regulating the expression of nNOS in the SON of rats submitted to dehydration, and thus may affect the local nitric oxide production and the secretion of vasopressin.
Collapse
Affiliation(s)
- Fábio Alves Aguila
- Departamento de Morfologia, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
12
|
Vacher CM, Grange-Messent V, St-Louis R, Raison D, Lacorte JM, Hardin-Pouzet H. Architecture of the hypothalamo-posthypophyseal complex is controlled by monoamines. J Neurosci Res 2011; 89:1711-22. [PMID: 21805494 DOI: 10.1002/jnr.22726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/24/2011] [Accepted: 05/31/2011] [Indexed: 02/03/2023]
Abstract
The hypothalamo-neurohypophyseal system displays significant plasticity when subjected to physiological stimuli, such as dehydration, parturition, or lactation. This plasticity arises at the neurochemical and electrophysiological levels but also at a structural level. Several studies have demonstrated the role of monoaminergic afferents in controlling neurochemical and electrophysiological plasticity of the supraoptic nucleus (SON) and of the neurohypophysis (NH), but little is known about how the changes in structural plasticity are triggered. We used Tg8 mice, disrupted for the monoamine oxidase A gene, to study monamine involvement in the architecture of the SON and of the NH. SON astrocytes in Tg8 mice displayed an active status, characterized by an increase in S100β expression and a significant decrease in vimentin expression, with no modification in glial fibrillary acidic protein (GFAP) levels. Astrocytes showed a decrease in glutamate dehydrogenase (GDH) levels, whereas glutamine synthetase (GS) levels remained constant, suggesting a reduction in astrocyte glutamate catabolism. Tenascin C and polysialic acid-neural cell adhesion molecule (PSA-NCAM) expressions were also elevated in the SON of Tg8 mice, suggesting an increased capacity for structural remodelling in the SON. In the NH, similar date were obtained with a stability in GFAP expression and an increase in PSA-NCAM immunostaining. These results establish monoamine (serotonin and noradrenaline) involvement in SON and NH structural arrangement. Monoamines therefore appear to be crucial for the coordination of the neurochemical and structural aspects of neuroendocrine plasticity, allowing the hypothalamo-neurohypopyseal system to respond appropriately when stimulated.
Collapse
Affiliation(s)
- Claire-Marie Vacher
- Laboratoire de Neuroendocrinologie Moléculaire de la Prise Alimentaire, Centre de Neurosciences Paris-Sud, UMR 8195, Université Paris-Sud, CNRS Orsay, France
| | | | | | | | | | | |
Collapse
|
13
|
Osaka T. Hypoxia-induced hypothermia mediated by noradrenaline and nitric oxide in the rostromedial preoptic area. Neuroscience 2011; 179:170-8. [DOI: 10.1016/j.neuroscience.2011.01.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/09/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
14
|
Differential involvement of noradrenaline and nitric oxide in the regulation of vasopressin and oxytocin expression in rat supraoptic nucleus. J Neurosci Res 2011; 89:764-72. [DOI: 10.1002/jnr.22568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/23/2010] [Accepted: 11/04/2010] [Indexed: 11/07/2022]
|
15
|
Oliveira-Pelegrin GR, de Azevedo SV, Yao ST, Murphy D, Rocha MJA. Central NOS inhibition differentially affects vasopressin gene expression in hypothalamic nuclei in septic rats. J Neuroimmunol 2010; 227:80-6. [PMID: 20643487 DOI: 10.1016/j.jneuroim.2010.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 11/29/2022]
Abstract
Our aim was to investigate the effect of central NOS inhibition on hypothalamic arginine vasopressin (AVP) gene expression, hormone release and on the cardiovascular response during experimental sepsis. Male Wistar rats were intracerebroventricularly injected with the non-selective NO synthase (NOS) inhibitor (L-NAME) or aminoguanidine, a selective inhibitor of the inducible isoform (iNOS). After 30 min, sepsis was induced by cecal ligation and puncture (CLP) causing an increase in heart rate (HR), as well as a reduction in median arterial pressure (MAP) and AVP expression ratio (AVP(R)), mainly in the supraoptic nucleus. AVP plasma levels (AVPp) increased in the early but not in the late phase of sepsis. L-NAME pretreatment increased MAP but did not change HR. It also resulted in an increase in AVPp at all time points, except 24h, when it returned to basal levels. AVP(R), however remained reduced in both nuclei. Aminoguanidine pretreatment resulted in increased MAP in the early phase and higher AVP(R) in the supraoptic, but not in the paraventricular nucleus, while AVPp remained elevated at all time points. We suggest that increased central NO production, mainly inducible NOS-derived, reduces AVP gene expression differentially in supraoptic and paraventricular nuclei, and that this may contribute to low AVP plasma levels and hypotension in the late phase of sepsis.
Collapse
Affiliation(s)
- Gabriela Ravanelli Oliveira-Pelegrin
- Departamento de Morfologia, Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
16
|
Prandota J. Mollaret meningitis may be caused by reactivation of latent cerebral toxoplasmosis. Int J Neurosci 2010; 119:1655-92. [PMID: 19922380 DOI: 10.1080/00207450802480044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mollaret meningitis (MM) occurs mainly in females and is characterized by recurrent episodes of headache, transient neurological abnormalities, and the cerebrospinal fluid containing mononuclear cells. HSV-2 was usually identified as the causative agent. Recently, we found that recurrent headaches in non-HIV-infected subjects were due to acquired cerebral toxoplasmosis (CT). The aim of the study was therefore to focus on molecular pathomechanisms that may lead to reactivation of latent CT and manifest as MM. Literature data cited in this work were selected to illustrate that various factors may affect latent CNS Toxoplasma gondii infection/inflammation intensity and/or host defense mechanisms, i.e., the production of NO, cytokines, tryptophan degradation by indoleamine 2,3-dioxygenase, mechanisms mediated by an IFN-gamma responsive gene family, limiting the availability of intracellular iron to T. gondii, and production of reactive oxygen/nitrogen species, finally inducing choroid plexitis and/or vasculitis. Examples of triggers revealing MM and accompanying disturbances of IFN-gamma-mediated immune responses that control HSV-2 and T. gondii include: female predominance (female mice are more susceptible to T. gondii infection than males); HSV-2 infection (increased IFN-gamma, IL-12); metaraminol (increased plasma catecholamine levels, changes in cytokine expression favoring T(H)2 cells responses); probably cholesterol contained in debris from ruptured epidermoid cysts (decreased NO; increased TNF-alpha, IL-6, IL-8). These irregularities induced by the triggers may be responsible for reactivation of latent CT and development of MM. Thus, subjects with MM should have test(s) for T. gondii infection performed obligatorily.
Collapse
Affiliation(s)
- Joseph Prandota
- Pediatrics & Clinical Pharmacology, Department of Social Pediatrics, Faculty of Public Health, University Medical School, Wroclaw, Poland.
| |
Collapse
|
17
|
Osaka T. Nitric oxide mediates noradrenaline-induced hypothermic responses and opposes prostaglandin E2-induced fever in the rostromedial preoptic area. Neuroscience 2009; 165:976-83. [PMID: 19896521 DOI: 10.1016/j.neuroscience.2009.10.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/22/2009] [Accepted: 10/31/2009] [Indexed: 11/20/2022]
Abstract
Noradrenaline (NA) microinjected into the rostromedial preoptic area (POA) elicits heat loss responses and opposes prostaglandin E(2)-induced fever. Here, I tested the hypothesis that local synthesis and release of nitric oxide (NO) mediates the NA-induced effects. The unilateral microinjection of the NO donor sodium nitroprusside (SNP, 8.4 nmol), but not that of saline solution, into the NA-sensitive site elicited an increase in tail skin temperature and decreases in the whole-body O(2) consumption rate, heart rate, and colonic temperature simultaneously in urethane-chloralose-anesthetized rats. Pretreatment with SNP greatly attenuated the thermogenic, tachycardic, and hyperthermic effects of prostaglandin E(2) (140 fmol) microinjected into the same site. Furthermore, the NA-induced hypothermic responses were largely blocked by a prior microinjection of an NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA, 5 nmol), but not by that of its inactive enantiomer, N(G)-monomethyl-D-arginine (D-NMMA, 5 nmol), at the same site. These results suggest that the hypothermic and antipyretic effects of NA are mediated by NO in the rostromedial POA.
Collapse
Affiliation(s)
- T Osaka
- Health Promotion and Exercise Program, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku 162-8636, Japan.
| |
Collapse
|
18
|
Dos-Anjos S, Martínez-Villayandre B, Montori S, Salas A, Pérez-García CC, Fernández-López A. Quantitative gene expression analysis in a brain slice model: Influence of temperature and incubation media. Anal Biochem 2008; 378:99-101. [DOI: 10.1016/j.ab.2008.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/25/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
|
19
|
Maolood N, Hardin-Pouzet H, Grange-Messent V. Matrix metalloproteinases MMP2 and MMP9 are upregulated by noradrenaline in the mouse neuroendocrine hypothalamus. Eur J Neurosci 2008; 27:1143-52. [PMID: 18364034 DOI: 10.1111/j.1460-9568.2008.06099.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnocellular neurons of the hypothalamic supraoptic nuclei (SON) are involved in the synthesis and release of two major neuropeptides: oxytocin (OT) and arginine-vassopressin (AVP). Neurochemical plasticity in this system is induced by physiological conditions such as lactation, parturition and dehydration, and may be accompanied by reversible structural plasticity affecting neurons, astrocytes and the extracellular matrix (ECM). The noradrenergic system plays a critical role in triggering this chemical plasticity associated with structural plasticity. Matrix metalloproteinases (MMPs) are good candidates for involvement in the ECM remodelling observed in structural plasticity. We investigated the possible regulation of the two gelatinases, MMP2 and MMP9, by noradrenaline (NA) in the mouse neuroendocrine hypothalamus. We looked for the presence, location and activity of MMP2 and MMP9 in the SON, using an ex vivo experimental model of mouse hypothalamic slices incubated for 4 h with 10(-4) m NA. We showed that: (i) immunoreactivity for MMP2 and MMP9 was detected not only in AVP-positive and OT-positive magnocellular neurons, but also in astrocyte processes in control and NA-treated slices; (ii) the number of MMP2- and MMP9-positive cells increased after incubation with NA; (iii) MMP2 and MMP9 displayed markedly higher levels of gelatinolytic activity after NA treatment. These results suggest that both MMP2 and MMP9 are regulated by NA, and could therefore also be involved in structural plasticity within the SON.
Collapse
Affiliation(s)
- N Maolood
- NSI, CNRS UMR 7101, Université Pierre et Marie Curie-Paris, France
| | | | | |
Collapse
|
20
|
Feleder C, Perlik V, Blatteis CM. Preoptic nitric oxide attenuates endotoxic fever in guinea pigs by inhibiting the POA release of norepinephrine. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1144-51. [PMID: 17584955 DOI: 10.1152/ajpregu.00068.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lipopolysaccharide (LPS) administration induces hypothalamic nitric oxide (NO); NO is antipyretic in the preoptic area (POA), but its mechanism of action is uncertain. LPS also stimulates the release of preoptic norepinephrine (NE), which mediates fever onset. Because NE upregulates NO synthases and NO induces cyclooxygenase (COX)-2-dependent PGE2, we investigated whether NO mediates the production of this central fever mediator. Conscious guinea pigs with intra-POA microdialysis probes received LPS intravenously (2 μg/kg) and, thereafter, an NO donor (SIN-1) or scavenger (carboxy-PTIO) intra-POA (20 μg/μl each, 2 μl/min, 6 h). Core temperature (Tc) was monitored constantly; dialysate NE and PGE2 were analyzed in 30-min collections. To verify the reported involvement of α2-adrenoceptors (AR) in PGE2 production, clonidine (α2-AR agonist, 2 μg/μl) was microdialyzed with and without SIN-1 or carboxy-PTIO. To assess the possible involvement of oxidative NE and/or NO products in the demonstrated initially COX-2-independent POA PGE2 increase, (+)-catechin (an antioxidant, 3 μg/μl) was microdialyzed, and POA PGE2, and Tc were determined. SIN-1 and carboxy-PTIO reduced and enhanced, respectively, the rises in NE, PGE2, and Tc produced by intravenous LPS. Similarly, they prevented and increased, respectively, the delayed elevations of PGE2 and Tc induced by intra-POA clonidine. (+)-Catechin prevented the LPS-induced elevation of PGE2, but not of Tc. We conclude that the antipyretic activity of NO derives from its inhibitory modulation of the LPS-induced release of POA NE. These data also implicate free radicals in POA PGE2 production and raise questions about its role as a central LPS fever mediator.
Collapse
Affiliation(s)
- Carlos Feleder
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | |
Collapse
|
21
|
Maolood N, Grange-Messent V, Raison D, Hardin-Pouzet H. Noradrenergic regulation in mouse supraoptic nucleus involves a nitric oxide pathway only to regulate arginine-vasopressin expression and not oxytocin expression. J Neurosci Res 2007; 85:2991-9. [PMID: 17628500 DOI: 10.1002/jnr.21394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Noradrenalin (NA) regulates the expression of arginine-vasopressin (AVP) and oxytocin (OT) by magnocellular neurons in the supraoptic nucleus (SON) of the hypothamalus. Nitric oxide (NO) may be one of the factors involved in the NA signaling pathway regulating AVP and OT expression. To test this possibility, we used an ex vivo experimental model of mouse hypothalamus slices. Increases in AVP and OT levels in the SON were detected by immunohistochemistry and immunoenzyme assays after 1 hr and 4 hr incubations with NA (10(-4) M). There was also an increase in the expression and activity of neuronal NOS and inducible NOS in the SON as assessed by immunohistochemical and histoenzymological analysis of NADPH-diaphorase, whereas endothelial NOS was undetectable. To specify the role of NO, the slices were treated with NA and L-arginine methyl ester (L-NAME, an NOS inhibitor; 3 microM). This treatment for 1 hr abolished the NA-induced increase in AVP. Treatment with sodium nitroprusside (SNP, an NO donor; 0.1 mM) increased AVP levels, confirming that NO regulates AVP expression. Addition of 1 mM EGTA during the incubation with NA reduced the AVP increase by half, indicating that both nNOS and iNOS activities are involved in the regulation. A 1-hr treatment with L-NAME did not prevent the increase in OT induced by NA; similarly, treatment with SNP had no effect. These findings show that NO is involved in the regulation of AVP expression by NA and that NA control of OT expression is independent of NO.
Collapse
Affiliation(s)
- Nasren Maolood
- NSI, CNRS UMR 7101, Université Pierre et Marie Curie--Paris VI, Paris, France
| | | | | | | |
Collapse
|
22
|
Melnikova VI, Raison D, Hardin-Pouzet H, Ugrumov MV, Calas A, Grange-Messent V. Noradrenergic regulation of galanin expression in the supraoptic nucleus in the rat hypothalamus. An ex vivo study. J Neurosci Res 2006; 83:857-63. [PMID: 16477609 DOI: 10.1002/jnr.20779] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Galanin is coexpressed with vasopressin and oxytocin in magnocellular neurons of the rat neuroendocrine hypothalamus. Various physiological stimuli, such as osmotic stimulation or lactation, that affect vasopressin and oxytocin expression and release also modulate galanin expression. Magnocellular neurons are highly innervated by noradrenergic inputs from the brainstem. The noradrenergic system plays a critical excitatory role in the activation of vasopressin-expressing and oxytocin-expressing neurons. Here, we have evaluated the possible regulation of Gal expression by noradrenaline in the magnocellular neurons of supraoptic nucleus in an ex vivo acute model of rat hypothalamic slices. The slices containing the supraoptic nucleus were incubated with 10(-4) M noradrenaline for 1 or 4 hr. The levels of galanin and galanin mRNA were estimated by semiquantitative immunohistochemistry and in situ hybridization, respectively. Our results show that the amount of galanin-immunopositive material in the cell bodies of the magnocellular neurons increased significantly after incubation with noradrenaline compared with control slices at the same time point and that this effect was more pronounced after 4 hr than after 1 hr. In situ hybridization showed that radiolabeling of the supraoptic nucleus with a radioactive galanin probe increased slightly after 1 hr of incubation and increased considerably after 4 hr of incubation with noradrenaline. Our study shows that galanin may be a target in the regulation of the hypothalamic magnocellular-neurohypophysial system by noradrenaline.
Collapse
Affiliation(s)
- Victoria I Melnikova
- Laboratory of Hormonal Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
23
|
Floden AM, Li S, Combs CK. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci 2006; 25:2566-75. [PMID: 15758166 PMCID: PMC6725188 DOI: 10.1523/jneurosci.4998-04.2005] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although abundant reactive microglia are found associated with beta-amyloid (Abeta) plaques in Alzheimer's disease (AD) brains, their contribution to cell loss remains speculative. A variety of studies have documented the ability of Abeta fibrils to directly stimulate microglia in vitro to assume a neurotoxic phenotype characterized by secretion of a plethora of proinflammatory molecules. Collectively, these data suggest that activated microglia play a direct role in contributing to neuron death in AD rather than simply a role in clearance after plaque deposition. Although it is clear the Abeta-stimulated microglia acutely secrete toxic oxidizing species, the identity of longer-lived neurotoxic agents remains less defined. We used Abeta-stimulated conditioned media from primary mouse microglia to identify more stable neurotoxic secretions. The NMDA receptor antagonists memantine and 2-amino-5-phosphopetanoic acid as well as soluble tumor necrosis factor alpha (TNFalpha) receptor protect neurons from microglial-conditioned media-dependent death, implicating the excitatory neurotransmitter glutamate and the proinflammatory cytokine TNFalpha as effectors of microglial-stimulated death. Neuron death occurs in an oxidative damage-dependent manner, requiring activity of inducible nitric oxide synthase. Toxicity results from coincident stimulation of the TNFalpha and NMDA receptors, because stimulations of either alone are insufficient to initiate cell death. These findings suggest the hypothesis that AD brains provide the appropriate microglial-mediated inflammatory environment for TNFalpha and glutamate to synergistically stimulate toxic activation of their respective signaling pathways in neurons as a contributing mechanism of cell death.
Collapse
Affiliation(s)
- Angela M Floden
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA
| | | | | |
Collapse
|
24
|
Chen Q, Li DP, Pan HL. Presynaptic α1 Adrenergic Receptors Differentially Regulate Synaptic Glutamate and GABA Release to Hypothalamic Presympathetic Neurons. J Pharmacol Exp Ther 2005; 316:733-42. [PMID: 16249372 DOI: 10.1124/jpet.105.094797] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) neurons that project to the spinal intermediolateral cell column and brainstem are important for the control of sympathetic outflow. Stimulation of alpha(1) adrenergic receptors in the PVN increases sympathetic outflow, but the cellular mechanisms remain unclear. In this study, we determined the role of alpha(1) adrenergic receptors in the regulation of glutamatergic and GABAergic synaptic inputs to spinally projecting PVN neurons. Whole-cell and cell-attached patch-clamp recordings were performed on retrogradely labeled PVN-spinal neurons in rat brain slices. Bath application of 10 to 100 microM phenylephrine, an alpha(1) adrenergic receptor agonist, significantly increased the frequency of spontaneous excitatory postsynaptic currents in a concentration-dependent manner. This effect was blocked by the alpha (1)adrenergic receptor antagonists prazosin or corynanthine. Phenylephrine also significantly increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) but not the amplitude and decay constant of mEPSCs. Furthermore, activation of alpha(1) adrenergic receptors with phenylephrine or cirazoline significantly decreased the frequency of spontaneous inhibitory postsynaptic currents and miniature inhibitory postsynaptic currents, and this effect also was blocked by corynanthine. In addition, 50 microM phenylephrine significantly increased the firing rate of 13 labeled PVN neurons from 3.16 +/- 0.42 to 5.83 +/- 0.65 Hz. However, phenylephrine failed to increase the firing of most labeled PVN neurons in the presence of GABA(A) and ionotropic glutamate receptor antagonists. Thus, these data suggest that activation of alpha (1)adrenergic receptors increases the excitability of PVN presympathetic neurons primarily through augmentation of glutamatergic tone and attenuation of GABAergic inputs.
Collapse
Affiliation(s)
- Qian Chen
- Department of Anesthesiology, Pennsylvania State University College of Medicine, Hershey, 17033, USA
| | | | | |
Collapse
|