1
|
Fessel J. Personalized, Precision Medicine to Cure Alzheimer's Dementia: Approach #1. Int J Mol Sci 2024; 25:3909. [PMID: 38612719 PMCID: PMC11012190 DOI: 10.3390/ijms25073909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The goal of the treatment for Alzheimer's dementia (AD) is the cure of dementia. A literature review revealed 18 major elements causing AD and 29 separate medications that address them. For any individual with AD, one is unlikely to discern which major causal elements produced dementia. Thus, for personalized, precision medicine, all causal elements must be treated so that each individual patient will have her or his causal elements addressed. Twenty-nine drugs cannot concomitantly be administered, so triple combinations of drugs taken from that list are suggested, and each triple combination can be administered sequentially, in any order. Ten combinations given over 13 weeks require 2.5 years, or if given over 26 weeks, they require 5.0 years. Such sequential treatment addresses all 18 elements and should cure dementia. In addition, any comorbid risk factors for AD whose first presence or worsening was within ±1 year of when AD first appeared should receive appropriate, standard treatment together with the sequential combinations. The article outlines a randomized clinical trial that is necessary to assess the safety and efficacy of the proposed treatments; it includes a triple-drug Rx for equipoise. Clinical trials should have durations of both 2.5 and 5.0 years unless the data safety monitoring board (DSMB) determines earlier success or futility since it is uncertain whether three or six months of treatment will be curative in humans, although studies in animals suggest that the briefer duration of treatment might be effective and restore defective neural tracts.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Clinical Medicine, Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
2
|
Mi P, Tan Y, Ye S, Lang JJ, Lv Y, Jiang J, Chen L, Luo J, Lin Y, Yuan Z, Zheng X, Lin YW. Discovery of C-3 isoxazole substituted thiochromone S,S-dioxide derivatives as potent and selective inhibitors for monoamine oxidase B (MAO-B). Eur J Med Chem 2024; 263:115956. [PMID: 37992521 DOI: 10.1016/j.ejmech.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Developing new scaffolds for highly potent and selective inhibitors of human Monoamine Oxidase B (hMAO-B) is a crucial objective in enhancing the efficacy and safety in the clinical treatment of neurodegenerative diseases. In this study, we have identified a series of C-3 isoxazole-substituted thiochromone S,S-dioxide derivatives that exhibit strong inhibitory activity against hMAO-B. The strategy of oxidizing thiochromone to thiochromone S,S-dioxide solves the key defect of extreme insolubility observed for thiochromone analogues. In addition, the sulfone group contributes extra hydrogen(H)-bonding interactions with Tyr435, which significantly increases the activity of thiochromone S,S-dioxide derivatives against hMAO-B. Furthermore, the presence of isoxazole group provides potential H-bonding interaction and electrostatic interaction with the residue of Tyr326, while the rigid aryl ring introduces a potential steric conflict with Phe208 of hMAO-A to improve both potency and selectivity. In our investigations, several compounds (9c, 10c, 10e, 10g, 10l and 10m) demonstrate remarkable single-digit nanomolar potency. These compounds exhibit favorable cytotoxicity profiles in both differentiated SH-SY5Y and HVSMC cells, without apparent cardiotoxic effects. Moreover, compounds 10e and 10h do not lead to an increase in ROS levels in differentiated SH-SY5Y cells, further demonstrating their potential as safe and effective hMAO-B inhibitors. These findings indicate that the C-3 isoxazole substituted thiochromone S,S-dioxide analogues are potential leading compounds for the development of selective inhibitors with high potency.
Collapse
Affiliation(s)
- Pengbing Mi
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| | - Yan Tan
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Shiying Ye
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Jia Lang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - You Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Jinhuan Jiang
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Limei Chen
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Jianxiong Luo
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Yuqing Lin
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Zhonghua Yuan
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Xing Zheng
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Wang Z, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-empowered therapeutics targeting neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1907. [PMID: 37248794 PMCID: PMC10525015 DOI: 10.1002/wnan.1907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/15/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
Neurodegenerative diseases are posing pressing health issues due to the high prevalence among aging populations in the 21st century. They are evidenced by the progressive loss of neuronal function, often associated with neuronal necrosis and many related devastating complications. Nevertheless, effective therapeutical strategies to treat neurodegenerative diseases remain a tremendous challenge due to the multisystemic nature and limited drug delivery to the central nervous system. As a result, there is a pressing need to develop effective alternative therapeutics to manage the progression of neurodegenerative diseases. By utilizing the functional reconstructive materials and technologies with specific targeting ability at the nanoscale level, nanotechnology-empowered medicines can transform the therapeutic paradigms of neurodegenerative diseases with minimal systemic side effects. This review outlines the current applications and progresses of the nanotechnology-enabled drug delivery systems to enhance the therapeutic efficacy in treating neurodegenerative diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
4
|
Makinde E, Ma L, Mellick GD, Feng Y. Mitochondrial Modulators: The Defender. Biomolecules 2023; 13:biom13020226. [PMID: 36830595 PMCID: PMC9953029 DOI: 10.3390/biom13020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are widely considered the "power hub" of the cell because of their pivotal roles in energy metabolism and oxidative phosphorylation. However, beyond the production of ATP, which is the major source of chemical energy supply in eukaryotes, mitochondria are also central to calcium homeostasis, reactive oxygen species (ROS) balance, and cell apoptosis. The mitochondria also perform crucial multifaceted roles in biosynthetic pathways, serving as an important source of building blocks for the biosynthesis of fatty acid, cholesterol, amino acid, glucose, and heme. Since mitochondria play multiple vital roles in the cell, it is not surprising that disruption of mitochondrial function has been linked to a myriad of diseases, including neurodegenerative diseases, cancer, and metabolic disorders. In this review, we discuss the key physiological and pathological functions of mitochondria and present bioactive compounds with protective effects on the mitochondria and their mechanisms of action. We highlight promising compounds and existing difficulties limiting the therapeutic use of these compounds and potential solutions. We also provide insights and perspectives into future research windows on mitochondrial modulators.
Collapse
|
5
|
Zarenezhad E, Taghavi R, Kamrani P, Farjam M, Rostamnia S. Gold nanoparticle decorated dithiocarbamate modified natural boehmite as a catalyst for the synthesis of biologically essential propargylamines. RSC Adv 2022; 12:31680-31687. [PMID: 36380962 PMCID: PMC9638948 DOI: 10.1039/d2ra03725d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/17/2022] [Indexed: 08/11/2023] Open
Abstract
Here, we prepare an Au NP decorated dithiocarbamate functionalized boehmite (γ-AlO(OH)@C-NHCS2H·AuNPs). This stepwise synthetic method gives an efficient, cost-effective, and green heterogenous Au-based nanocatalyst for the A3-coupling preparation of the biologically essential propargylamines. Different characterization methods, including FT-IR, XRD, SEM, TEM, EDX spectra, and elemental SEM-mapping, were employed to investigate the structure of the manufactured γ-AlO(OH)@C-NHCS2H·AuNPs. Then we used the prepared composite as a heterogeneous gold-based nanocatalyst for the one-pot A3-coupling preparation of propargyl amines by reacting a variety of aldehydes, amines, and phenylacetylene which exhibited promising results.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences Fasa Iran
| | - Reza Taghavi
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST) PO Box 16846-13114 Tehran Iran
| | - Parisa Kamrani
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST) PO Box 16846-13114 Tehran Iran
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences Fasa Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST) PO Box 16846-13114 Tehran Iran
| |
Collapse
|
6
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
7
|
Kumar B, Dwivedi AR, Arora T, Raj K, Prashar V, Kumar V, Singh S, Prakash J, Kumar V. Design, Synthesis, and Pharmacological Evaluation of N-Propargylated Diphenylpyrimidines as Multitarget Directed Ligands for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:2122-2139. [PMID: 35797244 DOI: 10.1021/acschemneuro.2c00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD), a multifactorial complex neural disorder, is categorized with progressive memory loss and cognitive impairment as main clinical features. The multitarget directed ligand (MTDL) strategy is explored for the treatment of multifactorial diseases such as cancer and AD. Herein, we report the synthesis and screening of 24 N-propargyl-substituted diphenylpyrimidine derivatives as MTDLs against acetylcholine/butyrylcholine esterases and monoamine oxidase enzymes. In this series, VP1 showed the most potent MAO-B inhibitory activity with an IC50 value of 0.04 ± 0.002 μM. VP15 with an IC50 value of 0.04 ± 0.003 μM and a selectivity index of 626 (over BuChE) displayed the most potent AChE inhibitory activity in this series. In the reactive oxygen species (ROS) inhibition studies, VP1 reduced intercellular ROS levels in SH-SY5Y cells by 36%. This series of compounds also exhibited potent neuroprotective potential against 6-hydroxydopamine-induced neuronal damage in SH-SY5Y cells with up to 90% recovery. In the in vivo studies in the rats, the hydrochloride salt of VP15 was orally administered and found to cross the blood-brain barrier and reach the target site. VP15·HCl significantly attenuated the spatial memory impairment and improved the cognitive deficits in the mice. This series of compounds were found to be irreversible inhibitors and showed no cytotoxicity against neuronal cells. In in silico studies, the compounds attained thermodynamically stable orientation with complete occupancy at the active site of the receptors. Thus, N-propargyl-substituted diphenylpyrimidines displayed drug-like characteristics and have the potential to be developed as MTDLs for the effective treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India.,Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Ashish Ranjan Dwivedi
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Jyoti Prakash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| |
Collapse
|
8
|
Chang HY, Li YY, Hong CT, Kuan YC. Efficacy of rasagiline monotherapy for early Parkinson disease: A systematic review and meta-analysis of randomized controlled trials. J Psychopharmacol 2022; 36:704-714. [PMID: 35546511 DOI: 10.1177/02698811221093795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rasagiline monotherapy is approved in early Parkinson's disease (PD) for motor benefit. However, the efficacy and optimal rasagiline dosage in improving Unified Parkinson's Disease Rating Scale (UPDRS) subscale scores between Japanese and Caucasian individuals remain uncertain. AIMS To investigate the efficacy of rasagiline monotherapy and evaluate differences between early PD patients in Eastern and Western countries. METHODS The study design involved the meta-analysis of randomized controlled trials identified using electronic databases. RESULTS The mean difference (MD) in total UPDRS scores indicated no significant difference between the 1 and 2 mg rasagiline (MD = -0.00, 95% confidence interval (CI) = -0.82 to 0.81). Compared with the placebo, the MD of UPDRS part I scores significantly improved in the 1 mg (MD = -0.33, 95% CI = -0.57 to -0.10) but not in the 2 mg. For UPDRS part II scores, the MD significantly improved in the 1 mg (MD = -0.87, 95% CI = -1.48 to -0.27) and 2 mg (MD = -0.98, 95% CI = -1.28 to -0.68). Regarding the UPDRS part III, the MD significantly improved in both (1 mg: MD = -2.41, 95% CI = -3.26 to -1.56; 2 mg: MD = -2.05, 95% CI = -2.64 to -1.46). The most commonly reported adverse events were headaches, back pain, and dizziness, with no statistical difference between the 1 mg rasagiline and placebo groups. Subgroup analysis revealed similar effects between Asian and Western participants. CONCLUSION Rasagiline monotherapy at 1 mg per day is recommended for patients with early PD because of the benefits for motor, nonmotor functions, and safety.
Collapse
Affiliation(s)
- Hao-Yun Chang
- School of Medicine, Taipei Medical University, Taipei
| | - Ying-Yu Li
- School of Medicine, Taipei Medical University, Taipei
| | - Chien-Tai Hong
- Taipei Neuroscience Institute, Taipei Medical University, Taipei.,Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei City.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei.,Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei City.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei.,Cochrane Taiwan, Taipei Medical University, Taipei.,Center for Evidence-Based Health Care, Taipei Medical University-Shuang Ho Hospital, New Taipei City
| |
Collapse
|
9
|
Gąsiorowski K, Brokos JB, Sochocka M, Ochnik M, Chojdak-Łukasiewicz J, Zajączkowska K, Fułek M, Leszek J. Current and Near-Future Treatment of Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1144-1157. [PMID: 34856906 PMCID: PMC9886829 DOI: 10.2174/1570159x19666211202124239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Recent findings have improved our understanding of the multifactorial nature of AD. While in early asymptomatic stages of AD, increased amyloid-β synthesis and tau hyperphosphorylation play a key role, while in the latter stages of the disease, numerous dysfunctions of homeostatic mechanisms in neurons, glial cells, and cerebrovascular endothelium determine the rate of progression of clinical symptoms. The main driving forces of advanced neurodegeneration include increased inflammatory reactions in neurons and glial cells, oxidative stress, deficiencies in neurotrophic growth and regenerative capacity of neurons, brain insulin resistance with disturbed metabolism in neurons, or reduction of the activity of the Wnt-β catenin pathway, which should integrate the homeostatic mechanisms of brain tissue. In order to more effectively inhibit the progress of neurodegeneration, combination therapies consisting of drugs that rectify several above-mentioned dysfunctions should be used. It should be noted that many widely-used drugs from various pharmacological groups, "in addition" to the main therapeutic indications, have a beneficial effect on neurodegeneration and may be introduced into clinical practice in combination therapy of AD. There is hope that complex treatment will effectively inhibit the progression of AD and turn it into a slowly progressing chronic disease. Moreover, as the mechanisms of bidirectional communication between the brain and microbiota are better understood, it is expected that these pathways will be harnessed to provide novel methods to enhance health and treat AD.
Collapse
Affiliation(s)
| | | | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Ochnik
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Michał Fułek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wrocław Medical University, Wrocław, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland,Address correspondence to this author at the Department of Psychiatry, Wrocław Medical University, 10 Ludwika Pasteura Str., 50-367 Wrocław, Poland; Tel:+48603880572; E-mail:
| |
Collapse
|
10
|
P2B001 (Extended Release Pramipexole and Rasagiline): A New Treatment Option in Development for Parkinson's Disease. Adv Ther 2022; 39:1881-1894. [PMID: 35267155 PMCID: PMC9056484 DOI: 10.1007/s12325-022-02097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022]
Abstract
Despite levodopa’s superior efficacy in reducing the motor symptoms of Parkinson’s disease (PD), its risk to induce motor complications requires consideration of the pros and cons of initiating treatment with levodopa-sparing strategies. The current drive toward early levodopa monotherapy is primarily driven by safety and tolerability concerns with dopamine agonists and only mild efficacy of other available approaches. Recently, P2B001, a novel once-daily combination of low-dose, extended-release formulations of pramipexole and rasagiline (0.6 mg and 0.75 mg respectively), has entered clinical development. In this drug evaluation, we review the preclinical and current clinical data for P2B001 and its components. The P2B001 combination has the potential to provide greater efficacy than either pramipexole or rasagiline alone and a better tolerability profile compared to higher dosage dopamine agonist monotherapy, while maintaining the advantage of lower motor complication risk than levodopa. Parkinson’s disease is the fastest growing neurologic disorder across the globe. Once diagnosed, it is now generally agreed that there is no clinical rationale to postpone symptomatic treatment in people who develop Parkinson’s-related disability. There are three main treatment options available for use in early Parkinson’s disease: levodopa, dopamine agonists and monoamine oxidase type B (MAO-B) inhibitors. Of these, there is a current push toward using levodopa as the main first-line therapy. This is primarily because of the significant safety and tolerability concerns with dopamine agonists and only mild efficacy of MAO-B inhibitors. Recently, P2B001, a novel drug formulation combining once-daily, extended-release, low dosages of the dopamine agonist pramipexole and the MAO-B inhibitor rasagiline (0.6 mg and 0.75 mg respectively), has entered clinical development. In this article, the authors review the preclinical and current clinical data on P2B001 and its components. The P2B001 combination has the potential to provide greater efficacy than either pramipexole or rasagiline alone and a better tolerability profile compared to higher dosage dopamine agonist monotherapy, while maintaining the advantage of lower motor complication risk than levodopa.
Collapse
|
11
|
Munakata H, Ishikawa R, Saitoh T, Kambe T, Chiba T, Taguchi K, Abe K. Preventative effects of 1-methyl-1,2,3,4-tetrahydroisoquinoline derivatives (N-functional group loading) on MPTP-induced parkinsonism in mice. Can J Physiol Pharmacol 2022; 100:594-611. [PMID: 35413210 DOI: 10.1139/cjpp-2021-0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1,2,3,4-Tetrahydroisoquinoline (TIQ) is endogenously present in human brain, and some of its derivatives are thought to contribute to the induction of Parkinson's disease (PD)-like signs in rodents and primates. In contrast, the endogenous TIQ derivative 1-methyl-TIQ (1-MeTIQ) is reported to be neuroprotective. In the present study, we compared the effects of artificially modified 1-MeTIQ derivatives (loading an N-propyl, N-propenyl, N-propargyl, or N-butynyl group) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD-like signs in mice. In a behavioral study, MPTP-induced bradykinesia was significantly decreased by all compounds. However, only 1-Me-N-propargyl-TIQ showed an inhibitory effect by blocking the MPTP-induced reduction in striatal dopamine content and the number of nigral tyrosine hydroxylase-positive cells. Western blot analysis showed that 1-Me-N-propargyl-TIQ and 1-Me-N-butynyl-TIQ potently prevented the MPTP-induced decrease in dopamine transporter expression, whereas 1-MeTIQ and 1-Me-N-propyl-TIQ did not. These results suggest that although loading an N-propargyl group on 1-MeTIQ clearly enhanced neuroprotective effects, other N-functional groups showed distinct pharmacological properties characteristic of their functional groups. Thus, the number of bonds and length of the N-functional group may contribute to the observed differences in effect.
Collapse
Affiliation(s)
- Hiroko Munakata
- Ohu University, 13233, Department of Pharmacology, Koriyama, Fukushima, Japan;
| | - Risa Ishikawa
- Ohu University, 13233, Department of Pharmacology, Koriyama, Fukushima, Japan;
| | - Toshiaki Saitoh
- Nihon Pharmaceutical University, 47734, Fukiage-gun, Saitama, Japan;
| | - Toshie Kambe
- Showa Pharmaceutical University, 26391, Machida, Tokyo, Japan;
| | - Terumasa Chiba
- Nihon Pharmaceutical University, 47734, Kitaadachi-gun, Saitama, Japan;
| | - Kyoji Taguchi
- Showa Pharmaceutical University, 26391, Department of Medicinal Pharmacology, Machida, Tokyo, Japan;
| | - Kenji Abe
- Ohu University, 13233, Department of Pharmacology, Koriyama, Fukushima, Japan.,Nihon Pharmaceutical University, 47734, Kitaadachi-gun, Saitama, Japan;
| |
Collapse
|
12
|
Direct Reductive Amination from Ketones, Aldehydes to Synthesize Amines Using N, S-Dual Doped Co/C Catalyst. Catal Letters 2022. [DOI: 10.1007/s10562-021-03911-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
A critical appraisal of MAO-B inhibitors in the treatment of Parkinson's disease. J Neural Transm (Vienna) 2022; 129:723-736. [PMID: 35107654 PMCID: PMC9188534 DOI: 10.1007/s00702-022-02465-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/15/2022] [Indexed: 10/31/2022]
Abstract
Since the 1980s, the MAO-B inhibitors have gained considerable status in the therapy of the Parkinson's disease. In addition to the symptomatic effect in mono- and combination therapies, a neuroprotective effect has repeatedly been a matter of some discussion, which has unfortunately led to a good many misunderstandings. Due to potential interactions, selegiline has declined in significance in the field. For the MAO-B inhibitor safinamide, recently introduced to the market, an additional inhibition of pathological release of glutamate has been postulated. At present, rasagiline and selegiline are being administered in early therapy as well as in combination with levodopa. Safinamide has been approved only for combination therapy with levodopa when motor fluctuations have occurred. MAO-B inhibitors are a significant therapeutic option for Parkinson's disease, an option which is too often not appreciated properly.
Collapse
|
14
|
Rahman MS, Uddin MS, Rahman MA, Samsuzzaman M, Behl T, Hafeez A, Perveen A, Barreto GE, Ashraf GM. Exploring the Role of Monoamine Oxidase Activity in Aging and Alzheimer's Disease. Curr Pharm Des 2021; 27:4017-4029. [PMID: 34126892 DOI: 10.2174/1381612827666210612051713] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
Monoamine oxidases (MAOs) are a family of flavin adenine dinucleotide-dependent enzymes that exert a crucial role in the metabolism of neurotransmitters of the central nervous system. The impaired function of MAOs is associated with copious brain diseases. The alteration of monoamine metabolism is a characteristics feature of aging. MAO plays a crucial role in the pathogenesis of Alzheimer's disease (AD) - a progressive neurodegenerative disorder associated with an excessive accumulation of amyloid-beta (Aβ) peptide and neurofibrillary tangles (NFTs). Activated MAO has played a critical role in the development of amyloid plaques from Aβ, as well as the formation of the NFTs. In the brain, MAO mediated metabolism of monoamines is the foremost source of reactive oxygen species formation. The elevated level of MAO-B expression in astroglia has been reported in the AD brains adjacent to amyloid plaques. Increased MAO-B activity in the cortical and hippocampal regions is associated with AD. This review describes the pathogenic mechanism of MAOs in aging as well as the development and propagation of Alzheimer's pathology.
Collapse
Affiliation(s)
- Md Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul. Korea
| | - Md Samsuzzaman
- Department of Food and Life Science, Pukyong National University, Busan 48513. Korea
| | - Tapan Behl
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick. Ireland
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| |
Collapse
|
15
|
Jones DN, Raghanti MA. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J Chem Neuroanat 2021; 114:101957. [PMID: 33836221 DOI: 10.1016/j.jchemneu.2021.101957] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Monoamine oxidase enzymes are responsible for the degredation of serotonin, dopamine, and norepinephrine in the central neurvous system. Although it has been nearly 100 years since they were first described, we are still learning about their role in the healthy brain and how they are altered in various disease states. The present review provides a survey of our current understanding of monoamine oxidases, with a focus on their contributions to neuropsychiatric, neurodevelopmental, and neurodegenerative disease. Important species differences in monoamine oxidase function and development in the brain are highlighted. Sex-specific monoamine oxidase regulatory mechanisms and their implications for various neurological disorders are also discussed. While our understanding of these critical enzymes has expanded over the last century, gaps exist in our understanding of sex and species differences and the roles monoamine oxidases may play in conditions often comorbid with neurological disorders.
Collapse
Affiliation(s)
- Danielle N Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
16
|
Cummings JL, Tong G, Ballard C. Treatment Combinations for Alzheimer's Disease: Current and Future Pharmacotherapy Options. J Alzheimers Dis 2020; 67:779-794. [PMID: 30689575 PMCID: PMC6398562 DOI: 10.3233/jad-180766] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although Alzheimer’s disease (AD) is the world’s leading cause of dementia and the population of patients with AD continues to grow, no new therapies have been approved in more than a decade. Many clinical trials of single-agent therapies have failed to affect disease progression or symptoms compared with placebo. The complex pathophysiology of AD may necessitate combination treatments rather than monotherapy. The goal of this narrative literature review is to describe types of combination therapy, review the current clinical evidence for combination therapy regimens (both symptomatic and disease-modifying) in the treatment of AD, describe innovative clinical trial study designs that may be effective in testing combination therapy, and discuss the regulatory and drug development landscape for combination therapy. Successful combination therapies in other complex disorders, such as human immunodeficiency virus, may provide useful examples of a potential path forward for AD treatment.
Collapse
Affiliation(s)
| | | | - Clive Ballard
- University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
17
|
Lazdon E, Stolero N, Frenkel D. Microglia and Parkinson's disease: footprints to pathology. J Neural Transm (Vienna) 2020; 127:149-158. [DOI: 10.1007/s00702-020-02154-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022]
|
18
|
Propargylamine-derived multi-target directed ligands for Alzheimer's disease therapy. Bioorg Med Chem Lett 2019; 30:126880. [PMID: 31864798 DOI: 10.1016/j.bmcl.2019.126880] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/22/2022]
Abstract
Current options for the treatment of Alzheimeŕs disease have been restricted to prescription of acetylcholinesterase inhibitors or N-methyl-d-aspartate receptor antagonist, memantine. Propargylamine-derived multi-target directed ligands, such as ladostigil, M30, ASS234 and contilisant, involve different pathways. Apart from acting as inhibitors of both cholinesterases and monoamine oxidases, they show improvement of cognitive impairment, antioxidant activities, enhancement of iron-chelating activities, protect against tau hyperphosphorylation, block metal-associated oxidative stress, regulate APP and Aβ expression processing by the non-amyloidogenic α-secretase pathway, suppress mitochondrial permeability transition pore opening, and coordinate protein kinase C signaling and Bcl-2 family proteins. Other hybrid propargylamine derivatives are also reported.
Collapse
|
19
|
Jiang DQ, Wang HK, Wang Y, Li MX, Jiang LL, Wang Y. Rasagiline combined with levodopa therapy versus levodopa monotherapy for patients with Parkinson's disease: a systematic review. Neurol Sci 2019; 41:101-109. [PMID: 31446579 DOI: 10.1007/s10072-019-04050-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The aim of this report was to systematically evaluate the efficacy and safety of rasagiline (R) plus levodopa (L) (R + L) for the treatment of Parkinson's disease (PD) compared with that of L monotherapy, in order to provide a reference resource for rational drug use. METHODS Randomized controlled trials (RCTs) of R + L for PD published up to September 2018 were searched. Sensitivity analyses were also performed. RESULTS Fourteen RCTs with 2531 participants were included. Compared with L monotherapy, the pooled effects of R + L combination therapy on unified Parkinson's disease rating scale (UPDRS) score were (SMD - 0.50, 95% CI - 0.70 to - 0.30, P < 0.00001) for UPDRS motor score, (SMD - 0.59, 95% CI - 0.79 to - 0.39, P < 0.00001) for UPDRS activities of daily living (ADL) score, (SMD - 0.65, 95% CI - 0.81 to - 0.49, P < 0.00001) for UPDRS total score. R + L combination therapy was better than L monotherapy in reducing daily off-time (SMD - 1.15, 95% CI - 2.13 to - 0.17, P = 0.02), but there was a statistically nonsignificant result in daily on-time increase (SMD 1.39, 95% CI - 0.69 to 3.48, P = 0.19). There were no statistical differences in number of adverse events (OR 1.33, 95% CI 0.97 to 1.82, P = 0.07) and number of dropout (OR 0.88, 95% CI 0.65 to 1.19, P = 0.39) between R + L combination therapy and L monotherapy. CONCLUSIONS R + L combination therapy was superior to L monotherapy for improvement of UPDRS scores and off-time in PD patients. Moreover, R + L combination therapy and L monotherapy were similar in terms of safety and tolerability.
Collapse
Affiliation(s)
- De-Qi Jiang
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Jiaoyudong Road No. 1303, Yuzhou District, Yulin, 537000, Guangxi Zhuang Autonomous Region, China.
| | - Hua-Kun Wang
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Jiaoyudong Road No. 1303, Yuzhou District, Yulin, 537000, Guangxi Zhuang Autonomous Region, China
| | - Yan Wang
- Department of Pharmacy, Guangdong Province Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, 528200, China
| | - Ming-Xing Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Li-Lin Jiang
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Jiaoyudong Road No. 1303, Yuzhou District, Yulin, 537000, Guangxi Zhuang Autonomous Region, China
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|
20
|
Di Paolo ML, Cozza G, Milelli A, Zonta F, Sarno S, Minniti E, Ursini F, Rosini M, Minarini A. Benextramine and derivatives as novel human monoamine oxidases inhibitors: an integrated approach. FEBS J 2019; 286:4995-5015. [PMID: 31291696 DOI: 10.1111/febs.14994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/02/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
The two human monoamine oxidase isoforms (namely MAO A and MAO B) are enzymes involved in the catabolism of monoamines, including neurotransmitters, and for this reason are well-known and attractive pharmacological targets in neuropsychiatric and neurodegenerative diseases, for which novel pharmacological approaches are necessary. Benextramine is a tetraamine disulfide mainly known as irreversible α-adrenergic antagonist, but able to hit additional targets involved in neurodegeneration. As the molecular structures of monoamine oxidases contain nine cysteine residues, the aim of this study was to evaluate benextramine and eleven structurally related polyamine disulfides as potential MAO inhibitors. Most of the compounds were found to induce irreversible inactivation of MAOs with inactivation potency depending on both the polyamine structure and the enzyme isoform. The more effective compounds generally showed preference for MAO B. Structure-activity relationships studies revealed the key role played by the disulfide core of these molecules in the inactivation mechanism. Docking experiments pointed to Cys323, in MAO A, and Cys172, in MAO B, as target of this type of inhibitors thus suggesting that their covalent binding inside the MAO active site sterically impedes the entrance of substrate towards the FAD cofactor. The effectiveness of benextramine in inactivating MAOs was demonstrated in SH-SY5Y neuroblastoma cell line. These results demonstrated for the first time that benextramine and its derivatives can inactivate human MAOs exploiting a mechanism different from that of the classical MAO inhibitors and could be a starting point for the development of pharmacological tools in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, Italy.,Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", Roma, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Francesca Zonta
- Department of Biomedical Sciences, University of Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Italy
| | - Elirosa Minniti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| |
Collapse
|
21
|
Kumar B, Kumar V, Prashar V, Saini S, Dwivedi AR, Bajaj B, Mehta D, Parkash J, Kumar V. Dipropargyl substituted diphenylpyrimidines as dual inhibitors of monoamine oxidase and acetylcholinesterase. Eur J Med Chem 2019; 177:221-234. [PMID: 31151057 DOI: 10.1016/j.ejmech.2019.05.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurological disorder involving complex pathogenesis. Single target directed drugs proved ineffective and since last few years' different pharmacological strategies including multi-targeting agents are being explored for the effective drug development for AD. A total of 19 dipropargyl substituted diphenylpyrimidines have been synthesized and evaluated for the monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibition potential. All the compounds were found to be selective and reversible inhibitors of MAO-B isoform. These compounds also displayed good AChE inhibition potential with IC50 values in low micromolar range. AVB4 was found to be the most potent MAO-B inhibitor with IC50 value of 1.49 ± 0.09 μM and AVB1 was found to be the most potent AChE inhibitor with IC50 value of 1.35 ± 0.03 μM. In the ROS protection inhibition studies, AVB1 and AVB4 displayed weak but interesting activity in SH-SY5Y cells. In the cytotoxicity studies involving SH-SY5Y cells, both AVB1 and AVB4 were found to be non-toxic to the tissue cells. In the molecular dynamic simulation studies of 30 ns, the potent compounds were found to be quite stable in the active site of MAO-B and AChE. The results suggested that AVB1 and AVB4 are promising dual inhibitors and have the potential to be developed as anti-Alzheimer's drug.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Vikash Prashar
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Suresh Saini
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Ashish Ranjan Dwivedi
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Beenu Bajaj
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Devashish Mehta
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Jyoti Parkash
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India.
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India.
| |
Collapse
|
22
|
Elgart A, Rabinovich‐Guilatt L, Eyal E, Gross A, Spiegelstein O. Pharmacokinetics and safety of single and multiple doses of rasagiline in healthy Japanese and caucasian subjects. Basic Clin Pharmacol Toxicol 2018; 124:273-284. [PMID: 30218626 DOI: 10.1111/bcpt.13131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Eli Eyal
- Teva Pharmaceuticals Ltd. Netanya Israel
| | | | | |
Collapse
|
23
|
Youdim MBH. Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases. J Neural Transm (Vienna) 2018; 125:1719-1733. [PMID: 30341696 DOI: 10.1007/s00702-018-1942-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
In early 1920s, tyramine oxidase was discovered that metabolized tyramine and in 1933 Blaschko demonstrated that this enzyme also metabolized adrenaline, noradrenaline and dopamine. Zeller gave it the name monoamine oxidase (MAO) to distinguish it from the enzyme that oxidatively deaminated diamines. MAO was recognized as an enzyme of crucial interest to pharmacologists because it catalyzed the major inactivation pathway for the catecholamines (and, later, 5-hydroxytryptamine, as well). Within the few decade, the inhibitors of MAO were discovered and introduced for the treatment of depressive illness which was established clinically. However, the first clinical use exposed serious side effects, pharmacological interest in, and investigation of, MAO continued, resulting in the characterization of two forms, distinct forms, MAO-A and -B, and selective inhibitors for them. Selective inhibitors of MAO-B (selegiline, rasagiline and safinamide) have found a therapeutic role in the treatment of Parkinson's disease and reversible inhibitors of MAO-A offered antidepressant activity without the serious side effects of the earlier nonselective MAO inhibitors. Subsequent molecular pharmacological have also generated the concept of neuroprotection, reflecting the possibility of slowing, halting and maybe reversing, neurodegeneration in Parkinson's or Alzheimer's diseases. Increased levels of oxidative stress through the accumulation of iron in the Parkinsonian and Alzheimer brains has been suggested to be critical for the initiation and progress of neurodegeneration. Selective inhibition of brain MAO could contribute importantly to lowering such stress, preventing the formation of hydrogen peroxide. Interaction of Iron with hydrogen peroxide and lead to Fenton reaction and production of the most reactive radical, namely hydroxyl radical. There are complex interactions between free iron levels in brain and MAO, and cascade of neurotoxic events may have practical outcomes for depressive disorders and neurodegenerative diseases. As consequence recent novel therapeutic drugs for neurodegenerative diseases has led to the development of multi target drugs, that possess selective brain MAO A and B inhibitory moiety, iron chelating and antioxidant activities and the ability to increase brain levels of endogenous neurotrophins, such as BDNF, GDNF VEGF and erythropoietin and induce mitochondrial biogenesis.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Bruce Rappaport Faculty of Medicine, Rappaport Family Research Institute, Haifa, Israel. .,, Yokneam, Israel.
| |
Collapse
|
24
|
Tripathi RKP, M Sasi V, Gupta SK, Krishnamurthy S, Ayyannan SR. Design, synthesis, and pharmacological evaluation of 2-amino-5-nitrothiazole derived semicarbazones as dual inhibitors of monoamine oxidase and cholinesterase: effect of the size of aryl binding site. J Enzyme Inhib Med Chem 2017; 33:37-57. [PMID: 29098902 PMCID: PMC6009888 DOI: 10.1080/14756366.2017.1389920] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A series of 2-amino-5-nitrothiazole derived semicarbazones were designed, synthesised and investigated for MAO and ChE inhibition properties. Most of the compounds showed preferential inhibition towards MAO-B. Compound 4, (1-(1-(4-Bromophenyl)ethylidene)-4-(5-nitrothiazol-2-yl)semicarbazide) emerged as lead candidate (IC50 = 0.212 µM, SI = 331.04) against MAO-B; whereas compounds 21 1-(5-Bromo-2-oxoindolin-3-ylidene)-4-(5-nitrothiazol-2-yl)semicarbazide (IC50 = 0.264 µM) and 17 1-((4-Chlorophenyl) (phenyl)methylene)-4-(5-nitrothiazol-2-yl)semicarbazide (IC50 = 0.024 µM) emerged as lead AChE and BuChE inhibitors respectively; with activity of compound 21 almost equivalent to tacrine. Kinetic studies indicated that compound 4 exhibited competitive and reversible MAO-B inhibition while compounds 21 and 17 showed mixed-type of AChE and BuChE inhibition respectively. Docking studies revealed that these compounds were well-accommodated within MAO-B and ChE active sites through stable hydrogen bonding and/or hydrophobic interactions. This study revealed the requirement of small heteroaryl ring at amino terminal of semicarbazone template for preferential inhibition and selectivity towards MAO-B. Our results suggest that 5-nitrothiazole derived semicarbazones could be further exploited for its multi-targeted role in development of anti-neurodegenerative agents. [Formula: see text] A library of 2-amino-5-nitrothiazole derived semicarbazones (4-21) was designed, synthesised and evaluated for in vitro MAO and ChE inhibitory activity. Compounds 4, 21 and 17 (shown) have emerged as lead MAO-B (IC50:0.212 µM, competitive and reversible), AChE (IC50:0.264 µM, mixed and reversible) and BuChE (IC50:0.024 µM, mixed and reversible) inhibitor respectively. SAR studies disclosed several structural aspects significant for potency and selectivity and indicated the role of size of aryl binding site in potency and selectivity towards MAO-B. Antioxidant activity and neurotoxicity screening results further suggested their multifunctional potential for the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rati K P Tripathi
- a Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| | - Vishnu M Sasi
- a Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| | - Sukesh K Gupta
- b Neurotherapeutics Research Laboratory, Department of Pharmaceutical Engineering & Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| | - Sairam Krishnamurthy
- b Neurotherapeutics Research Laboratory, Department of Pharmaceutical Engineering & Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| | - Senthil R Ayyannan
- a Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| |
Collapse
|
25
|
Rasheed MZ, Tabassum H, Parvez S. Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson's disease. PROTOPLASMA 2017; 254:33-42. [PMID: 26825389 DOI: 10.1007/s00709-015-0930-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Among the neurodegenerative diseases (ND), Parkinson's disease affects 6.3 million people worldwide characterized by the progressive loss of dopaminergic neurons in substantia nigra. The mitochondrial permeability transition pore (mtPTP) is a non-selective voltage-dependent mitochondrial channel whose opening modifies the permeability properties of the mitochondrial inner membrane. It is recognized as a potent pharmacological target for diseases associated with mitochondrial dysfunction and excessive cell death including ND such as Parkinson's disease (PD). Imbalance in Ca2+ concentration, change in mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), or mutation in mitochondrial genome has been implicated in the pathophysiology of the opening of the mtPTP. Different proteins are released by permeability transition including cytochrome c which is responsible for apoptosis. This review aims to discuss the importance of PTP in the pathophysiology of PD and puts together different positive as well as negative aspects of drugs such as pramipexole, ropinirole, minocyclin, rasagilin, and safinamide which act as a blocker or modifier for mtPTP. Some of them may be detrimental in their neuroprotective nature.
Collapse
Affiliation(s)
- Md Zeeshan Rasheed
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India.
| |
Collapse
|
26
|
Malka A, Ertracht O, Bachner-Hinenzon N, Reiter I, Binah O. The cardioprotective efficacy of TVP1022 against ischemia/reperfusion injury and cardiac remodeling in rats. Pharmacol Res Perspect 2016; 4:e00272. [PMID: 28097005 PMCID: PMC5226283 DOI: 10.1002/prp2.272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022] Open
Abstract
Following acute myocardial infarction (MI), early and successful reperfusion is the most effective strategy for reducing infarct size and improving the clinical outcome. However, immediate restoration of blood flow to the ischemic zone results in myocardial damage, defined as “reperfusion‐injury”. Whereas we previously reported that TVP1022 (the S‐isomer of rasagiline, FDA‐approved anti‐Parkinson drug) decreased infarct size 24 h post ischemia reperfusion (I/R) in rats, in this study we investigated the chronic cardioprotective efficacy of TVP1022 14 days post‐I/R. To simulate the clinical settings of acute MI followed by reperfusion therapy, we employed a rat model of left anterior descending artery occlusion for 30 min followed by reperfusion and a follow‐up for 14 days. TVP1022 was initially administered postocclusion–prereperfusion, followed by chronic daily administrations. Cardiac performance and remodeling were evaluated using customary and advanced echocardiographic methods, hemodynamic measurements by Millar Mikro‐Tip® catheter, and histopathological techniques. TVP1022 administration markedly decreased the remodeling process as illustrated by attenuation of left ventricular enlargement and cardiac hypertrophy (both at the whole heart and the cellular level). Furthermore, TVP1022 inhibited cardiac fibrosis and reduced ventricular BNP levels. Functionally, TVP1022 treatment preserved cardiac wall motion. Specifically, the echocardiographic and most of the direct hemodynamic measures were pronouncedly improved by TVP1022. Collectively, these findings indicate that TVP1022 provides prominent cardioprotection against I/R injury and post‐MI remodeling in this I/R model.
Collapse
Affiliation(s)
- Assaf Malka
- Faculty of Medicine in the Galilee Bar-Ilan University Safed Israel
| | - Offir Ertracht
- Eliachar Research Laboratory Galilee Medical Center Nahariya Israel
| | - Noa Bachner-Hinenzon
- Migal Galilee Technology Center Department of Computational Science and Bioinformatics Kiryat, Shmona Israel
| | - Irina Reiter
- Department of Physiology, Biophysics and Systems Biology the Rappaport Faculty of Medicine and Research Institute Technion, Haifa Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology the Rappaport Faculty of Medicine and Research Institute Technion, Haifa Israel
| |
Collapse
|
27
|
Abstract
Despite an increased understanding of the pathogenesis of Parkinson's disease (PD), and a number of drugs designed to ameliorate symptoms, finding an effective neuroprotective therapy remains elusive. For decades now, several promising agents targeting different pathways have been explored as potential treatments that could help slow disease progression, but these have met with limited success. There are hurdles to overcome, particularly given that there is no exact animal model of PD and also no reliable biomarkers for PD. Without biomarkers, it is not possible to demonstrate, in the context of a clinical trial, that an intervention prevents neuronal degeneration. However, given the compelling scientific rationale of several compounds, an unrelenting pursuit continues. There have been hundreds of human studies looking at neuroprotection in PD. This article will briefly summarize several of the neuroprotective treatments that have been evaluated in large clinical trials, and will also outline some of the newer therapies that are currently being explored.
Collapse
Affiliation(s)
- Ariane Park
- Department of Neurology, The Ohio State University, Columbus, OH, USA.
| | - Mark Stacy
- Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
28
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|
29
|
Liu W, Lang M, Youdim MBH, Amit T, Sun Y, Zhang Z, Wang Y, Weinreb O. Design, synthesis and evaluation of novel dual monoamine-cholinesterase inhibitors as potential treatment for Alzheimer's disease. Neuropharmacology 2016; 109:376-385. [PMID: 27318273 DOI: 10.1016/j.neuropharm.2016.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022]
Abstract
Current novel therapeutic approach suggests that multifunctional compounds with diverse biological properties and a single bioavailability and pharmacokinetic metabolism, will produce higher significant advantages in treatment of neurodegenerative diseases, such as Alzheimer's disease (AD). Based on this rational, a new class of cholinesterase (ChE)-monoamine oxidase (MAO) inhibitors were designed and synthesized by amalgamating the propargyl moiety of the irreversible selective MAO-B inhibitor, neuroprotective/neurorestorative anti-Parkinsonian drug, rasagiline, into the "N-methyl" position of the ChE inhibitor, anti-AD drug rivastigmine. Initially, we examined the MAO and ChE inhibitory effect of these novel compounds, MT series in vitro and in vivo. Among MT series, MT-031 exhibited higher potency as a dual MAO-A and ChE inhibitor compared to other compounds in acute-treated mice. Additionally, MT-031 was found to increase the striatal levels of dopamine (DA), serotonin (5-HT) and norepinephrine (NE), and prevent the metabolism of DA and 5-HT. Finally, we have demonstrated that MT-031 exerted neuroprotective effect against H2O2-induced neurotoxicity and reactive oxygen species generation in human neuroblastoma SH-SY5Y cells. These findings provide evidence that MT-031 is a potent brain permeable novel multifunctional, neuroprotective and MAO-A/ChE inhibitor, preserves in one molecule entity some of the beneficial properties of its parent drugs, rasagiline and rivastigmine, and thus may be indicated as novel therapeutic approach for AD.
Collapse
Affiliation(s)
- Wei Liu
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ming Lang
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Moussa B H Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yewei Sun
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
30
|
TVP1022: A Novel Cardioprotective Drug Attenuates Left Ventricular Remodeling After Ischemia/Reperfusion in Pigs. J Cardiovasc Pharmacol 2016; 66:214-22. [PMID: 25900266 DOI: 10.1097/fjc.0000000000000267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The current cornerstone treatment of myocardial infarction (MI) is restoration of coronary blood flow by means of thrombolytic therapy or primary percutaneous coronary intervention. However, reperfusion of ischemic myocardium can actually provoke tissue damage, defined as "ischemia-reperfusion (I/R) injury." TVP1022 [the S-isomer of rasagiline (Azilect), FDA-approved anti-Parkinson's drug] was found to exert cardioprotective activities against various cardiac insults, such as chronic heart failure and I/R, in rat models. Therefore, we tested the hypothesis that TVP1022 will provide cardioprotection against I/R injury and post-MI remodeling in a pig model. METHODS For inducing MI, we used an I/R model of midleft anterior descending artery occlusion for 90 minutes followed by follow-up for 8 weeks in 18 farm pigs (9 pigs in each group, MI + TVP1022 or MI + Vehicle). Echocardiographic measurements were performed and cardiac scar size was calculated using histopathological methods. For fibrosis evaluation, we measured the interstitial collagen volume fraction in the remote noninfarcted tissue. RESULTS TVP1022 administration significantly decreased cardiac scar size, attenuated left ventricular dilation, and improved cardiac function assessed by segmental circumferential strain analysis. Furthermore, TVP1022 significantly reduced myocardial fibrosis 8 weeks post-MI. CONCLUSIONS Collectively, these findings indicate that TVP1022 provides prominent cardioprotection against I/R injury and post-MI remodeling in this I/R pig model.
Collapse
|
31
|
Wang H, Liu J, Gao G, Wu X, Wang X, Yang H. Protection effect of piperine and piperlonguminine from Piper longum L. alkaloids against rotenone-induced neuronal injury. Brain Res 2016; 1639:214-27. [PMID: 26232071 DOI: 10.1016/j.brainres.2015.07.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022]
Abstract
Currently available treatment approaches for Parkinson׳s disease (PD) are limited in terms of variety and efficacy. Piper longum L. (PLL; Piperaceae) is used in traditional medicine in Asia and the Pacific Islands, with demonstrated anti-inflammatory and antioxidant activities in preclinical studies, and alkaloid extracts of PLL have shown protective effects in PD models. The present study investigated the mechanistic basis for the observed protective effects of PLL. Rats treated with PLL-derived alkaloids showed improvement in rotenone-induced motor deficits, while reactive oxygen species (ROS) production was decreased, mitochondrial membrane potential was stabilized, and the opening of the mitochondrial permeability transition pore (mPTP)-which is involved in ROS production-was inhibited. In addition, rotenone-induced apoptosis was abrogated in the presence of these alkaloids, while a pretreatment stimulated autophagy, likely mitigating neuronal injury by the removal of damaged mitochondria. These findings provide novel insight into the neuroprotective function of PLL as well as evidence in favor of its use in PD treatment. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Hao Wang
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Jia Liu
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Ge Gao
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Xia Wu
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Xiaomin Wang
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Hui Yang
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China.
| |
Collapse
|
32
|
Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond. Future Med Chem 2016; 7:609-29. [PMID: 25921401 DOI: 10.4155/fmc.15.12] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Much progress has been made in designing analogues that can potentially confer neuroprotection against debilitating neurodegenerative disorders, yet the multifactorial pathogenesis of this cluster of diseases remains a stumbling block for the successful design of an 'ultimate' drug. However, with the growing popularity of the "one drug, multiple targets" paradigm, many researchers have successfully synthesized and evaluated drug-like molecules incorporating a propargylamine function that shows potential to serve as multifunctional drugs or multitarget-directed ligands. It is the aim of this review to highlight the reported activities of these propargylamine derivatives and their prospect to serve as drug candidates for the treatment of neurodegenerative disorders.
Collapse
|
33
|
Haehner A, Habersack A, Wienecke M, Storch A, Reichmann H, Hummel T. Early Parkinson’s disease patients on rasagiline present with better odor discrimination. J Neural Transm (Vienna) 2015. [DOI: 10.1007/s00702-015-1433-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Erdoğan H, Tunçdemir M, Kelten B, Akdemir O, Karaoğlan A, Taşdemiroğlu E. The Effects of Difumarate Salt S-15176 after Spinal Cord Injury in Rats. J Korean Neurosurg Soc 2015; 57:445-54. [PMID: 26180614 PMCID: PMC4502243 DOI: 10.3340/jkns.2015.57.6.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/22/2015] [Accepted: 04/09/2015] [Indexed: 01/07/2023] Open
Abstract
Objective In the present study we analyzed neuroprotective and antiapoptotic effect of the difumarate salt S-15176, as an anti-ischemic, an antioxidant and a stabilizer of mitochondrial membrane in secondary damage following spinal cord injury (SCI) in a rat model. Methods Three groups were performed with 30 Wistar rats; control (1), trauma (2), and a trauma+S-15176 (10 mg/kg i.p., dimethyl sulfoxide) treatment (3). SCI was performed at the thoracic level using the weight-drop technique. Spinal cord tissues were collected following intracardiac perfusion in 3rd and 7th days of posttrauma. Hematoxylin and eosin staining for histopatology, terminal deoxynucleotidyl transferase dUTP nick end labeling assay for apoptotic cells and immunohistochemistry for proapoptotic cytochrome-c, Bax and caspase 9 were performed to all groups. Functional recovery test were applied to each group in 3rd and 7th days following SCI. Results In trauma group, edematous regions, diffuse hemorrhage, necrosis, leukocyte infiltration and severe degeneration in motor neurons were observed prominently in gray matter. The number of apoptotic cells was significantly higher (p<0.05) than control group. In the S-15176-treated groups, apoptotic cell number in 3rd and 7th days (p<0.001), also cytochrome-c (p<0.001), Bax (p<0.001) and caspase 9 immunoreactive cells (p<0.001) were significantly decreased in number compared to trauma groups. Hemorrhage and edema in the focal areas were also noticed in gray matter of treatment groups. Results of the locomotor test were significantly increased in treatment group (p<0.05) when compared to trauma groups. Conclusion We suggest that difumarate salt S-15176 prevents mitochondrial pathways of apoptosis and protects spinal cord from secondary injury and helps to preserve motor function following SCI in rats.
Collapse
Affiliation(s)
- Hakan Erdoğan
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Matem Tunçdemir
- Medical Biology Department, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Bilal Kelten
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Osman Akdemir
- Department of Neurosurgery Taksim Education and Research Hospital, Istanbul, Turkey
| | - Alper Karaoğlan
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | | |
Collapse
|
35
|
Bar-Am O, Amit T, Youdim MB, Weinreb O. Neuroprotective and neurorestorative potential of propargylamine derivatives in ageing: focus on mitochondrial targets. J Neural Transm (Vienna) 2015; 123:125-35. [PMID: 25859841 DOI: 10.1007/s00702-015-1395-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/23/2015] [Indexed: 01/14/2023]
Abstract
The mitochondrial theory of ageing proposes that accumulation of damage to mitochondrial function and DNA mutation lead to ageing of humans and animals. It has been suggested that mitochondria play dynamic roles in regulating synaptogenesis and morphological/functional responses of synaptic activity, and thus, deteriorating of mitochondrial function (e.g., deficits of the mitochondrial respiratory enzymes, reduced calcium influx, increased accumulation of mitochondrial DNA defects/apoptotic proteins and impairment of mitochondrial membrane potential) can lead to severe neuronal energy deficit, and in the long run, to modifications in neuronal synapses and neurodegeneration in the ageing brain. Hence, considering the mechanisms by which mitochondrial impairment can lead to neuronal death, the development of neuroprotective molecules that target various mitochondrial pathogenic processes can be effective in the treatment of ageing and age-related neurodegenerative diseases. This review addresses several aspects of the neuroprotective effects of propargylamine derivatives (e.g., the monoamine oxidase-B inhibitors, selegiline and rasagiline and the multifunctional drugs, ladostigil, M30 and VAR10303) in ageing with a special focus on mitochondrial molecular protective mechanisms.
Collapse
Affiliation(s)
- Orit Bar-Am
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Moussa B Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel.
| |
Collapse
|
36
|
CuFe2O4 nanoparticles: an efficient heterogeneous magnetically separable catalyst for synthesis of some novel propynyl-1H-imidazoles derivatives. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.057] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Wang Z, Wang Y, Li W, Mao F, Sun Y, Huang L, Li X. Design, synthesis, and evaluation of multitarget-directed selenium-containing clioquinol derivatives for the treatment of Alzheimer's disease. ACS Chem Neurosci 2014; 5:952-62. [PMID: 25121395 DOI: 10.1021/cn500119g] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A series of selenium-containing clioquinol derivatives were designed, synthesized, and evaluated as multifunctional anti-Alzheimer's disease (AD) agents. In vitro examination showed that several target compounds exhibited activities such as inhibition of metal-induced Aβ aggregation, antioxidative properties, hydrogen peroxide scavenging, and the prevention of copper redox cycling. A parallel artificial membrane permeation assay indicated that selenium-containing clioquinol derivatives possessed significant blood-brain barrier (BBB) permeability. Compound 8a, with a propynylselanyl group linked to the oxine, demonstrated higher hydrogen peroxide scavenging and intracellular antioxidant activity than clioquinol. Furthermore, 8a exhibited significant inhibition of Cu(II)-induced Aβ1-42 aggregation and was capable of disassembling the preformed Cu(II)-induced Aβ aggregates. Therefore, 8a is an excellent multifunctional promising compound for development of novel drugs for AD.
Collapse
Affiliation(s)
- Zhiren Wang
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yali Wang
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenrui Li
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Mao
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Sun
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Huang
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingshu Li
- Institute of Drug Synthesis
and Pharmaceutical Processing, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
38
|
Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, Bae JY, Kim T, Lee J, Chun H, Park HJ, Lee DY, Hong J, Kim HY, Oh SJ, Park SJ, Lee H, Yoon BE, Kim Y, Jeong Y, Shim I, Bae YC, Cho J, Kowall NW, Ryu H, Hwang E, Kim D, Lee CJ. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat Med 2014; 20:886-96. [PMID: 24973918 DOI: 10.1038/nm.3639] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022]
Abstract
In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.
Collapse
Affiliation(s)
- Seonmi Jo
- 1] Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. [2] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [3]
| | - Oleg Yarishkin
- 1] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [2]
| | - Yu Jin Hwang
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Ye Eun Chun
- 1] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [2] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Mijeong Park
- 1] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea. [2] Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Dong Ho Woo
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Taekeun Kim
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jaekwang Lee
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Heejung Chun
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyun Jung Park
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Da Yong Lee
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jinpyo Hong
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hye Yun Kim
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Soo-Jin Oh
- Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Seung Ju Park
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyo Lee
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Bo-Eun Yoon
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - YoungSoo Kim
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Insop Shim
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jeiwon Cho
- 1] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea. [2] Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Neil W Kowall
- 1] Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, Massachusetts, USA. [2] Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA. [3] VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Hoon Ryu
- 1] Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea. [2] Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, Massachusetts, USA. [3] Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA. [4] VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Eunmi Hwang
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - C Justin Lee
- 1] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [2] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea. [3] Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea. [4] KU-KIST Graduate School of Converging Science of Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Pan ZX, He X, Chen YY, Tang WJ, Shi JB, Tang YL, Song BA, Li J, Liu XH. New 2H-chromene-3-carboxamide derivatives: Design, synthesis and use as inhibitors of hMAO. Eur J Med Chem 2014; 80:278-84. [DOI: 10.1016/j.ejmech.2014.04.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/08/2014] [Accepted: 04/21/2014] [Indexed: 12/29/2022]
|
40
|
Cai Z. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer's disease (Review). Mol Med Rep 2014; 9:1533-41. [PMID: 24626484 DOI: 10.3892/mmr.2014.2040] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/10/2014] [Indexed: 11/06/2022] Open
Abstract
Activated monoamine oxidase (MAO) has a critical role in the pathogenesis of Alzheimer's disease (AD), including the formation of amyloid plaques from amyloid β peptide (Aβ) production and accumulation, formation of neurofibrillary tangles, and cognitive impairment via the destruction of cholinergic neurons and disorder of the cholinergic system. Several studies have indicated that MAO inhibitors improve cognitive deficits and reverse Aβ pathology by modulating proteolytic cleavage of amyloid precursor protein and decreasing Aβ protein fragments. Thus, MAO inhibitors may be considered as promising therapeutic agents for AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, P.R. China
| |
Collapse
|
41
|
Dror V, Rehavi M, Biton IE, Eliash S. Rasagiline prevents neurodegeneration in thiamine deficient rats-a longitudinal MRI study. Brain Res 2014; 1557:43-54. [PMID: 24525144 DOI: 10.1016/j.brainres.2013.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/22/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
Neuroprotection is a therapeutic approach for the management of neurodegenerative diseases. Experimental thiamine deficiency (TD) in rats provides a model for selective neurodegeneration accompanied by chronic oxidative deficits. Rats exhibit neurological and cognitive impairments, which can be partially reversed by thiamine administration, enabling the study of mechanisms of neurodegeneration as well as neuroprotection. In this magnetic resonance (MR) study we used various techniques to characterize the neuroprotective effects of rasagiline, a selective MAO-B inhibitor. TD was induced by a thiamine-deficient diet and daily injections of the central thiamine antagonist, pyrithiamine. Daily injections of either saline or rasagiline (3mg/kg) were also administered to untreated-TD rats and rasagiline-treated TD rats respectively. With the appearance of neurological symptoms, all injections were terminated and thiamine was restored. MRI scans were performed before induction of TD (control values), on days 10, 12 (before symptoms appear), 14 (symptomatic stage) and during the recuperation period. Both groups were assessed using in-vivo serial T2-weighted imaging and diffusion tensor imaging (DTI), from which apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps were calculated. A histopathological evaluation was correlated with the MRI analysis. Thalamic hyperintensities were significantly smaller and less severe in the rasagiline-treated TD rats. Enlargement of the lateral ventricles was significantly less pronounced in the rasagiline-treated TD group. FA values of the untreated-TD group decreased significantly in the thalamic on days 12 and 14 and in the corpus callosum on day 14. These results demonstrate significant neuroprotection by rasagiline which could have implications for clinical neurodegenerative disorders.
Collapse
Affiliation(s)
- Vered Dror
- Tel Aviv University, Department of Physiology & Pharmacolgy, Sackler School of Medicine, Pob 39040, 69978 Ramat Aviv, Israel
| | - Moshe Rehavi
- Tel Aviv University, Department of Physiology & Pharmacolgy, Sackler School of Medicine, Pob 39040, 69978 Ramat Aviv, Israel
| | - Inbal E Biton
- Department of Chemical Research Support MR Center, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarah Eliash
- Tel Aviv University, Department of Physiology & Pharmacolgy, Sackler School of Medicine, Pob 39040, 69978 Ramat Aviv, Israel.
| |
Collapse
|
42
|
Polony G, Humli V, Andó R, Aller M, Horváth T, Harnos A, Tamás L, Vizi ES, Zelles T. Protective effect of rasagiline in aminoglycoside ototoxicity. Neuroscience 2014; 265:263-73. [PMID: 24508748 DOI: 10.1016/j.neuroscience.2014.01.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/13/2014] [Accepted: 01/29/2014] [Indexed: 12/28/2022]
Abstract
Sensorineural hearing losses (SNHLs; e.g., ototoxicant- and noise-induced hearing loss or presbycusis) are among the most frequent sensory deficits, but they lack effective drug therapies. The majority of recent therapeutic approaches focused on the trials of antioxidants and reactive oxygen species (ROS) scavengers in SNHLs. The rationale for these studies was the prominent role of disturbed redox homeostasis and the consequent ROS elevation. Although the antioxidant therapies in several animal studies seemed to be promising, clinical trials have failed to fulfill expectations. We investigated the potential of rasagiline, an FDA-approved monomanine oxidase type B inhibitor (MAO-B) inhibitor type anti-parkinsonian drug, as an otoprotectant. We showed a dose-dependent alleviation of the kanamycin-induced threshold shifts measured by auditory brainstem response (ABR) in an ototoxicant aminoglycoside antibiotic-based hearing loss model in mice. This effect proved to be statistically significant at a 6-mg/kg (s.c.) dose. The most prominent effect appeared at 16kHz, which is the hearing sensitivity optimum for mice. The neuroprotective, antiapoptotic and antioxidant effects of rasagiline in animal models, all targeting a specific mechanism of aminoglycoside injury, may explain this otoprotection. The dopaminergic neurotransmission enhancer effect of rasagiline might also contribute to the protection. Dopamine (DA), released from lateral olivocochlear (LOC) fibers, was shown to exert a protective action against excitotoxicity, a pathological factor in the aminoglycoside-induced SNHL. We have shown that rasagiline enhanced the electric stimulation-evoked release of DA from an acute mouse cochlea preparation in a dose-dependent manner. Using inhibitors of voltage-gated Na(+)-, Ca(2+) channels and DA transporters, we revealed that rasagiline potentiated the action potential-evoked release of DA by inhibiting the reuptake. The complex, multifactorial pathomechanism of SNHLs most likely requires drugs acting on multiple targets for effective therapy. Rasagiline, with its multi-target action and favorable adverse effects profile, might be a good candidate for a clinical trial testing the otoprotective indication.
Collapse
Affiliation(s)
- G Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary; Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - V Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - R Andó
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - M Aller
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - T Horváth
- Department of Otorhinolaryngology, Bajcsy-Zsilinszky Hospital, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - A Harnos
- Department of Biomathematics and Informatics, Szent István University, Budapest, Hungary
| | - L Tamás
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - E S Vizi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - T Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
43
|
A novel series of 6-substituted 3-(pyrrolidin-1-ylmethyl)chromen-2-ones as selective monoamine oxidase (MAO) A inhibitors. Eur J Med Chem 2014; 73:177-86. [DOI: 10.1016/j.ejmech.2013.11.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/22/2022]
|
44
|
Sobow T. Combination treatments in Alzheimer’s disease: risks and benefits. Expert Rev Neurother 2014; 10:693-702. [DOI: 10.1586/ern.10.43] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Rucins M, Kaldre D, Pajuste K, Fernandes MA, Vicente JA, Klimaviciusa L, Jaschenko E, Kanepe-Lapsa I, Shestakova I, Plotniece M, Gosteva M, Sobolev A, Jansone B, Muceniece R, Klusa V, Plotniece A. Synthesis and studies of calcium channel blocking and antioxidant activities of novel 4-pyridinium and/or N-propargyl substituted 1,4-dihydropyridine derivatives. CR CHIM 2014. [DOI: 10.1016/j.crci.2013.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Abstract
Rasagiline is a monoamine oxidase type-B inhibitor used as monotherapy or in addition to levodopa in the treatment of Parkinson's disease. Once daily administration of rasagiline makes it easy to use, and allows good compliance by patients and adherence to therapy. Several multicenter studies have noted the effectiveness of rasagiline on both motor and non-motor symptoms, which require a complex pharmacologic approach, such as cognitive disorders. A recent study also reported a rapid action of rasagiline on motor symptoms. Positive findings have been highlighted by an economic model study. This review analyzes the main studies of rasagiline, with particular attention to the effectiveness of the drug on motor symptoms.
Collapse
|
47
|
Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Łos MJ. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2013; 112:24-49. [PMID: 24211851 DOI: 10.1016/j.pneurobio.2013.10.004] [Citation(s) in RCA: 722] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada; Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada; St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Yeganeh
- Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada; Hospital for Sick Children Research Institute, Department of Physiology and Experimental Medicine, University of Toronto, Canada
| | - Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Jaganmohan R Jangamreddy
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden
| | - Maryam Mehrpour
- INSERM U845, Research Center "Growth & Signaling" Paris Descartes University Medical School, France
| | - Jonas Christoffersson
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden
| | - Wiem Chaabane
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden; Department of Biology, Faculty of Sciences, Tunis University, Tunis, Tunisia
| | | | - Hessam H Kashani
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada; Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Biology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali A Owji
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Marek J Łos
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden.
| |
Collapse
|
48
|
Haehner A, Hummel T, Wolz M, Klingelhöfer L, Fauser M, Storch A, Reichmann H. Effects of rasagiline on olfactory function in patients with Parkinson's disease. Mov Disord 2013; 28:2023-7. [DOI: 10.1002/mds.25661] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 07/25/2013] [Accepted: 08/04/2013] [Indexed: 01/02/2023] Open
Affiliation(s)
- Antje Haehner
- Smell & Taste Clinic, Department of Otorhinolaryngology; University of Dresden Medical School; Dresden Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology; University of Dresden Medical School; Dresden Germany
| | - Martin Wolz
- Department of Neurology; University of Dresden Medical School; Dresden Germany
- Department of Neurology; Elblandkliniken Meissen; Meissen Germany
| | - Lisa Klingelhöfer
- Department of Neurology; University of Dresden Medical School; Dresden Germany
| | - Mareike Fauser
- Department of Neurology; University of Dresden Medical School; Dresden Germany
| | - Alexander Storch
- Division of Neurodegenerative Diseases, Department of Neurology; University of Dresden Medical School; Dresden Germany
- German Centre for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| | - Heinz Reichmann
- Department of Neurology; University of Dresden Medical School; Dresden Germany
| |
Collapse
|
49
|
Appleby BS, Nacopoulos D, Milano N, Zhong K, Cummings JL. A review: treatment of Alzheimer's disease discovered in repurposed agents. Dement Geriatr Cogn Disord 2013; 35:1-22. [PMID: 23307039 DOI: 10.1159/000345791] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIMS Many compounds that have already been approved for alternate diagnoses have been studied in relation to Alzheimer's disease (AD). The purpose of this review is to summarize these studies and discuss the rationale and benefits of repurposing drugs for AD treatment. METHODS Studies of drugs related to AD treatment that were relevant to a disease-modifying mechanism of action (MOA) and are already approved by the Food and Drug Administration for non-AD diagnoses were collected from PubMed. RESULTS Many drugs already approved for the treatment of other diseases have been studied in relation to AD treatment. Numerous drugs with known toxicity profiles have the potential to be repurposed as a treatment for AD. CONCLUSION Known MOA, toxicology, and pharmacodynamic profiles would accelerate the process and increase the odds of finding a more timely disease-modifying treatment for AD.
Collapse
Affiliation(s)
- Brian S Appleby
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
50
|
Mandel S, Amit T, Kalfon L, Youdim MB. Applying transcriptomic and proteomic knowledge to Parkinson's disease drug discovery. Expert Opin Drug Discov 2013; 2:1225-40. [PMID: 23496130 DOI: 10.1517/17460441.2.9.1225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is recognised that in both genetic and sporadic cases of Parkinson's disease (PD), the basis of its etiopathology resides in the particular vulnerability of the dopaminergic neurons of the substantia nigra pars compacta (SNpc) to oxidative stress and in the failure to adequately remove abnormal proteins. These observations have been confirmed recently by microarray transcriptomic studies in human SN from PD brains and have extended understanding of the molecular pathways underlying the PD pathology. This article reviews recent gene expression profiling studies in sporadic PD postmortem SN and highlights gene candidates as putative molecular signatures for early disease diagnosis. In addition, the application of transcriptomics and proteomics in the quest for multifunctional neuroprotective-neurorescue drugs that might possess disease-modifying action is discussed.
Collapse
Affiliation(s)
- Silvia Mandel
- Eve Topf Center for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion, Efron Street, PO Box 9697, Haifa 31096, Israel +972 4 8295289 ; +972 4 8513145 ;
| | | | | | | |
Collapse
|