1
|
Norte-Muñoz M, Portela-Lomba M, Sobrado-Calvo P, Simón D, Di Pierdomenico J, Gallego-Ortega A, Pérez M, Cabrera-Maqueda JM, Sierra J, Vidal-Sanz M, Moreno-Flores MT, Agudo-Barriuso M. Differential response of injured and healthy retinas to syngeneic and allogeneic transplantation of a clonal cell line of immortalized olfactory ensheathing glia: a double-edged sword. Neural Regen Res 2025; 20:2395-2407. [PMID: 39359096 DOI: 10.4103/nrr.nrr-d-23-01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/19/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00029/figure1/v/2024-09-30T120553Z/r/image-tiff Olfactory ensheathing glia promote axonal regeneration in the mammalian central nervous system, including retinal ganglion cell axonal growth through the injured optic nerve. Still, it is unknown whether olfactory ensheathing glia also have neuroprotective properties. Olfactory ensheathing glia express brain-derived neurotrophic factor, one of the best neuroprotectants for axotomized retinal ganglion cells. Therefore, we aimed to investigate the neuroprotective capacity of olfactory ensheating glia after optic nerve crush. Olfactory ensheathing glia cells from an established rat immortalized clonal cell line, TEG3, were intravitreally injected in intact and axotomized retinas in syngeneic and allogeneic mode with or without microglial inhibition or immunosuppressive treatments. Anatomical and gene expression analyses were performed. Olfactory bulb-derived primary olfactory ensheathing glia and TEG3 express major histocompatibility complex class II molecules. Allogeneically and syngenically transplanted TEG3 cells survived in the vitreous for up to 21 days, forming an epimembrane. In axotomized retinas, only the allogeneic TEG3 transplant rescued retinal ganglion cells at 7 days but not at 21 days. In these retinas, microglial anatomical activation was higher than after optic nerve crush alone. In intact retinas, both transplants activated microglial cells and caused retinal ganglion cell death at 21 days, a loss that was higher after allotransplantation, triggered by pyroptosis and partially rescued by microglial inhibition or immunosuppression. However, neuroprotection of axotomized retinal ganglion cells did not improve with these treatments. The different neuroprotective properties, different toxic effects, and different responses to microglial inhibitory treatments of olfactory ensheathing glia in the retina depending on the type of transplant highlight the importance of thorough preclinical studies to explore these variables.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - María Portela-Lomba
- Experimental Sciences Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Paloma Sobrado-Calvo
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Diana Simón
- Experimental Sciences Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Johnny Di Pierdomenico
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Alejandro Gallego-Ortega
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Mar Pérez
- Anatomy, Histology and Neuroscience Department, Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cabrera-Maqueda
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
- Center of Neuroimmunology, Service of Neurology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Universitat de Barcelona, Barcelona, Spain
| | - Javier Sierra
- Medicine Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - María Teresa Moreno-Flores
- Anatomy, Histology and Neuroscience Department, Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| |
Collapse
|
2
|
Sahebdel F, Zia A, Quinta HR, Morse LR, Olson JK, Battaglino RA. Transcriptomic Profiling of Primary Microglia: Effects of miR-19a-3p and miR-19b-3p on Microglia Activation. Int J Mol Sci 2024; 25:10601. [PMID: 39408930 PMCID: PMC11477266 DOI: 10.3390/ijms251910601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Neuropathic pain resulting from spinal cord injury (SCI) is a significant secondary health issue affecting around 60% of individuals with SCI. After SCI, activation of microglia, the immune cells within the central nervous system, leads to neuroinflammation by producing pro-inflammatory cytokines and affects neuropathic pain. This interplay between inflammation and pain contributes to the persistent and intense pain experienced by many individuals with SCI. MicroRNAs (miRs) have been critical regulators of neuroinflammation. Previous research in our laboratory has revealed upregulation levels of circulating miR-19a and miR-19b in individuals with SCI with neuropathic pain compared to those without pain. In this study, we treated primary microglial cultures from mice with miR-19a and miR-19b for 24 h and conducted RNA sequencing analysis. Our results showed that miR-19a and miR-19b up- and downregulate different genes according to the volcano plots and the heatmaps. miR-19a and miR-19b regulate inflammation through distinct signaling pathways. The results showed that miR-19a promotes inflammation via toll-like receptor signaling, TNF signaling, and cytokine-cytokine receptor interactions, while miR-19b increases inflammatory responses through the PI3K-Akt signaling pathway, focal adhesion, and extracellular matrix receptor interactions. The protein-protein interaction (PPI) networks used the STRING database to identify transcription factors associated with genes up- or downregulated by miR-19a and miR-19b. Key transcription factors, such as STAT1, STAT2, and KLF4 for miR-19a, and Nr4a1, Nr4a2, and Nr4a3 for miR-19b, were identified and revealed their roles in regulating neuroinflammation. This study demonstrates that miR-19a and miR-19b modulate diverse patterns of gene expression, regulate inflammation, and induce inflammatory responses in microglia.
Collapse
Affiliation(s)
- Faezeh Sahebdel
- Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Aliabbas Zia
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T1C5, Canada
- Department of Pharmacology, Université de Montréal, Montreal, QC H3T1J4, Canada
| | - Hector Ramiro Quinta
- National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires C1425FQB, Argentina
- Laboratorio de Medicina Experimental, “Dr. Jorge Toblli”, Hospital Aleman, Ciudad Autonoma de Buenos Aires C1425FQB, Argentina
| | - Leslie R. Morse
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Uhealth and Jackson Health Systems, Lynn Rehabilitation Center, Miami, FL 33136, USA
| | - Julie K. Olson
- Department of Diagnostics and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ricardo A. Battaglino
- Department of Orthopaedics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Lin B, Zhou Y, Huang Z, Ma M, Qi M, Jiang Z, Li G, Xu Y, Yan J, Wang D, Wang X, Jiang W, Zhou R. GPR34 senses demyelination to promote neuroinflammation and pathologies. Cell Mol Immunol 2024; 21:1131-1144. [PMID: 39030423 PMCID: PMC11442997 DOI: 10.1038/s41423-024-01204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024] Open
Abstract
Sterile neuroinflammation is a major driver of multiple neurological diseases. Myelin debris can act as an inflammatory stimulus to promote inflammation and pathologies, but the mechanism is poorly understood. Here, we showed that lysophosphatidylserine (LysoPS)-GPR34 axis played a critical role in microglia-mediated myelin debris sensing and the subsequent neuroinflammation. Myelin debris-induced microglia activation and proinflammatory cytokine expression relied on its lipid component LysoPS. Both myelin debris and LysoPS promoted microglia activation and the production of proinflammatory cytokines via GPR34 and its downstream PI3K-AKT and ERK signaling. In vivo, reducing the content of LysoPS in myelin or inhibition of GPR34 with genetic or pharmacological approaches reduced neuroinflammation and pathologies in the mouse models of multiple sclerosis and stroke. Thus, our results identify GPR34 as a key receptor to sense demyelination and CNS damage and promote neuroinflammation, and suggest it as a potential therapeutic target for demyelination-associated diseases.
Collapse
Affiliation(s)
- Bolong Lin
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yubo Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zonghui Huang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Ming Ma
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Minghui Qi
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongjun Jiang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guoyang Li
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yueli Xu
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiaxian Yan
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaqiong Wang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Wei Jiang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Song S, Oft H, Metwally S, Paruchuri S, Bielanin J, Fiesler V, Sneiderman C, Kohanbash G, Sun D. Deletion of Slc9a1 in Cx3cr1 + cells stimulated microglial subcluster CREB1 signaling and microglia-oligodendrocyte crosstalk. J Neuroinflammation 2024; 21:69. [PMID: 38509618 PMCID: PMC10953158 DOI: 10.1186/s12974-024-03065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Microglial Na/H exchanger-1 (NHE1) protein, encoded by Slc9a1, plays a role in white matter demyelination of ischemic stroke brains. To explore underlying mechanisms, we conducted single cell RNA-seq transcriptome analysis in conditional Slc9a1 knockout (cKO) and wild-type (WT) mouse white matter tissues at 3 days post-stroke. Compared to WT, Nhe1 cKO brains expanded a microglial subgroup with elevated transcription of white matter myelination genes including Spp1, Lgals3, Gpnmb, and Fabp5. This subgroup also exhibited more acidic pHi and significantly upregulated CREB signaling detected by ingenuity pathway analysis and flow cytometry. Moreover, the Nhe1 cKO white matter tissues showed enrichment of a corresponding oligodendrocyte subgroup, with pro-phagocytosis and lactate shuffling gene expression, where activated CREB signaling is a likely upstream regulator. These findings demonstrate that attenuation of NHE1-mediated H+ extrusion acidifies microglia/macrophage and may underlie the stimulation of CREB1 signaling, giving rise to restorative microglia-oligodendrocyte interactions for remyelination.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| | - Helena Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shamseldin Metwally
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Satya Paruchuri
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Bielanin
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victoria Fiesler
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaim Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
6
|
Belousova O, Lopatina A, Kuzmina U, Melnikov M. The role of biogenic amines in the modulation of monocytes in autoimmune neuroinflammation. Mult Scler Relat Disord 2023; 78:104920. [PMID: 37536214 DOI: 10.1016/j.msard.2023.104920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Multiple sclerosis (MS) is inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) with autoimmune mechanism of development. The study of the neuroimmune interactions is one of the most developing directions in the research of the pathogenesis of MS. The influence of biogenic amines on the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and MS was shown by the modulation of subsets of T-helper cells and B-cells, which plays a crucial role in the autoimmunity of the CNS. However, along with T- and B-cells the critical involvement of mononuclear phagocytes such as dendritic cells, macrophages, and monocytes in the development of neuroinflammation also was shown. It was demonstrated that the activation of microglial cells (resident macrophages of the CNS) could initiate the neuroinflammation in the EAE, suggesting their role at an early stage of the disease. In contrast, monocytes, which migrate from the periphery into the CNS through the blood-brain barrier, mediate the effector phase of the disease and cause neurological disability in EAE. In addition, the clinical efficacy of the therapy with depletion of the monocytes in EAE was shown, suggesting their crucial role in the autoimmunity of the CNS. Biogenic amines, such as epinephrine, norepinephrine, dopamine, and serotonin are direct mediators of the neuroimmune interaction and may affect the pathogenesis of EAE and MS by modulating the immune cell activity and cytokine production. The anti-inflammatory effect of targeting the biogenic amines receptors on the pathogenesis of EAE and MS by suppression of Th17- and Th1-cells, which are critical for the CNS autoimmunity, was shown. However, the latest data showed the potential ability of biogenic amines to affect the functions of the mononuclear phagocytes and their involvement in the modulation of neuroinflammation. This article reviews the literature data on the role of monocytes in the pathogenesis of EAE and MS. The data on the effect of targeting of biogenic amine receptors on the function of monocytes are presented.
Collapse
Affiliation(s)
- Olga Belousova
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna Lopatina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Ulyana Kuzmina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Laboratory of Molecular Pharmacology and Immunology, Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Science, Ufa, Russia
| | - Mikhail Melnikov
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia.
| |
Collapse
|
7
|
Dąbrowska-Bouta B, Strużyńska L, Sidoryk-Węgrzynowicz M, Sulkowski G. Memantine Improves the Disturbed Glutamine and γ-Amino Butyric Acid Homeostasis in the Brain of Rats Subjected to Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2023; 24:13149. [PMID: 37685956 PMCID: PMC10488185 DOI: 10.3390/ijms241713149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Glutamine (Gln), glutamate (Glu), and γ-amino butyric acid (GABA) are essential amino acids for brain metabolism and function. Astrocyte-derived Gln is the precursor for the two most important neurotransmitters in the central nervous system (CNS), which are the excitatory neurotransmitter Glu and the inhibitory neurotransmitter GABA. In addition to their roles in neurotransmission, these amino acids can be used as alternative substrates in brain metabolism that enable metabolic coupling between astrocytes and neurons in the glutamate-glutamine cycle (GGC). The disturbed homeostasis of these amino acids within the tripartite synapse may be involved in the pathogenesis of various neurological diseases. Interactions between astrocytes and neurons in terms of Gln, Glu, and GABA homeostasis were studied in different phases of experimental allergic encephalomyelitis (EAE) in Lewis rats. The results of the study showed a decrease in the transport (uptake and release) of Gln and GABA in both neuronal and astrocyte-derived fractions. These effects were fully or partially reversed when the EAE rats were treated with memantine, a NMDA receptor antagonist. Changes in the expression and activity of selected glutamine/glutamate metabolizing enzymes, such as glutamine synthase (GS) and phosphate-activated glutaminase (PAG), which were affected by memantine, were observed in different phases of EAE. The results suggested perturbed homeostasis of Gln, Glu, and GABA during EAE, which may indicate alterations in neuron-astrocyte coupling and dysfunction of the tripartite synapse. Memantine appears to partially regulate the disturbed relationships between Gln, Glu, and GABA.
Collapse
Affiliation(s)
| | | | | | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland; (B.D.-B.); (L.S.); (M.S.-W.)
| |
Collapse
|
8
|
Tichauer JE, Arellano G, Acuña E, González LF, Kannaiyan NR, Murgas P, Panadero-Medianero C, Ibañez-Vega J, Burgos PI, Loda E, Miller SD, Rossner MJ, Gebicke-Haerter PJ, Naves R. Interferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia. Front Immunol 2023; 14:1191838. [PMID: 37334380 PMCID: PMC10272814 DOI: 10.3389/fimmu.2023.1191838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Compelling evidence has shown that interferon (IFN)-γ has dual effects in multiple sclerosis and in its animal model of experimental autoimmune encephalomyelitis (EAE), with results supporting both a pathogenic and beneficial function. However, the mechanisms whereby IFN-γ may promote neuroprotection in EAE and its effects on central nervous system (CNS)-resident cells have remained an enigma for more than 30 years. In this study, the impact of IFN-γ at the peak of EAE, its effects on CNS infiltrating myeloid cells (MC) and microglia (MG), and the underlying cellular and molecular mechanisms were investigated. IFN-γ administration resulted in disease amelioration and attenuation of neuroinflammation associated with significantly lower frequencies of CNS CD11b+ myeloid cells and less infiltration of inflammatory cells and demyelination. A significant reduction in activated MG and enhanced resting MG was determined by flow cytometry and immunohistrochemistry. Primary MC/MG cultures obtained from the spinal cord of IFN-γ-treated EAE mice that were ex vivo re-stimulated with a low dose (1 ng/ml) of IFN-γ and neuroantigen, promoted a significantly higher induction of CD4+ regulatory T (Treg) cells associated with increased transforming growth factor (TGF)-β secretion. Additionally, IFN-γ-treated primary MC/MG cultures produced significantly lower nitrite in response to LPS challenge than control MC/MG. IFN-γ-treated EAE mice had a significantly higher frequency of CX3CR1high MC/MG and expressed lower levels of program death ligand 1 (PD-L1) than PBS-treated mice. Most CX3CR1highPD-L1lowCD11b+Ly6G- cells expressed MG markers (Tmem119, Sall2, and P2ry12), indicating that they represented an enriched MG subset (CX3CR1highPD-L1low MG). Amelioration of clinical symptoms and induction of CX3CR1highPD-L1low MG by IFN-γ were dependent on STAT-1. RNA-seq analyses revealed that in vivo treatment with IFN-γ promoted the induction of homeostatic CX3CR1highPD-L1low MG, upregulating the expression of genes associated with tolerogenic and anti-inflammatory roles and down-regulating pro-inflammatory genes. These analyses highlight the master role that IFN-γ plays in regulating microglial activity and provide new insights into the cellular and molecular mechanisms involved in the therapeutic activity of IFN-γ in EAE.
Collapse
Affiliation(s)
- Juan E. Tichauer
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gabriel Arellano
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eric Acuña
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Luis F. González
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Nirmal R. Kannaiyan
- Molecular Neurobiology, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Paola Murgas
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | | | - Jorge Ibañez-Vega
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula I. Burgos
- Department of Clinical Immunology and Rheumatology , School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Moritz J. Rossner
- Molecular Neurobiology, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter J. Gebicke-Haerter
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| | - Rodrigo Naves
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Fan J, Han Y, Sun H, Sun S, Wang Y, Guo R, Guo J, Tian X, Wang J, Wang J. Mesenchymal stem cell-derived exosomal microRNA-367–3p alleviates experimental autoimmune encephalomyelitis via inhibition of microglial ferroptosis by targeting EZH2. Biomed Pharmacother 2023; 162:114593. [PMID: 37001184 DOI: 10.1016/j.biopha.2023.114593] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory demyelinating disorder of the central nervous system. Accumulating evidence has underscored the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (BMSC-Exos) containing bioactive compounds in MS. Herein, the current study sought to characterize the mechanism of BMSC-Exos harboring miR-367-3p both in BV2 microglia by Erastin-induced ferroptosis and in experimental autoimmune encephalomyelitis (EAE), a typical animal model of MS. Exosomes were firstly isolated from BMSCs and identified for further use. BV2 microglia were co-cultured with miR-367-3p-containing BMSC-Exos, followed by an assessment of cell ferroptosis. Mechanistic exploration was furthered by the interaction of miR-367-3p and its downstream regulators. Lastly, BMSC-Exos harboring miR-367-3p were injected into EAE mice for in vivo validation. BMSC-Exos carrying miR-367-3p restrained microglial ferroptosis in vitro. Mechanistically, miR-367-3p could bind to Enhancer of zeste homolog 2 (EZH2) and restrain EZH2 expression, leading to the over-expression of solute carrier family 7 member 11 (SLC7A11). Meanwhile, over-expression of SLC7A11 resulted in Glutathione Peroxidase 4 (GPX4) activation and ferroptosis suppression. Ectopic expression of EZH2 in vitro negated the protective effects of BMSC-Exos. Furthermore, BMSC-Exos containing miR-367-3p relieved the severity of EAE by suppressing ferroptosis and restraining EZH2 expression in vivo. Collectively, our findings suggest that BMSC-Exos carrying miR-367-3p brings about a significant decline in microglia ferroptosis by repressing EZH2 and alleviating the severity of EAE in vivo, suggesting a possible role of miR-367-3p overexpression in the treatment strategy of EAE. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.
Collapse
|
10
|
Tang JM, McClennan A, Liu L, Hadway J, Ronald JA, Hicks JW, Hoffman L, Anazodo UC. A Protocol for Simultaneous In Vivo Imaging of Cardiac and Neuroinflammation in Dystrophin-Deficient MDX Mice Using [ 18F]FEPPA PET. Int J Mol Sci 2023; 24:ijms24087522. [PMID: 37108685 PMCID: PMC10144317 DOI: 10.3390/ijms24087522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder caused by dystrophin loss-notably within muscles and the central neurons system. DMD presents as cognitive weakness, progressive skeletal and cardiac muscle degeneration until pre-mature death from cardiac or respiratory failure. Innovative therapies have improved life expectancy; however, this is accompanied by increased late-onset heart failure and emergent cognitive degeneration. Thus, better assessment of dystrophic heart and brain pathophysiology is needed. Chronic inflammation is strongly associated with skeletal and cardiac muscle degeneration; however, neuroinflammation's role is largely unknown in DMD despite being prevalent in other neurodegenerative diseases. Here, we present an inflammatory marker translocator protein (TSPO) positron emission tomography (PET) protocol for in vivo concomitant assessment of immune cell response in hearts and brains of a dystrophin-deficient mouse model [mdx:utrn(+/-)]. Preliminary analysis of whole-body PET imaging using the TSPO radiotracer, [18F]FEPPA in four mdx:utrn(+/-) and six wildtype mice are presented with ex vivo TSPO-immunofluorescence tissue staining. The mdx:utrn(+/-) mice showed significant elevations in heart and brain [18F]FEPPA activity, which correlated with increased ex vivo fluorescence intensity, highlighting the potential of TSPO-PET to simultaneously assess presence of cardiac and neuroinflammation in dystrophic heart and brain, as well as in several organs within a DMD model.
Collapse
Affiliation(s)
- Joanne M Tang
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Andrew McClennan
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Linshan Liu
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Jennifer Hadway
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - John A Ronald
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Justin W Hicks
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Lisa Hoffman
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Department of Anatomy and Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Udunna C Anazodo
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
11
|
Plafker SM, Titcomb T, Zyla-Jackson K, Kolakowska A, Wahls T. Overview of diet and autoimmune demyelinating optic neuritis: a narrative review. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00022. [PMID: 37128292 PMCID: PMC10144304 DOI: 10.1097/in9.0000000000000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
This review summarizes the cellular and molecular underpinnings of autoimmune demyelinating optic neuritis (ADON), a common sequela of multiple sclerosis and other demyelinating diseases. We further present nutritional interventions tested for people with multiple sclerosis focusing on strategies that have shown efficacy or associations with disease course and clinical outcomes. We then close by discuss the potential dietary guidance for preventing and/or ameliorating ADON.
Collapse
Affiliation(s)
- Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tyler Titcomb
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katarzyna Zyla-Jackson
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aneta Kolakowska
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Terry Wahls
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
12
|
Lin C, Wang N, Xu C. Glioma-associated microglia/macrophages (GAMs) in glioblastoma: Immune function in the tumor microenvironment and implications for immunotherapy. Front Immunol 2023; 14:1123853. [PMID: 36969167 PMCID: PMC10034134 DOI: 10.3389/fimmu.2023.1123853] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Glioma is a mixed solid tumor composed of neoplastic and non-neoplastic components. Glioma-associated macrophages and microglia (GAMs) are crucial elements of the glioma tumor microenvironment (TME), regulating tumor growth, invasion, and recurrence. GAMs are also profoundly influenced by glioma cells. Recent studies have revealed the intricate relationship between TME and GAMs. In this updated review, we provide an overview of the interaction between glioma TME and GAMs based on previous studies. We also summarize a series of immunotherapies targeting GAMs, including clinical trials and preclinical studies. Specifically, we discuss the origin of microglia in the central nervous system and the recruitment of GAMs in the glioma background. We also cover the mechanisms through which GAMs regulate various processes associated with glioma development, such as invasiveness, angiogenesis, immunosuppression, recurrence, etc. Overall, GAMs play a significant role in the tumor biology of glioma, and a better understanding of the interaction between GAMs and glioma could catalyze the development of new and effective immunotherapies for this deadly malignancy.
Collapse
|
13
|
Vainchtein ID, Alsema AM, Dubbelaar ML, Grit C, Vinet J, van Weering HRJ, Al‐Izki S, Biagini G, Brouwer N, Amor S, Baker D, Eggen BJL, Boddeke EWGM, Kooistra SM. Characterizing microglial gene expression in a model of secondary progressive multiple sclerosis. Glia 2023; 71:588-601. [PMID: 36377669 PMCID: PMC10100411 DOI: 10.1002/glia.24297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is the most common inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. Chronic-relapsing experimental autoimmune encephalomyelitis (crEAE) in Biozzi ABH mice is an experimental model of MS. This crEAE model is characterized by an acute phase with severe neurological disability, followed by remission of disease, relapse of neurological disease and remission that eventually results in a chronic progressive phase that mimics the secondary progressive phase (SPEAE) of MS. In both MS and SPEAE, the role of microglia is poorly defined. We used a crEAE model to characterize microglia in the different phases of crEAE phases using morphometric and RNA sequencing analyses. At the initial, acute inflammation phase, microglia acquired a pro-inflammatory phenotype. At the remission phase, expression of standard immune activation genes was decreased while expression of genes associated with lipid metabolism and tissue remodeling were increased. Chronic phase microglia partially regain inflammatory gene sets and increase expression of genes associated with proliferation. Together, the data presented here indicate that microglia obtain different features at different stages of crEAE and a particularly mixed phenotype in the chronic stage. Understanding the properties of microglia that are present at the chronic phase of EAE will help to understand the role of microglia in secondary progressive MS, to better aid the development of therapies for this phase of the disease.
Collapse
Affiliation(s)
- Ilia D. Vainchtein
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Astrid M. Alsema
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Marissa L. Dubbelaar
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Corien Grit
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Jonathan Vinet
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Hilmar R. J. van Weering
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sarah Al‐Izki
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sandra Amor
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
- Department of PathologyVUMCAmsterdamThe Netherlands
| | - David Baker
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Erik W. G. M. Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Cellular and Molecular MedicineCenter for Healthy Ageing, University of CopenhagenCopenhagenDenmark
| | - Susanne M. Kooistra
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
14
|
Guo D, Xu Y, Liu Z, Wang Y, Xu X, Li C, Li S, Zhang J, Xiong T, Cao W, Liang J. IGF2 inhibits hippocampal over-activated microglia and alleviates depression-like behavior in LPS- treated male mice. Brain Res Bull 2023; 194:1-12. [PMID: 36603794 DOI: 10.1016/j.brainresbull.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/17/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023]
Abstract
Over-activated microglia and inflammatory mediators are found in patients with depression, while manipulation of the microglia function might represent a potential therapeutic strategy. Insulin-like growth factor 2 (IGF2) has been implicated in bacterial infections and autoimmune disorders, but the role of IGF2 on the active phenotype of microglia and neuroinflammation has not been well established. IGF2 influences in modulating microglia responding to neuroinflammation induced by lipopolysaccharide(LPS)challenge will be carefully examined. In the current study, we verified that systemic IGF2 treatment could produce an anti-depression effect in LPS-treated mice. Particularly, we found that systemic IGF2 treatment inhibited microglia over-activation and prevented its transformation to a pro-inflammatory phenotype, thereby protecting hippocampal neurogenesis. Since microglia reactive to neuroinflammation is a common feature of neuropsychiatric disorders, the discoveries from the present study may provide therapeutic innovation for these diseases.
Collapse
Affiliation(s)
- Dongming Guo
- Institute of Translational Medicine, Medical, Yangzhou University, 225009 Yangzhou, Jiangsu, China; Department of Human Anatomy, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zhenghai Liu
- Department of Human Anatomy, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Xiaofan Xu
- Department of Human Anatomy, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Cai Li
- Department of Human Anatomy, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Suyun Li
- Department of Human Anatomy, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Jingwen Zhang
- Institute of Translational Medicine, Medical, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - WenYu Cao
- Department of Human Anatomy, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| | - Jingyan Liang
- Institute of Translational Medicine, Medical, Yangzhou University, 225009 Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, 225009 Yangzhou, Jiangsu, China..
| |
Collapse
|
15
|
Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells 2022; 11:cells11233768. [PMID: 36497029 PMCID: PMC9737582 DOI: 10.3390/cells11233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed.
Collapse
|
16
|
Aditi, McKinnon PJ. Genome integrity and inflammation in the nervous system. DNA Repair (Amst) 2022; 119:103406. [PMID: 36148701 PMCID: PMC9844216 DOI: 10.1016/j.dnarep.2022.103406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Preservation of genomic integrity is crucial for nervous system development and function. DNA repair deficiency results in several human diseases that are characterized by both neurodegeneration and neuroinflammation. Recent research has highlighted a role for compromised genomic integrity as a key factor driving neuropathology and triggering innate immune signaling to cause inflammation. Here we review the mechanisms by which DNA damage engages innate immune signaling and how this may promote neurological disease. We also consider the contributions of different neural cell types towards DNA damage-driven neuroinflammation. A deeper knowledge of genome maintenance mechanisms that prevent aberrant immune activation in neural cells will guide future therapies to ameliorate neurological disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
17
|
Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3201644. [PMID: 36046684 PMCID: PMC9423989 DOI: 10.1155/2022/3201644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
Based on the diverse physiological influence, the impact of glial cells has become much more evident on neurological illnesses, resulting in the origins of many diseases appearing to be more convoluted than previously happened. Since neurological disorders are often random and unknown, hence the construction of animal models is difficult to build, representing a small fraction of people with a gene mutation. As a result, an immediate necessity is grown to work within in vitro techniques for examining these illnesses. As the scientific community recognizes cell-autonomous contributions to a variety of central nervous system illnesses, therapeutic techniques involving stem cells for treating neurological diseases are gaining traction. The use of stem cells derived from a variety of sources is increasingly being used to replace both neuronal and glial tissue. The brain's energy demands necessitate the reliance of neurons on glial cells in order for it to function properly. Furthermore, glial cells have diverse functions in terms of regulating their own metabolic activities, as well as collaborating with neurons via secreted signaling or guidance molecules, forming a complex network of neuron-glial connections in health and sickness. Emerging data reveals that metabolic changes in glial cells can cause morphological and functional changes in conjunction with neuronal dysfunction under disease situations, highlighting the importance of neuron-glia interactions in the pathophysiology of neurological illnesses. In this context, it is required to improve our understanding of disease mechanisms and create potential novel therapeutics. According to research, synaptic malfunction is one of the features of various mental diseases, and glial cells are acting as key ingredients not only in synapse formation, growth, and plasticity but also in neuroinflammation and synaptic homeostasis which creates critical physiological capacity in the focused sensory system. The goal of this review article is to elaborate state-of-the-art information on a few glial cell types situated in the central nervous system (CNS) and highlight their role in the onset and progression of neurological disorders.
Collapse
|
18
|
Melnikov M, Kasatkin D, Lopatina A, Spirin N, Boyko A, Pashenkov M. Serotonergic drug repurposing in multiple sclerosis: A new possibility for disease-modifying therapy. Front Neurol 2022; 13:920408. [PMID: 35937048 PMCID: PMC9355384 DOI: 10.3389/fneur.2022.920408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Investigation of neuroimmune interactions is one of the most developing areas in the study of multiple sclerosis pathogenesis. Recent evidence suggests the possibility of modulating neuroinflammation by targeting biogenic amine receptors. It has been shown that selective serotonin reuptake inhibitor fluoxetine modulates innate and adaptive immune system cells' function and can reduce experimental autoimmune encephalomyelitis and multiple sclerosis severity. This brief report discusses the immune mechanisms underlying the multiple sclerosis pathogenesis and the influence of fluoxetine on them. The retrospective data on the impact of fluoxetine treatment on the course of multiple sclerosis are also presented. The results of this and other studies suggest that fluoxetine could be considered an additional therapy to the standard first-line disease-modifying treatment for relapsing–remitting multiple sclerosis.
Collapse
Affiliation(s)
- Mikhail Melnikov
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- *Correspondence: Mikhail Melnikov
| | - Dmitriy Kasatkin
- Department of Neurology, Neurosurgery and Medical Genetics, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Anna Lopatina
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Nikolay Spirin
- Department of Neurology, Neurosurgery and Medical Genetics, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Alexey Boyko
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail Pashenkov
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
19
|
Targeting Microglia in Alzheimer’s Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules 2022; 27:molecules27134124. [PMID: 35807370 PMCID: PMC9268715 DOI: 10.3390/molecules27134124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a common, progressive, and devastating neurodegenerative disorder that mainly affects the elderly. Microglial dysregulation, amyloid-beta (Aβ) plaques, and intracellular neurofibrillary tangles play crucial roles in the pathogenesis of AD. In the brain, microglia play roles as immune cells to provide protection against virus injuries and diseases. They have significant contributions in the development of the brain, cognition, homeostasis of the brain, and plasticity. Multiple studies have confirmed that uncontrolled microglial function can result in impaired microglial mitophagy, induced Aβ accumulation and tau pathology, and a chronic neuroinflammatory environment. In the brain, most of the genes that are associated with AD risk are highly expressed by microglia. Although it was initially regarded that microglia reaction is incidental and induced by dystrophic neurites and Aβ plaques. Nonetheless, it has been reported by genome-wide association studies that most of the risk loci for AD are located in genes that are occasionally uniquely and highly expressed in microglia. This finding further suggests that microglia play significant roles in early AD stages and they be targeted for the development of novel therapeutics. In this review, we have summarized the molecular pathogenesis of AD, microglial activities in the adult brain, the role of microglia in the aging brain, and the role of microglia in AD. We have also particularly focused on the significance of targeting microglia for the treatment of AD.
Collapse
|
20
|
Seals MR, Moran MM, Leavenworth JD, Leavenworth JW. Contribution of Dysregulated B-Cells and IgE Antibody Responses to Multiple Sclerosis. Front Immunol 2022; 13:900117. [PMID: 35784370 PMCID: PMC9243362 DOI: 10.3389/fimmu.2022.900117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS), a debilitating autoimmune inflammatory disease that affects the brain and spinal cord, causes demyelination of neurons, axonal damage, and neurodegeneration. MS and the murine experimental autoimmune encephalomyelitis (EAE) model have been viewed mainly as T-cell-mediated diseases. Emerging data have suggested the contribution of B-cells and autoantibodies to the disease progression. However, the underlying mechanisms by which dysregulated B-cells and antibody response promote MS and EAE remain largely unclear. Here, we provide an updated review of this specific subject by including B-cell biology and the role of B-cells in triggering autoimmune neuroinflammation with a focus on the regulation of antibody-producing B-cells. We will then discuss the role of a specific type of antibody, IgE, as it relates to the potential regulation of microglia and macrophage activation, autoimmunity and MS/EAE development. This knowledge can be utilized to develop new and effective therapeutic approaches to MS, which fits the scope of the Research Topic "Immune Mechanism in White Matter Lesions: Clinical and Pathophysiological Implications".
Collapse
Affiliation(s)
- Malik R. Seals
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Multidisciplinary Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Monica M. Moran
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan D. Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Treatment of experimental autoimmune encephalomyelitis using AAV gene therapy by blocking T cell costimulatory pathways. Mol Ther Methods Clin Dev 2022; 25:461-475. [PMID: 35615707 PMCID: PMC9118358 DOI: 10.1016/j.omtm.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), characterized by inflammation and demyelination. Presently, repeated relapses of MS necessitate long-term immune-regulatory therapy. Blocking the CD28-B7 and CD40-CD40L costimulatory pathways is an effective and synergistic method for the prevention and amelioration of clinical symptoms of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this study, to explore the efficacy and safety of MS gene therapy, we used adeno-associated virus (AAV) as a vector to deliver CTLA4-immunoglobulin (Ig) or CD40-Ig on the EAE induced by myelin oligodendrocyte glycoprotein (MOG). Our results showed that a single administration of AAV8-CTLA4-Ig, either alone or with AAV8-CD40-Ig, protected mice from EAE and reversed disease progression. Decreased CD4+ and CD8+ T cell infiltration, inhibition of MOG antibody response, and downregulation of neuroinflammation were observed in mice receiving AAV, suggesting that autoimmunity was suppressed in EAE pathology. Moreover, no hematological or hepatic toxicity was observed in AAV-treated mice. Thus, compared with treatment with recombinant CTLA4-Ig (belatacept), AAV gene therapy could effectively control clinical symptoms and suppress autoimmunity in the long term. In summary, our study provides a potential therapeutic method for blocking T cell costimulation for the treatment of MS via gene therapy.
Collapse
|
22
|
Nishi R, Ohyagi M, Nagata T, Mabuchi Y, Yokota T. Regulation of activated microglia and macrophages by systemically administered DNA/RNA heteroduplex oligonucleotides. Mol Ther 2022; 30:2210-2223. [PMID: 35189344 PMCID: PMC9171263 DOI: 10.1016/j.ymthe.2022.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Microglial activation followed by recruitment of blood-borne macrophages into the central nervous system (CNS) aggravates neuroinflammation. Specifically, in multiple sclerosis (MS) as well as in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, activated microglia and macrophages (Mg/Mφ) promote proinflammatory responses and expand demyelination in the CNS. However, a potent therapeutic approach through the systemic route for regulating their functions has not yet been developed. Here, we demonstrate that a systemically injected DNA/RNA heteroduplex oligonucleotide (HDO), composed of an antisense oligonucleotide (ASO) and its complementary RNA, conjugated to cholesterol (Chol-HDO) distributed more efficiently to demyelinating lesions of the spinal cord in EAE mice with significant gene silencing than the parent ASO. Importantly, systemic administration of Cd40-targeting Chol-HDO improved clinical signs of EAE with significant downregulation of Cd40 in Mg/Mφ. Furthermore, we successfully identify that macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of Chol-HDO by Mg/Mφ of EAE mice. Overall, our findings demonstrate the therapeutic potency of systemically administered Chol-HDO to regulate activated Mg/Mφ in neuroinflammation.
Collapse
Affiliation(s)
- Rieko Nishi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Ohyagi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
23
|
Chen YL, Bai L, Dilimulati D, Shao S, Qiu C, Liu T, Xu S, Bai XB, Du LJ, Zhou LJ, Lin WZ, Meng XQ, Jin YC, Liu Y, Zhang XH, Duan SZ, Jia F. Periodontitis Salivary Microbiota Aggravates Ischemic Stroke Through IL-17A. Front Neurosci 2022; 16:876582. [PMID: 35663549 PMCID: PMC9160974 DOI: 10.3389/fnins.2022.876582] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Although epidemiological studies suggest that periodontitis is tightly associated with ischemic stroke, its impact on ischemic stroke and the underlysing mechanisms are poorly understood. Recent studies have shown that alteration in gut microbiota composition influences the outcomes of ischemic stroke. In the state of periodontitis, many oral pathogenic bacteria in the saliva are swallowed and transmitted to the gut. However, the role of periodontitis microbiota in the pathogenesis and progression of ischemic stroke is unclear. Therefore, we hypothesized that the periodontitis salivary microbiota influences the gut immune system and aggravates ischemic stroke. Mice receiving gavage of periodontitis salivary microbiota showed significantly worse stroke outcomes. And these mice also manifested more severe neuroinflammation, with higher infiltration of inflammatory cells and expression of inflammatory cytokines in the ischemic brain. More accumulation of Th17 cells and IL-17+ γδ T cells were observed in the ileum. And in Kaede transgenic mice after photoconversion. Migration of CD4+ T cells and γδ T cells from the ileum to the brain was observed after ischemic stroke in photoconverted Kaede transgenic mice. Furthermore, the worse stroke outcome was abolished in the IL-17A knockout mice. These findings suggest that periodontitis salivary microbiota increased IL-17A-producing immune cells in the gut, likely promoted the migration of these cells from the gut to the brain, and subsequently provoked neuroinflammation after ischemic stroke. These findings have revealed the role of periodontitis in ischemic stroke through the gut and provided new insights into the worse outcome of ischemic stroke coexisting with periodontitis in clinical trials.
Collapse
Affiliation(s)
- Yan-Lin Chen
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Dilirebati Dilimulati
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xue-Bing Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xiao-Qian Meng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Yi-Chao Jin
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiao-Hua Zhang,
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Sheng-Zhong Duan,
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Nantong First People’s Hospital, The Second Affiliated Hospital of Nantong University, Nantong, China
- Feng Jia,
| |
Collapse
|
24
|
Clark KC, Wang D, Kumar P, Mor S, Kulubya E, Lazar S, Wang A. The Molecular Mechanisms Through Which Placental Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Myelin Regeneration. Adv Biol (Weinh) 2022; 6:e2101099. [PMID: 35023637 PMCID: PMC9225676 DOI: 10.1002/adbi.202101099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is a debilitating degenerative disease characterized by an immunological attack on the myelin sheath leading to demyelination and axon degeneration. Mesenchymal stem/stromal cells (MSCs) and secreted extracellular vesicles (EVs) have become attractive targets as therapies to treat neurodegenerative diseases such as MS due to their potent immunomodulatory and regenerative properties. The placenta is a unique source of MSCs (PMSCs), demonstrates "fetomaternal" tolerance during pregnancy, and serves as a novel source of MSCs for the treatment of neurodegenerative diseases. PMSCs and PMSC-EVs have been shown to promote remyelination in animal models of MS, however, the molecular mechanisms by which modulation of autoimmunity and promotion of myelination occurs have not been well elucidated. The current review will address the molecular mechanisms by which PMSC-EVs can promote remyelination in MS.
Collapse
|
25
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
26
|
Melnikov M, Sviridova A, Rogovskii V, Boyko A, Pashenkov M. The role of macrophages in the development of neuroinflammation in multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:51-56. [DOI: 10.17116/jnevro202212205151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Eliseeva D, Zakharova M. Mechanisms of Neurodegeneration in Multiple Sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:5-13. [DOI: 10.17116/jnevro20221220725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Haidar MA, Ibeh S, Shakkour Z, Reslan MA, Nwaiwu J, Moqidem YA, Sader G, Nickles RG, Babale I, Jaffa AA, Salama M, Shaito A, Kobeissy F. Crosstalk between Microglia and Neurons in Neurotrauma: An Overview of the Underlying Mechanisms. Curr Neuropharmacol 2022; 20:2050-2065. [PMID: 34856905 PMCID: PMC9886840 DOI: 10.2174/1570159x19666211202123322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain and play a crucial role in housekeeping and maintaining homeostasis of the brain microenvironment. Upon injury or disease, microglial cells become activated, at least partly, via signals initiated by injured neurons. Activated microglia, thereby, contribute to both neuroprotection and neuroinflammation. However, sustained microglial activation initiates a chronic neuroinflammatory response which can disturb neuronal health and disrupt communications between neurons and microglia. Thus, microglia-neuron crosstalk is critical in a healthy brain as well as during states of injury or disease. As most studies focus on how neurons and microglia act in isolation during neurotrauma, there is a need to understand the interplay between these cells in brain pathophysiology. This review highlights how neurons and microglia reciprocally communicate under physiological conditions and during brain injury and disease. Furthermore, the modes of microglia-neuron communication are exposed, focusing on cell-contact dependent signaling and communication by the secretion of soluble factors like cytokines and growth factors. In addition, it has been discussed that how microglia-neuron interactions could exert either beneficial neurotrophic effects or pathologic proinflammatory responses. We further explore how aberrations in microglia-neuron crosstalk may be involved in central nervous system (CNS) anomalies, namely traumatic brain injury (TBI), neurodegeneration, and ischemic stroke. A clear understanding of how the microglia-neuron crosstalk contributes to the pathogenesis of brain pathologies may offer novel therapeutic avenues of brain trauma treatment.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Stanley Ibeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Judith Nwaiwu
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yomna Adel Moqidem
- Biotechnology Program, School of Science and Engineering, The American University in Cairo, Cairo, Egypt
| | - Georgio Sader
- Faculty of Medicine, University of Balamand, Balamand, Lebanon
| | - Rachel G. Nickles
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ismail Babale
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aneese A. Jaffa
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, New Cairo 11835, Egypt
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
29
|
Polaryzacja mikrogleju i makrofagów w wybranych chorobach degeneracyjnych i zapalnych układu nerwowego. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Makrofagi to komórki efektorowe układu odpornościowego zdolne do polaryzacji, czyli zmiany fenotypu powiązanej ze zmianą aktywności. Można wyróżnić: polaryzację klasyczną (M1), która służy obronie przed patogenami, a makrofagi M1 mają aktywność ogólnie prozapalną, oraz polaryzację alternatywną (M2), która sprzyja wygaszaniu stanu zapalnego i regeneracji tkanki. Makrofagi zasiedlają niemal cały organizm, więc zjawisko ich polaryzacji ma wpływ na wiele procesów zachodzących w różnych tkankach. W układzie nerwowym reprezentacją osiadłych makrofagów jest mikroglej. Jednak w wielu sytuacjach patologicznych w mózgu pojawiają się także makrofagi rekrutowane z monocytów krążących we krwi. Choroby neurodegeneracyjne, urazy i choroby autoimmunologiczne są związane z reakcją układu odpornościowego, która może mieć istotny wpływ na dalszy przebieg choroby i na tempo regeneracji tkanki. Polaryzacja makrofagów ma w związku z tym znaczenie w chorobach centralnego układu nerwowego. Aktywność komórek M1 i M2 może bowiem różnie wpływać na przeżywalność neuronów i oligodendrocytów, na wzrost aksonów, na proces demielinizacji czy na szczelność bariery krew–mózg. Wynika to z różnic między fenotypami w wytwarzaniu reaktywnych form tlenu i tlenku azotu, wydzielaniu cytokin i czynników wzrostu, bezpośrednich oddziaływaniach na sąsiednie komórki i zdolnościach do fagocytozy. W artykule omówiono to zagadnienie w: udarze mózgu, urazie rdzenia kręgowego, chorobie Alzheimera, stwardnieniu zanikowym bocznym i stwardnieniu rozsianym. W wielu spośród tych patologii obserwuje się gradient czasowy lub przestrzenny rozmieszczenia w tkance poszczególnych fenotypów mikrogleju i/lub makrofagów. Wydaje się zatem, że zmiany polaryzacji makrofagów mogą potencjalnie sprzyjać regeneracji tkanki lub hamować rozwój chorób neurodegeneracyjnych.
Collapse
|
30
|
Ramos-Martínez IE, Rodríguez MC, Cerbón M, Ramos-Martínez JC, Ramos-Martínez EG. Role of the Cholinergic Anti-Inflammatory Reflex in Central Nervous System Diseases. Int J Mol Sci 2021; 22:ijms222413427. [PMID: 34948222 PMCID: PMC8705572 DOI: 10.3390/ijms222413427] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In several central nervous system diseases, it has been reported that inflammation may be related to the etiologic process, therefore, therapeutic strategies are being implemented to control inflammation. As the nervous system and the immune system maintain close bidirectional communication in physiological and pathological conditions, the modulation of inflammation through the cholinergic anti-inflammatory reflex has been proposed. In this review, we summarized the evidence supporting chemical stimulation with cholinergic agonists and vagus nerve stimulation as therapeutic strategies in the treatment of various central nervous system pathologies, and their effect on inflammation.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), 94010 Créteil, France;
| | - María Carmen Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Morelos 62100, Mexico;
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| | - Juan Carlos Ramos-Martínez
- Cardiology Department, Hospital General Regional Lic. Ignacio Garcia Tellez IMSS, Yucatán 97150, Mexico;
| | - Edgar Gustavo Ramos-Martínez
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
- Instituto de Cómputo Aplicado en Ciencias, Oaxaca 68044, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| |
Collapse
|
31
|
Dąbrowska-Bouta B, Strużyńska L, Sidoryk-Węgrzynowicz M, Sulkowski G. Memantine Modulates Oxidative Stress in the Rat Brain following Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2021; 22:11330. [PMID: 34768760 PMCID: PMC8583197 DOI: 10.3390/ijms222111330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model most commonly used in research on the pathomechanisms of multiple sclerosis (MS). The inflammatory processes, glutamate excitotoxicity, and oxidative stress have been proposed as determinants accompanying demyelination and neuronal degeneration during the course of MS/EAE. The aim of the current study was to characterize the role of NMDA receptors in the induction of oxidative stress during the course of EAE. The effect of memantine, the uncompetitive NMDA receptor antagonist, on modulation of neurological deficits and oxidative stress in EAE rats was analyzed using several experimental approaches. We demonstrated that the expression of antioxidative enzymes (superoxide dismutases SOD1 and SOD2) were elevated in EAE rat brains. Under the same experimental conditions, we observed alterations in oxidative stress markers such as increased levels of malondialdehyde (MDA) and decreased levels of sulfhydryl (-SH) groups, both protein and non-protein (indicating protein damage), and a decline in reduced glutathione. Importantly, pharmacological inhibition of ionotropic NMDA glutamate receptors by their antagonist memantine improved the physical activity of EAE rats, alleviated neurological deficits such as paralysis of tail and hind limbs, and modulated oxidative stress parameters (MDA, -SH groups, SOD's). Furthermore, the current therapy aiming to suppress NMDAR-induced oxidative stress was partially effective when NMDAR's antagonist was administered at an early (asymptomatic) stage of EAE.
Collapse
Affiliation(s)
| | | | | | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland; (B.D.-B.); (L.S.); (M.S.-W.)
| |
Collapse
|
32
|
Murúa SR, Farez MF, Quintana FJ. The Immune Response in Multiple Sclerosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:121-139. [PMID: 34606377 DOI: 10.1146/annurev-pathol-052920-040318] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune, inflammatory, and neurodegenerative disease that affects the central nervous system (CNS). MS is characterized by immune dysregulation, which results in the infiltration of the CNS by immune cells, triggering demyelination, axonal damage, and neurodegeneration. Although the exact causes of MS are not fully understood, genetic and environmental factors are thought to control MS onset and progression. In this article, we review the main immunological mechanisms involved in MS pathogenesis. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sofía Rodríguez Murúa
- Center for Research on Neuroimmunological Diseases (CIEN), Raúl Carrea Institute for Neurological Research (FLENI), Buenos Aires 1428, Argentina;
| | - Mauricio F Farez
- Center for Research on Neuroimmunological Diseases (CIEN), Raúl Carrea Institute for Neurological Research (FLENI), Buenos Aires 1428, Argentina;
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
33
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
34
|
Mitchell D, Shireman J, Sierra Potchanant EA, Lara-Velazquez M, Dey M. Neuroinflammation in Autoimmune Disease and Primary Brain Tumors: The Quest for Striking the Right Balance. Front Cell Neurosci 2021; 15:716947. [PMID: 34483843 PMCID: PMC8414998 DOI: 10.3389/fncel.2021.716947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
According to classical dogma, the central nervous system (CNS) is defined as an immune privileged space. The basis of this theory was rooted in an incomplete understanding of the CNS microenvironment, however, recent advances such as the identification of resident dendritic cells (DC) in the brain and the presence of CNS lymphatics have deepened our understanding of the neuro-immune axis and revolutionized the field of neuroimmunology. It is now understood that many pathological conditions induce an immune response in the CNS, and that in many ways, the CNS is an immunologically distinct organ. Hyperactivity of neuro-immune axis can lead to primary neuroinflammatory diseases such as multiple sclerosis and antibody-mediated encephalitis, whereas immunosuppressive mechanisms promote the development and survival of primary brain tumors. On the therapeutic front, attempts are being made to target CNS pathologies using various forms of immunotherapy. One of the most actively investigated areas of CNS immunotherapy is for the treatment of glioblastoma (GBM), the most common primary brain tumor in adults. In this review, we provide an up to date overview of the neuro-immune axis in steady state and discuss the mechanisms underlying neuroinflammation in autoimmune neuroinflammatory disease as well as in the development and progression of brain tumors. In addition, we detail the current understanding of the interactions that characterize the primary brain tumor microenvironment and the implications of the neuro-immune axis on the development of successful therapeutic strategies for the treatment of CNS malignancies.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jack Shireman
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | - Montserrat Lara-Velazquez
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mahua Dey
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
35
|
Spiteri AG, Terry RL, Wishart CL, Ashhurst TM, Campbell IL, Hofer MJ, King NJC. High-parameter cytometry unmasks microglial cell spatio-temporal response kinetics in severe neuroinflammatory disease. J Neuroinflammation 2021; 18:166. [PMID: 34311763 PMCID: PMC8314570 DOI: 10.1186/s12974-021-02214-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Differentiating infiltrating myeloid cells from resident microglia in neuroinflammatory disease is challenging, because bone marrow-derived inflammatory monocytes infiltrating the inflamed brain adopt a 'microglia-like' phenotype. This precludes the accurate identification of either cell type without genetic manipulation, which is important to understand their temporal contribution to disease and inform effective intervention in its pathogenesis. During West Nile virus (WNV) encephalitis, widespread neuronal infection drives substantial CNS infiltration of inflammatory monocytes, causing severe immunopathology and/or death, but the role of microglia in this remains unclear. METHODS Using high-parameter cytometry and dimensionality-reduction, we devised a simple, novel gating strategy to identify microglia and infiltrating myeloid cells during WNV-infection. Validating our strategy, we (1) blocked the entry of infiltrating myeloid populations from peripheral blood using monoclonal blocking antibodies, (2) adoptively transferred BM-derived monocytes and tracked their phenotypic changes after infiltration and (3) labelled peripheral leukocytes that infiltrate into the brain with an intravenous dye. We demonstrated that myeloid immigrants populated only the identified macrophage gates, while PLX5622 depletion reduced all 4 subsets defined by the microglial gates. RESULTS Using this gating approach, we identified four consistent microglia subsets in the homeostatic and WNV-infected brain. These were P2RY12hi CD86-, P2RY12hi CD86+ and P2RY12lo CD86- P2RY12lo CD86+. During infection, 2 further populations were identified as 'inflammatory' and 'microglia-like' macrophages, recruited from the bone marrow. Detailed kinetic analysis showed significant increases in the proportions of both P2RY12lo microglia subsets in all anatomical areas, largely at the expense of the P2RY12hi CD86- subset, with the latter undergoing compensatory proliferation, suggesting replenishment of, and differentiation from this subset in response to infection. Microglia altered their morphology early in infection, with all cells adopting temporal and regional disease-specific phenotypes. Late in disease, microglia produced IL-12, downregulated CX3CR1, F4/80 and TMEM119 and underwent apoptosis. Infiltrating macrophages expressed both TMEM119 and P2RY12 de novo, with the microglia-like subset notably exhibiting the highest proportional myeloid population death. CONCLUSIONS Our approach enables detailed kinetic analysis of resident vs infiltrating myeloid cells in a wide range of neuroinflammatory models without non-physiological manipulation. This will more clearly inform potential therapeutic approaches that specifically modulate these cells.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Rachel L Terry
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Current Address: Children's Cancer Institute, Randwick, New South Wales, Australia
- Current Affiliation: Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Claire L Wishart
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Thomas M Ashhurst
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Cytometry Facility, The University of Sydney and Centenary Institute, Sydney, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Iain L Campbell
- Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Markus J Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Nicholas J C King
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.
- Sydney Cytometry Facility, The University of Sydney and Centenary Institute, Sydney, Australia.
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, Australia.
- Nano Institute, The University of Sydney, Sydney, Australia.
| |
Collapse
|
36
|
Chun BY, Kim JH, Jung YK, Choi YS, Kim G, Yonezawa T, Suk K. Protective Role of Limitrin in Experimental Autoimmune Optic Neuritis. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34232258 PMCID: PMC8267184 DOI: 10.1167/iovs.62.9.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose This study investigated the role of limitrin in the pathogenesis of demyelinating optic neuritis using an experimental autoimmune optic neuritis (EAON) model. Methods EAON was induced in mice via subcutaneous injection with myelin oligodendrocyte glycoprotein peptide. Limitrin protein and mRNA expression were examined in the optic nerve before and after EAON induction. Proinflammatory cytokine expression profiles and degree of glial activation were compared between wild-type (WT) and limitrin knockout mice by real-time PCR and histologic analysis, respectively, after EAON induction. Plasma limitrin levels in patients with optic neuritis and healthy controls were measured by ELISA. Results Limitrin expression, observed in astrocytes in the optic nerve of WT mice, was lower in EAON-induced than in naïve WT mice. A comparative analysis of WT and limitrin knockout mice revealed that limitrin deficiency induced more severe neuroinflammation and glial hyperactivation in the optic nerve after EAON induction. Limitrin-deficient astrocytes were more chemotactically responsive to neuroinflammatory stimulation than WT astrocytes. Patients with optic neuritis demonstrated higher plasma limitrin levels than healthy controls (P = 0.0001), which was negatively correlated with visual acuity at the nadir of the optic neuritis attack (r = 0.46, P = 0.036). Conclusions Limitrin deficiency induced severe neuroinflammation and reactive gliosis in the optic nerve after EAON induction. Our results imply that astrocyte-derived limitrin may protect against neuroinflammation by decreasing immune cell infiltration into the optic nerve. The plasma limitrin level may reflect the extent of blood–brain barrier disruption and provide a valuable biomarker reflecting the severity of optic neuritis.
Collapse
Affiliation(s)
- Bo Young Chun
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, Korea.,Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jong-Heon Kim
- Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Youn-Kwan Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Yoon Seok Choi
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Gunwoo Kim
- Fatima Research Institute, Fatima Hospital, Daegu, Korea
| | - Tomoko Yonezawa
- Gradulate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kyoungho Suk
- Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
37
|
Lin SP, Wei JX, Hu JS, Bu JY, Zhu LD, Li Q, Liao HJ, Lin PY, Ye S, Chen SQ, Chen XH. Artemisinin improves neurocognitive deficits associated with sepsis by activating the AMPK axis in microglia. Acta Pharmacol Sin 2021; 42:1069-1079. [PMID: 33758353 PMCID: PMC8209200 DOI: 10.1038/s41401-021-00634-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is life-threatening organ dysfunction due to dysregulated systemic inflammatory and immune response to infection, often leading to cognitive impairments. Growing evidence shows that artemisinin, an antimalarial drug, possesses potent anti-inflammatory and immunoregulatory activities. In this study we investigated whether artemisinin exerted protective effect against neurocognitive deficits associated with sepsis and explored the underlying mechanisms. Mice were injected with LPS (750 μg · kg-1 · d-1, ip, for 7 days) to establish an animal model of sepsis. Artemisinin (30 mg · kg-1 · d-1, ip) was administered starting 4 days prior LPS injection and lasting to the end of LPS injection. We showed that artemisinin administration significantly improved LPS-induced cognitive impairments assessed in Morris water maze and Y maze tests, attenuated neuronal damage and microglial activation in the hippocampus. In BV2 microglial cells treated with LPS (100 ng/mL), pre-application of artemisinin (40 μΜ) significantly reduced the production of proinflammatory cytokines (i.e., TNF-α, IL-6) and suppressed microglial migration. Furthermore, we revealed that artemisinin significantly suppressed the nuclear translocation of NF-κB and the expression of proinflammatory cytokines by activating the AMPKα1 pathway; knockdown of AMPKα1 markedly abolished the anti-inflammatory effects of artemisinin in BV2 microglial cells. In conclusion, atemisinin is a potential therapeutic agent for sepsis-associated neuroinflammation and cognitive impairment, and its effect is probably mediated by activation of the AMPKα1 signaling pathway in microglia.
Collapse
Affiliation(s)
- Shao-Peng Lin
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jue-Xian Wei
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jia-Song Hu
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jing-Yi Bu
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Li-Dong Zhu
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Qi Li
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hao-Jun Liao
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Pei-Yi Lin
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shan Ye
- Department of Geriatrics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Sheng-Qiang Chen
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao-Hui Chen
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
38
|
Psenicka MW, Smith BC, Tinkey RA, Williams JL. Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Front Cell Neurosci 2021; 15:654284. [PMID: 34234647 PMCID: PMC8255483 DOI: 10.3389/fncel.2021.654284] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The pathology in neurodegenerative diseases is often accompanied by inflammation. It is well-known that many cells within the central nervous system (CNS) also contribute to ongoing neuroinflammation, which can promote neurodegeneration. Multiple sclerosis (MS) is both an inflammatory and neurodegenerative disease in which there is a complex interplay between resident CNS cells to mediate myelin and axonal damage, and this communication network can vary depending on the subtype and chronicity of disease. Oligodendrocytes, the myelinating cell of the CNS, and their precursors, oligodendrocyte precursor cells (OPCs), are often thought of as the targets of autoimmune pathology during MS and in several animal models of MS; however, there is emerging evidence that OPCs actively contribute to inflammation that directly and indirectly contributes to neurodegeneration. Here we discuss several contributors to MS disease progression starting with lesion pathology and murine models amenable to studying particular aspects of disease. We then review how OPCs themselves can play an active role in promoting neuroinflammation and neurodegeneration, and how other resident CNS cells including microglia, astrocytes, and neurons can impact OPC function. Further, we outline the very complex and pleiotropic role(s) of several inflammatory cytokines and other secreted factors classically described as solely deleterious during MS and its animal models, but in fact, have many neuroprotective functions and promote a return to homeostasis, in part via modulation of OPC function. Finally, since MS affects patients from the onset of disease throughout their lifespan, we discuss the impact of aging on OPC function and CNS recovery. It is becoming clear that OPCs are not simply a bystander during MS progression and uncovering the active roles they play during different stages of disease will help uncover potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Morgan W. Psenicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brandon C. Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Rachel A. Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
39
|
Hammond BP, Manek R, Kerr BJ, Macauley MS, Plemel JR. Regulation of microglia population dynamics throughout development, health, and disease. Glia 2021; 69:2771-2797. [PMID: 34115410 DOI: 10.1002/glia.24047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The dynamic expansions and contractions of the microglia population in the central nervous system (CNS) to achieve homeostasis are likely vital for their function. Microglia respond to injury or disease but also help guide neurodevelopment, modulate neural circuitry throughout life, and direct regeneration. Throughout these processes, microglia density changes, as does the volume of area that each microglia surveys. Given that microglia are responsible for sensing subtle alterations to their environment, a change in their density could affect their capacity to mobilize rapidly. In this review, we attempt to synthesize the current literature on the ligands and conditions that promote microglial proliferation across development, adulthood, and neurodegenerative conditions. Microglia display an impressive proliferative capacity during development and in neurodegenerative diseases that is almost completely absent at homeostasis. However, the appropriate function of microglia in each state is critically dependent on density fluctuations that are primarily induced by proliferation. Proliferation is a natural microglial response to insult and often serves neuroprotective functions. In contrast, inappropriate microglial proliferation, whether too much or too little, often precipitates undesirable consequences for nervous system health. Thus, fluctuations in the microglia population are tightly regulated to ensure these immune cells can execute their diverse functions.
Collapse
Affiliation(s)
- Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupali Manek
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
40
|
Dugandžija T, Drljača J, Bulajić D, Isaković A, Stilinović N, Sekulić S, Čapo I. Hallmarks of tumor-associated microglia response to experimental U87 human glioblastoma xenograft. Tissue Cell 2021; 72:101557. [PMID: 34051646 DOI: 10.1016/j.tice.2021.101557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is one of the deadliest primary brain neoplasm, heavily infiltrated with tumor-associated microglia/macrophages (TAM), which has received a great deal of interest. Bearing in mind that the number of peripheral macrophages by the 14th day is negligible, in our study TAM were referred to as microglia. Here we evaluated histopathological characterization of TAM and kinetics of their infiltration in U87 orthotopic GBM, a commonly used model in preclinical research. To mimic different stages of GBM growth, we evaluated three-time points. Our data showed that the highest areal density of TAM was 7 days after GBM inoculation, with ability to proliferate early after initiation of GBM growth. The areal density of TAM within the tumor correlated with GBM growth and proliferation. Moreover, microglia underwent substantial morphological changes upon exposure to GBM cells. A transition from ramified morphology in peritumoral area to ameboid shape with larger soma and shortened, thick branches in the tumor core was observed. Higher areal fraction of blood vessels also correlated with the areal density of TAM. Given these pro-invasive features of microglia, this GBM model represents a good basis for further testing microglia as a target and new strategy to fight with.
Collapse
Affiliation(s)
- Tihomir Dugandžija
- Faculty of Medicine, Department of Epidemiology, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia; Oncology Institute of Vojvodina, Put doktora Goldmana 4, Sremska Kamenica, 21204, Serbia
| | - Jovana Drljača
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia; Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia.
| | - Dragica Bulajić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia; Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia
| | - Aleksandra Isaković
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, Belgrade, 11000, Serbia
| | - Nebojša Stilinović
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia
| | - Slobodan Sekulić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia; Department of Neurology, University Hospital, Clinical Center of Vojvodina, Hajduk Veljkova 1-7, Novi Sad, 21000, Serbia
| | - Ivan Čapo
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia; Faculty of Medicine, Department of Histology and Embryology, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia
| |
Collapse
|
41
|
Melnikov M, Pashenkov M, Boyko A. Dopaminergic Receptor Targeting in Multiple Sclerosis: Is There Therapeutic Potential? Int J Mol Sci 2021; 22:ijms22105313. [PMID: 34070011 PMCID: PMC8157879 DOI: 10.3390/ijms22105313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dopamine is a neurotransmitter that mediates neuropsychological functions of the central nervous system (CNS). Recent studies have shown the modulatory effect of dopamine on the cells of innate and adaptive immune systems, including Th17 cells, which play a critical role in inflammatory diseases of the CNS. This article reviews the literature data on the role of dopamine in the regulation of neuroinflammation in multiple sclerosis (MS). The influence of dopaminergic receptor targeting on experimental autoimmune encephalomyelitis (EAE) and MS pathogenesis, as well as the therapeutic potential of dopaminergic drugs as add-on pathogenetic therapy of MS, is discussed.
Collapse
MESH Headings
- Animals
- Dopamine/immunology
- Dopamine/physiology
- Dopamine Agents/pharmacology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Humans
- Mice
- Models, Immunological
- Models, Neurological
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- Neuroimmunomodulation/drug effects
- Neuroimmunomodulation/immunology
- Neuroimmunomodulation/physiology
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/immunology
- Receptors, Dopamine/physiology
- Th17 Cells/drug effects
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Mikhail Melnikov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, 117997 Moscow, Russia
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, 115522 Moscow, Russia;
- Correspondence: ; Tel.: +7-926-331-8946
| | - Mikhail Pashenkov
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, 115522 Moscow, Russia;
| | - Alexey Boyko
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, 117997 Moscow, Russia
| |
Collapse
|
42
|
Deeb O, Nabulsi M. Exploring Multiple Sclerosis (MS) and Amyotrophic Lateral Scler osis (ALS) as Neurodegenerative Diseases and their Treatments: A Review Study. Curr Top Med Chem 2021; 20:2391-2403. [PMID: 32972341 DOI: 10.2174/1568026620666200924114827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Growing concern about neurodegenerative diseases is becoming a global issue. It is estimated that not only will their prevalence increase but also morbidity and health burden will be concerning. Scientists, researchers and clinicians share the responsibility of raising the awareness and knowledge about the restricting and handicapping health restrains related to these diseases. Multiple Sclerosis (MS), as one of the prevalent autoimmune diseases, is characterized by abnormal regulation of the immune system that periodically attacks parts of the nervous system; brain and spinal cord. Symptoms and impairments include weakness, numbness, visual problems, tingling pain that are quietly variable among patients. Amyotrophic Lateral Sclerosis (ALS) is another neurodegenerative disease that is characterized by the degeneration of motor neurons in the brain and spinal cord. Unlike MS, symptoms begin with muscle weakness and progress to affect speech, swallowing and finally breathing. Despite the major differences between MS and ALS, misdiagnosis is still influencing disease prognosis and patient's quality of life. Diagnosis depends on obtaining a careful history and neurological examination as well as the use of Magnetic Resonance Imaging (MRI), which are considered challenging and depend on the current disease status in individuals. Fortunately, a myriad of treatments is available now for MS. Most of the cases are steroid responsive. Disease modifying therapy is amongst the most important set of treatments. In ALS, few medications that slow down disease progression are present. The aim of this paper is to summarize what has been globally known and practiced about MS and ALS, as they are currently classified as important growing key players among autoimmune diseases. In terms of treatments, it is concluded that special efforts and input should be directed towards repurposing of older drugs and on stem cells trials. As for ALS, it is highlighted that supportive measurements and supplementary treatments remain essentially needed for ALS patients and their families. On the other hand, it is noteworthy to clarify that the patient-doctor communication is relatively a cornerstone in selecting the best treatment for each MS patient.
Collapse
Affiliation(s)
- Omar Deeb
- Faculty of Pharmacy, Al-Quds University, P.O. Box 20002 Jerusalem, Palestinian Territory, Occupied
| | - Maisa Nabulsi
- Faculty of Pharmacy, Al-Quds University, P.O. Box 20002 Jerusalem, Palestinian Territory, Occupied
| |
Collapse
|
43
|
Sarchioto M, Howe F, Dumitriu IE, Morgante F, Stern J, Edwards MJ, Martino D. Analyses of peripheral blood dendritic cells and magnetic resonance spectroscopy support dysfunctional neuro-immune crosstalk in Tourette syndrome. Eur J Neurol 2021; 28:1910-1921. [PMID: 33768607 DOI: 10.1111/ene.14837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/27/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Evidence supports that neurodevelopmental diseases, such as Tourette syndrome (TS), may involve dysfunctional neural-immune crosstalk. This could lead to altered brain maturation and differences in immune and stress responses. Dendritic cells (DCs) play a major role in immunity as professional antigen-presenting cells; changes in their frequency have been observed in several autoimmune conditions. METHODS In 18 TS patients (15 on stable pharmacological treatment, three unmedicated) and 18 age-matched healthy volunteers (HVs), we explored circulating blood-derived DCs and their relationship with clinical variables and brain metabolites, measured via proton magnetic resonance spectroscopy (1H-MRS). DC subsets, including plasmacytoid and myeloid type 1 and 2 dendritic cells (MDC1, MDC2), were studied with flow cytometry. 1H-MRS was used to measure total choline, glutamate plus glutamine, total creatine (tCr), and total N-acetylaspartate and N-acetylaspartyl-glutamate levels in frontal white matter (FWM) and the putamen. RESULTS We did not observe differences in absolute concentrations of DC subsets or brain inflammatory metabolites between patients and HVs. However, TS patients manifesting anxiety showed a significant increase in MDC1s compared to TS patients without anxiety (p = 0.01). We also found a strong negative correlation between MDC1 frequency and tCr in the FWM of patients with TS (p = 0.0015), but not of HVs. CONCLUSION Elevated frequencies of the MDC1 subset in TS patients manifesting anxiety may reflect a proinflammatory status, potentially facilitating altered neuro-immune crosstalk. Furthermore, the strong inverse correlation between brain tCr levels and MDC1 subset frequency in TS patients suggests a potential association between proinflammatory status and metabolic changes in sensitive brain regions.
Collapse
Affiliation(s)
- Marianna Sarchioto
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK.,Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Franklyn Howe
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Ingrid E Dumitriu
- Molecular and Clinical Sciences Research Institute, St George's, University of London and Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Jeremy Stern
- Atkinson Morley Regional Neuroscience Centre, St George's University of London, London, UK
| | - Mark J Edwards
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary and Hotchkiss Brain Institute, Calgary, AB, Canada
| |
Collapse
|
44
|
Zaychik Y, Fainstein N, Touloumi O, Goldberg Y, Hamdi L, Segal S, Nabat H, Zoidou S, Grigoriadis N, Katz A, Ben-Hur T, Einstein O. High-Intensity Exercise Training Protects the Brain Against Autoimmune Neuroinflammation: Regulation of Microglial Redox and Pro-inflammatory Functions. Front Cell Neurosci 2021; 15:640724. [PMID: 33708074 PMCID: PMC7940666 DOI: 10.3389/fncel.2021.640724] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Exercise training induces beneficial effects on neurodegenerative diseases, and specifically on multiple sclerosis (MS) and it’s model experimental autoimmune encephalomyelitis (EAE). However, it is unclear whether exercise training exerts direct protective effects on the central nervous system (CNS), nor are the mechanisms of neuroprotection fully understood. In this study, we investigated the direct neuroprotective effects of high-intensity continuous training (HICT) against the development of autoimmune neuroinflammation and the role of resident microglia. Methods: We used the transfer EAE model to examine the direct effects of training on the CNS. Healthy mice performed HICT by treadmill running, followed by injection of encephalitogenic proteolipid (PLP)-reactive T-cells to induce EAE. EAE severity was assessed clinically and pathologically. Brain microglia from sedentary (SED) and HICT healthy mice, as well as 5-days post EAE induction (before the onset of disease), were analyzed ex vivo for reactive oxygen species (ROS) and nitric oxide (NO) formation, mRNA expression of M1/M2 markers and neurotrophic factors, and secretion of cytokines and chemokines. Results: Transfer of encephalitogenic T-cells into HICT mice resulted in milder EAE, compared to sedentary mice, as indicated by reduced clinical severity, attenuated T-cell, and neurotoxic macrophage/microglial infiltration, and reduced loss of myelin and axons. In healthy mice, HICT reduced the number of resident microglia without affecting their profile. Isolated microglia from HICT mice after transfer of encephalitogenic T-cells exhibited reduced ROS formation and released less IL-6 and monocyte chemoattractant protein (MCP) in response to PLP-stimulation. Conclusions: These findings point to the critical role of training intensity in neuroprotection. HICT protects the CNS against autoimmune neuroinflammation by reducing microglial-derived ROS formation, neurotoxicity, and pro-inflammatory responses involved in the propagation of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Yifat Zaychik
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Sofia Zoidou
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Abram Katz
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
45
|
Walsh AD, Nguyen LT, Binder MD. miRNAs in Microglia: Important Players in Multiple Sclerosis Pathology. ASN Neuro 2021; 13:1759091420981182. [PMID: 33517686 PMCID: PMC7863159 DOI: 10.1177/1759091420981182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system and important regulators of brain homeostasis. Central to this role is a dynamic phenotypic plasticity that enables microglia to respond to environmental and pathological stimuli. Importantly, different microglial phenotypes can be both beneficial and detrimental to central nervous system health. Chronically activated inflammatory microglia are a hallmark of neurodegeneration, including the autoimmune disease multiple sclerosis (MS). By contrast, microglial phagocytosis of myelin debris is essential for resolving inflammation and promoting remyelination. As such, microglia are being explored as a potential therapeutic target for MS. MicroRNAs (miRNAs) are short non-coding ribonucleic acids that regulate gene expression and act as master regulators of cellular phenotype and function. Dysregulation of certain miRNAs can aberrantly activate and promote specific polarisation states in microglia to modulate their activity in inflammation and neurodegeneration. In addition, miRNA dysregulation is implicated in MS pathogenesis, with circulating biomarkers and lesion specific miRNAs identified as regulators of inflammation and myelination. However, the role of miRNAs in microglia that specifically contribute to MS progression are still largely unknown. miRNAs are being explored as therapeutic agents, providing an opportunity to modulate microglial function in neurodegenerative diseases such as MS. This review will focus firstly on elucidating the complex role of microglia in MS pathogenesis. Secondly, we explore the essential roles of miRNAs in microglial function. Finally, we focus on miRNAs that are implicated in microglial processes that contribute directly to MS pathology, prioritising targets that could inform novel therapeutic approaches to MS.
Collapse
Affiliation(s)
- Alexander D Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Linda T Nguyen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Michele D Binder
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
46
|
Ramos-Martinez E, Ramos-Martínez I, Molina-Salinas G, Zepeda-Ruiz WA, Cerbon M. The role of prolactin in central nervous system inflammation. Rev Neurosci 2021; 32:323-340. [PMID: 33661585 DOI: 10.1515/revneuro-2020-0082] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Prolactin has been shown to favor both the activation and suppression of the microglia and astrocytes, as well as the release of inflammatory and anti-inflammatory cytokines. Prolactin has also been associated with neuronal damage in diseases such as multiple sclerosis, epilepsy, and in experimental models of these diseases. However, studies show that prolactin has neuroprotective effects in conditions of neuronal damage and inflammation and may be used as neuroprotector factor. In this review, we first discuss general information about prolactin, then we summarize recent findings of prolactin function in inflammatory and anti-inflammatory processes and factors involved in the possible dual role of prolactin are described. Finally, we review the function of prolactin specifically in the central nervous system and how it promotes a neuroprotective effect, or that of neuronal damage, particularly in experimental autoimmune encephalomyelitis and during excitotoxicity. The overall studies indicated that prolactin may be a promising molecule for the treatment of some neurological diseases.
Collapse
Affiliation(s)
- Edgar Ramos-Martinez
- Escuela de Ciencias, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca68120, Mexico
- Instituto de Cómputo Aplicado en Ciencias, Oaxaca68000, Mexico
| | - Ivan Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), 94010Créteil, France
| | - Gladys Molina-Salinas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| | - Wendy A Zepeda-Ruiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| | - Marco Cerbon
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| |
Collapse
|
47
|
TLR4 inhibition ameliorates mesencephalic substantia nigra injury in neonatal rats exposed to lipopolysaccharide via regulation of neuro-immunity. Brain Res Bull 2020; 165:90-96. [DOI: 10.1016/j.brainresbull.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/02/2023]
|
48
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
49
|
Misrielal C, Mauthe M, Reggiori F, Eggen BJL. Autophagy in Multiple Sclerosis: Two Sides of the Same Coin. Front Cell Neurosci 2020; 14:603710. [PMID: 33328897 PMCID: PMC7714924 DOI: 10.3389/fncel.2020.603710] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a complex auto-immune disorder of the central nervous system (CNS) that involves a range of CNS and immune cells. MS is characterized by chronic neuroinflammation, demyelination, and neuronal loss, but the molecular causes of this disease remain poorly understood. One cellular process that could provide insight into MS pathophysiology and also be a possible therapeutic avenue, is autophagy. Autophagy is an intracellular degradative pathway essential to maintain cellular homeostasis, particularly in neurons as defects in autophagy lead to neurodegeneration. One of the functions of autophagy is to maintain cellular homeostasis by eliminating defective or superfluous proteins, complexes, and organelles, preventing the accumulation of potentially cytotoxic damage. Importantly, there is also an intimate and intricate interplay between autophagy and multiple aspects of both innate and adaptive immunity. Thus, autophagy is implicated in two of the main hallmarks of MS, neurodegeneration, and inflammation, making it especially important to understand how this pathway contributes to MS manifestation and progression. This review summarizes the current knowledge about autophagy in MS, in particular how it contributes to our understanding of MS pathology and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Chairi Misrielal
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mario Mauthe
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Fulvio Reggiori
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bart J L Eggen
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
50
|
Borst K, Prinz M. Deciphering the heterogeneity of myeloid cells during neuroinflammation in the single-cell era. Brain Pathol 2020; 30:1192-1207. [PMID: 33058309 PMCID: PMC8018048 DOI: 10.1111/bpa.12910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a disabling neuroinflammatory disease, which is little understood and lacks a sufficient therapeutic regimen. Myeloid cells have repeatedly shown to play a pivotal role in the disease progression. During homeostasis, only the CNS‐resident microglia and CNS‐associated macrophages are present in the CNS. Neuroinflammation causes peripheral immune cells to infiltrate the CNS contributing to disease progression and neurological sequelae. The differential involvement of the diverse peripheral and resident myeloid cell subsets to the disease pathogenesis and outcome are highly debated and difficult to assess. However, novel technological advances (new mouse models, single‐cell RNA‐Sequencing, and CYTOF) have improved the depth of immune profiling, which allows the characterization of distinct myeloid subsets. This review provides an overview of current knowledge on the phenotypes and roles of these different myeloid subsets in neuroinflammatory disease and their therapeutic relevance.
Collapse
Affiliation(s)
- Katharina Borst
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|