1
|
Alpha-1 Antitrypsin Reduces Disease Progression in a Mouse Model of Charcot-Marie-Tooth Type 1A: A Role for Decreased Inflammation and ADAM-17 Inhibition. Int J Mol Sci 2022; 23:ijms23137405. [PMID: 35806409 PMCID: PMC9266995 DOI: 10.3390/ijms23137405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1 (CMT1A) is a hereditary peripheral neuropathy for which there is no available therapy. Alpha-1 antitrypsin (AAT) is an abundant serine protease inhibitor with anti-inflammatory and immunomodulating properties. Here, we tested whether treatment with human AAT (hAAT) would have a therapeutic effect on CMT1A in a PMP22 transgenic mouse model. Our results show that hAAT significantly improved compound muscle action potential and histopathological features and decreased circulating IL-6 in CMT1A mice. We also investigated some of the possible underlying mechanisms in vitro. We confirmed that hAAT inhibits ADAM-17, a protease that has been implicated in blocking myelination. Furthermore, both hAAT and recombinant human AAT (rhAAT) were able to attenuate the activation of a macrophage/microglia cell line, markedly decreasing the activation of the MHC class II promoter and the expression of pro-inflammatory genes such as IL-1β and the endoplasmic reticulum (ER) stress marker ATF3. Taken together, our results demonstrate for the first time that hAAT is able to reduce the progression of CMT1A, possibly by dampening inflammation and by regulating ADAM-17. Given the already well-established safety profile of hAAT, specifically in AAT deficiency disease (AATD), we suggest that the findings of our study should be promptly investigated in CMT1A patients.
Collapse
|
2
|
Hörner M, Groh J, Klein D, Ilg W, Schöls L, Santos SD, Bergmann A, Klebe S, Cauhape M, Branchu J, El Hachimi KH, Stevanin G, Darios F, Martini R. CNS-associated T-lymphocytes in a mouse model of Hereditary Spastic Paraplegia type 11 (SPG11) are therapeutic targets for established immunomodulators. Exp Neurol 2022; 355:114119. [DOI: 10.1016/j.expneurol.2022.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
|
3
|
Klein D, Groh J, Yuan X, Berve K, Stassart R, Fledrich R, Martini R. Early targeting of endoneurial macrophages alleviates the neuropathy and affects abnormal Schwann cell differentiation in a mouse model of Charcot-Marie-Tooth 1A. Glia 2022; 70:1100-1116. [PMID: 35188681 DOI: 10.1002/glia.24158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Xidi Yuan
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Berve
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Ruth Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Howard P, Feely SME, Grider T, Bacha A, Scarlato M, Fazio R, Quattrini A, Shy ME, Previtali SC. Loss of function MPZ mutation causes milder CMT1B neuropathy. J Peripher Nerv Syst 2021; 26:177-183. [PMID: 33960567 DOI: 10.1111/jns.12452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Mutations in Myelin Protein Zero (MPZ) cause CMT1B, the second leading cause of CMT1. Many of the >200 mutations cause neuropathy through a toxic gain of function by the mutant protein such as ER retention, activation of the Unfolded Protein Response (UPR) or disruption of myelin compaction. While there is extensive literature on the loss of function consequences of MPZ in heterozygous Mpz +/- null mice, there is little known of the consequences of MPZ haploinsufficiency in humans. We identified six patients from different families with p.Tyr68Ter or p.Asp104fs heterozygous mutations of MPZ that are predicted to cause a premature termination and nonsense mediated decay of the mutant allele. Five patients were evaluated in Milan and one in Iowa City; all should be haploinsufficient for MPZ. Patients were evaluated clinically and by electrophysiology. Sensory ataxia dominated the clinical presentation with only mild weakness present in five of the six patients. Symptoms presented in adulthood in all patients and only one individual had a CMTNSv2 >5. Deep tendon reflexes were absent in all patients. Patients with likely MPZ loss of function due to mutations that cause haplodeficiency in MPZ have a mild, predominantly large fiber sensory neuropathy that serves as a human equivalent to the neuropathy observed in heterozygous Mpz null mice. Successful therapeutic approaches in treating Mpz deficient mice may be candidates for trials in these and similar patients.
Collapse
Affiliation(s)
- Paige Howard
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - Tiffany Grider
- University of Iowa Healthcare Neurology, Iowa City, Iowa, USA
| | - Alexa Bacha
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Marina Scarlato
- Institute of Experimental Neurology (InSpe) and Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Raffaella Fazio
- Institute of Experimental Neurology (InSpe) and Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Angelo Quattrini
- Institute of Experimental Neurology (InSpe) and Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Michael E Shy
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stefano C Previtali
- Institute of Experimental Neurology (InSpe) and Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
5
|
Nazareth L, St John J, Murtaza M, Ekberg J. Phagocytosis by Peripheral Glia: Importance for Nervous System Functions and Implications in Injury and Disease. Front Cell Dev Biol 2021; 9:660259. [PMID: 33898462 PMCID: PMC8060502 DOI: 10.3389/fcell.2021.660259] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
The central nervous system (CNS) has very limited capacity to regenerate after traumatic injury or disease. In contrast, the peripheral nervous system (PNS) has far greater capacity for regeneration. This difference can be partly attributed to variances in glial-mediated functions, such as axon guidance, structural support, secretion of growth factors and phagocytic activity. Due to their growth-promoting characteristic, transplantation of PNS glia has been trialed for neural repair. After peripheral nerve injuries, Schwann cells (SCs, the main PNS glia) phagocytose myelin debris and attract macrophages to the injury site to aid in debris clearance. One peripheral nerve, the olfactory nerve, is unique in that it continuously regenerates throughout life. The olfactory nerve glia, olfactory ensheathing cells (OECs), are the primary phagocytes within this nerve, continuously clearing axonal debris arising from the normal regeneration of the nerve and after injury. In contrast to SCs, OECs do not appear to attract macrophages. SCs and OECs also respond to and phagocytose bacteria, a function likely critical for tackling microbial invasion of the CNS via peripheral nerves. However, phagocytosis is not always effective; inflammation, aging and/or genetic factors may contribute to compromised phagocytic activity. Here, we highlight the diverse roles of SCs and OECs with the focus on their phagocytic activity under physiological and pathological conditions. We also explore why understanding the contribution of peripheral glia phagocytosis may provide us with translational strategies for achieving axonal regeneration of the injured nervous system and potentially for the treatment of certain neurological diseases.
Collapse
Affiliation(s)
- Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Mariyam Murtaza
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
6
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
7
|
Fletcher JS, Pundavela J, Ratner N. After Nf1 loss in Schwann cells, inflammation drives neurofibroma formation. Neurooncol Adv 2019; 2:i23-i32. [PMID: 32642730 PMCID: PMC7317060 DOI: 10.1093/noajnl/vdz045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plexiform neurofibromas (PNF) are peripheral nerve tumors caused by bi-allelic loss of NF1 in the Schwann cell (SC) lineage. PNF are common in individuals with Neurofibromatosis type I (NF1) and can cause significant patient morbidity, spurring research into potential therapies. Immune cells are rare in peripheral nerve, whereas in PNF 30% of the cells are monocytes/macrophages. Mast cells, T cells, and dendritic cells (DCs) are also present. NF1 mutant neurofibroma SCs with elevated Ras-GTP signaling resemble injury-induced repair SCs, in producing growth factors and cytokines not normally present in SCs. This provides a cytokine-rich environment facilitating PNF immune cell recruitment and fibrosis. We propose a model based on genetic and pharmacologic evidence in which, after loss of Nf1 in the SC lineage, a lag occurs. Then, mast cells and macrophages are recruited to nerve. Later, T cell/DC recruitment through CXCL10/CXCR3 drives neurofibroma initiation and sustains PNF macrophages and tumor growth. Stat3 signaling is an additional critical mediator of neurofibroma initiation, cytokine production, and PNF growth. At each stage of PNF development therapeutic benefit should be achievable through pharmacologic modulation of leukocyte recruitment and function.
Collapse
Affiliation(s)
- Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
8
|
Kim YH, Jang SY, Shin YK, Jo YR, Yoon BA, Nam SH, Choi BO, Shin HY, Kim SW, Kim SH, Kim JK, Park HT. Serum CXCL13 reflects local B-cell mediated inflammatory demyelinating peripheral neuropathy. Sci Rep 2019; 9:16535. [PMID: 31712675 PMCID: PMC6848485 DOI: 10.1038/s41598-019-52643-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Immune damages on the peripheral myelin sheath under pro-inflammatory milieu result in primary demyelination in inflammatory demyelinating neuropathy. Inflammatory cytokines implicating in the pathogenesis of inflammatory demyelinating neuropathy have been used for the development of potential biomarkers for the diagnosis of the diseases. In this study, we have found that macrophages, which induce demyelination, expressed a B-cell-recruiting factor CXC chemokine ligand 13 (CXCL13) in mouse and human inflammatory demyelinating nerves. The serum levels of CXCL13 were also higher in inflammatory demyelinating neuropathic patients but not in acute motor axonal neuropathy or a hereditary demyelinating neuropathy, Charcot-Marie-Tooth disease type 1a. In addition, CXCL13-expressing macrophages were not observed in the sciatic nerves after axonal injury, which causes the activation of innate immunity and Wallerian demyelination. Our findings indicate that the detection of serum CXCL13 will be useful to specifically recognize inflammatory demyelinating neuropathies in human.
Collapse
Affiliation(s)
- Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - So Young Jang
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Young Rae Jo
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Byeol-A Yoon
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
- Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
- Department of Neurology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Soo Hyun Nam
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03772, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03772, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03772, Republic of Korea
| | - Jong Kuk Kim
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
- Department of Neurology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
- Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| |
Collapse
|
9
|
Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nat Biomed Eng 2019; 3:571-582. [PMID: 30962586 PMCID: PMC6612317 DOI: 10.1038/s41551-019-0381-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Patient-specific human induced pluripotent stem cells (hiPSCs) hold great promise for the modelling of genetic disorders. However, these cells display wide intra-individual and inter-individual variations in gene expression, making it challenging to distinguish true-positive and false-positive phenotypes. Also, data from hiPSC phenotypes and from human embryonic stem cells (hESCs) harbouring the same disease mutation are lacking. Here, we report a comparison of molecular, cellular and functional characteristics of three congruent patient-specific cell types ― hiPSCs, hESCs, and direct lineage-converted cells ― derived from currently available differentiation and direct-reprogramming technologies, for the modelling of Charcot Marie Tooth 1A, a human genetic Schwann-cell disorder featuring a 1.4 megabase chromosomal duplication. In particular, we find that the chemokines CXCL1 and MCP1 are commonly upregulated in all three congruent models and in clinical patient samples. The development of congruent models of a single genetic disease by using somatic cells from a common patient will facilitate the search for convergent phenotypes.
Collapse
|
10
|
NRG1 type I dependent autoparacrine stimulation of Schwann cells in onion bulbs of peripheral neuropathies. Nat Commun 2019; 10:1467. [PMID: 30931926 PMCID: PMC6443727 DOI: 10.1038/s41467-019-09385-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/07/2019] [Indexed: 01/28/2023] Open
Abstract
In contrast to acute peripheral nerve injury, the molecular response of Schwann cells in chronic neuropathies remains poorly understood. Onion bulb structures are a pathological hallmark of demyelinating neuropathies, but the nature of these formations is unknown. Here, we show that Schwann cells induce the expression of Neuregulin-1 type I (NRG1-I), a paracrine growth factor, in various chronic demyelinating diseases. Genetic disruption of Schwann cell-derived NRG1 signalling in a mouse model of Charcot-Marie-Tooth Disease 1A (CMT1A), suppresses hypermyelination and the formation of onion bulbs. Transgenic overexpression of NRG1-I in Schwann cells on a wildtype background is sufficient to mediate an interaction between Schwann cells via an ErbB2 receptor-MEK/ERK signaling axis, which causes onion bulb formations and results in a peripheral neuropathy reminiscent of CMT1A. We suggest that diseased Schwann cells mount a regeneration program that is beneficial in acute nerve injury, but that overstimulation of Schwann cells in chronic neuropathies is detrimental. Onion bulbs are a hallmark of demyelinating peripheral neuropathies. Here the authors identify Neuregulin-1 type I expression in Schwann cells as an essential mechanism involved in the formation of these characteristic structures.
Collapse
|
11
|
Melatonin Treatment Reduces Oxidative Damage and Normalizes Plasma Pro-Inflammatory Cytokines in Patients Suffering from Charcot-Marie-Tooth Neuropathy: A Pilot Study in Three Children. Molecules 2017; 22:molecules22101728. [PMID: 29036910 PMCID: PMC6151441 DOI: 10.3390/molecules22101728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Charcot-Marie-Tooth neuropathy (CMT) is a motor and sensory neuropathy comprising a heterogeneous group of inherited diseases. The CMT1A phenotype is predominant in the 70% of CMT patients, with nerve conduction velocity reduction and hypertrophic demyelination. These patients have elevated oxidative stress and chronic inflammation. Currently, there is no effective cure for CMT; herein, we investigated whether melatonin treatment may reduce the inflammatory and oxidative damage in CMT1A patients. Three patients, aged 8–10 years, were treated with melatonin (60 mg at 21:00 h plus 10 mg at 09:00 h), and plasma levels of lipid peroxidation (LPO), nitrites (NOx), IL-1β, IL-2, IL-6, TNF-α, INF-γ, oxidized to reduced glutathione (GSSG/GSH) ratio, and the activities of superoxide dismutase (SOD), glutathione-S transferase (GST), glutathione peroxidase (GPx), and reductase (GRd), were determined in erythrocytes at 3 and 6 months of treatment. Healthy age- and sex-matched subjects were used as controls. The results showed increased activities of SOD, GST, GPx, and GRd in CMT1A patients, which were reduced at 3 and 6 months of treatment. The GSSG/GSH ratio significantly increased in the patients, returning to control values after melatonin treatment. The inflammatory process was confirmed by the elevation of all proinflammatory cytokines measured, which were also normalized by melatonin. LPO and NOx, which also were elevated in the patients, were normalized by melatonin. The results document beneficial effects of the use of melatonin in CMT1A patients to reduce the hyperoxidative and inflammatory condition, which may correlate with a reduction of the degenerative process.
Collapse
|
12
|
Sociali G, Visigalli D, Prukop T, Cervellini I, Mannino E, Venturi C, Bruzzone S, Sereda MW, Schenone A. Tolerability and efficacy study of P2X7 inhibition in experimental Charcot-Marie-Tooth type 1A (CMT1A) neuropathy. Neurobiol Dis 2016; 95:145-57. [PMID: 27431093 DOI: 10.1016/j.nbd.2016.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/24/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022] Open
Abstract
Charcot-Marie-Tooth 1A (CMT1A) is a demyelinating hereditary neuropathy for which pharmacological treatments are not yet available. An abnormally high intracellular Ca(2+) concentration was observed in Schwann cells (SC) from CMT1A rats, caused by the PMP22-mediated overexpression of the P2X7 purinoceptor. The purpose of this study was to investigate the tolerability and therapeutic potential of a pharmacological antagonist of the P2X7 receptor (A438079) in CMT1A. A438079 ameliorated in vitro myelination of organotypic DRG cultures from CMT1A rats. Furthermore, we performed an experimental therapeutic trial in PMP22 transgenic and in wild-type rats. A preliminary dose-escalation trial showed that 3mg/kg A438079 administered via intraperitoneal injection every 24h for four weeks was well tolerated by wild type and CMT1A rats. Affected rats treated with 3mg/kg A438079 revealed a significant improvement of the muscle strength, when compared to placebo controls. Importantly, histologic analysis revealed a significant increase of the total number of myelinated axons in tibial nerves. Moreover, a significant decrease of the hypermyelination of small caliber axons and a significant increase of the frequency and diameter of large caliber myelinated axons was highlighted. An improved distal motor latencies was recorded, whereas compound muscle action potentials (CMAP) remained unaltered. A438079 reduced the SC differentiation defect in CMT1A rats. These results show that pharmacological inhibition of the P2X7 receptor is well tolerated in CMT1A rats and represents a proof-of-principle that antagonizing this pathway may correct the molecular derangements and improve the clinical phenotype in the CMT1A neuropathy.
Collapse
Affiliation(s)
- Giovanna Sociali
- DIMES, Section of Biochemistry, and CEBR, University of Genova, Viale Benedetto XV, 1, 16132, Italy
| | - Davide Visigalli
- DINOGMI and CEBR, University of Genova, Largo P. Daneo 3, 16132 Genova, Italy
| | - Thomas Prukop
- Max Planck Institute of Experimental Medicine, Research Group "Molecular and Translational Neurology", Department of Neurogenetics, Hermann-Rein-Str. 3, 37075 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Ilaria Cervellini
- Max Planck Institute of Experimental Medicine, Research Group "Molecular and Translational Neurology", Department of Neurogenetics, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Elena Mannino
- DIMES, Section of Biochemistry, and CEBR, University of Genova, Viale Benedetto XV, 1, 16132, Italy
| | - Consuelo Venturi
- DINOGMI and CEBR, University of Genova, Largo P. Daneo 3, 16132 Genova, Italy
| | - Santina Bruzzone
- DIMES, Section of Biochemistry, and CEBR, University of Genova, Viale Benedetto XV, 1, 16132, Italy.
| | - Michael W Sereda
- Max Planck Institute of Experimental Medicine, Research Group "Molecular and Translational Neurology", Department of Neurogenetics, Hermann-Rein-Str. 3, 37075 Göttingen, Germany; University Medical Center Göttingen, Department of Clinical Neurophysiology, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Angelo Schenone
- DINOGMI and CEBR, University of Genova, Largo P. Daneo 3, 16132 Genova, Italy
| |
Collapse
|
13
|
Klein D, Patzkó Á, Schreiber D, van Hauwermeiren A, Baier M, Groh J, West BL, Martini R. Targeting the colony stimulating factor 1 receptor alleviates two forms of Charcot-Marie-Tooth disease in mice. Brain 2015; 138:3193-205. [PMID: 26297559 DOI: 10.1093/brain/awv240] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/26/2015] [Indexed: 01/05/2023] Open
Abstract
See Scherer (doi:10.1093/awv279) for a scientific commentary on this article.Charcot-Marie-Tooth type 1 neuropathies are inherited disorders of the peripheral nervous system caused by mutations in Schwann cell-related genes. Typically, no causative cure is presently available. Previous preclinical data of our group highlight the low grade, secondary inflammation common to distinct Charcot-Marie-Tooth type 1 neuropathies as a disease amplifier. In the current study, we have tested one of several available clinical agents targeting macrophages through its inhibition of the colony stimulating factor 1 receptor (CSF1R). We here show that in two distinct mouse models of Charcot-Marie-Tooth type 1 neuropathies, the systemic short- and long-term inhibition of CSF1R by oral administration leads to a robust decline in nerve macrophage numbers by ∼70% and substantial reduction of the typical histopathological and functional alterations. Interestingly, in a model for the dominant X-linked form of Charcot-Marie-Tooth type 1 neuropathy, the second most common form of the inherited neuropathies, macrophage ablation favours maintenance of axonal integrity and axonal resprouting, leading to preserved muscle innervation, increased muscle action potential amplitudes and muscle strengths in the range of wild-type mice. In another model mimicking a mild, demyelination-related Charcot-Marie-Tooth type 1 neuropathy caused by reduced P0 (MPZ) gene dosage, macrophage blockade causes an improved preservation of myelin, increased muscle action potential amplitudes, improved nerve conduction velocities and ameliorated muscle strength. These observations suggest that disease-amplifying macrophages can produce multiple adverse effects in the affected nerves which likely funnel down to common clinical features. Surprisingly, treatment of mouse models mimicking Charcot-Marie-Tooth type 1A neuropathy also caused macrophage blockade, but did not result in neuropathic or clinical improvements, most likely due to the late start of treatment of this early onset disease model. In summary, our study shows that targeting peripheral nerve macrophages by an orally administered inhibitor of CSF1R may offer a highly efficacious and safe treatment option for at least two distinct forms of the presently non-treatable Charcot-Marie-Tooth type 1 neuropathies.
Collapse
Affiliation(s)
- Dennis Klein
- 1 Department of Neurology, Developmental Neurobiology, University Hospital Würzburg Josef-Schneider Str. 11, D-97080 Würzburg, Germany
| | - Ágnes Patzkó
- 1 Department of Neurology, Developmental Neurobiology, University Hospital Würzburg Josef-Schneider Str. 11, D-97080 Würzburg, Germany
| | - David Schreiber
- 1 Department of Neurology, Developmental Neurobiology, University Hospital Würzburg Josef-Schneider Str. 11, D-97080 Würzburg, Germany
| | - Anemoon van Hauwermeiren
- 1 Department of Neurology, Developmental Neurobiology, University Hospital Würzburg Josef-Schneider Str. 11, D-97080 Würzburg, Germany
| | - Michaela Baier
- 1 Department of Neurology, Developmental Neurobiology, University Hospital Würzburg Josef-Schneider Str. 11, D-97080 Würzburg, Germany
| | - Janos Groh
- 1 Department of Neurology, Developmental Neurobiology, University Hospital Würzburg Josef-Schneider Str. 11, D-97080 Würzburg, Germany
| | | | - Rudolf Martini
- 1 Department of Neurology, Developmental Neurobiology, University Hospital Würzburg Josef-Schneider Str. 11, D-97080 Würzburg, Germany
| |
Collapse
|
14
|
Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A. Nat Med 2014; 20:1055-61. [PMID: 25150498 DOI: 10.1038/nm.3664] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022]
Abstract
Duplication of the gene encoding the peripheral myelin protein of 22 kDa (PMP22) underlies the most common inherited neuropathy, Charcot-Marie-Tooth 1A (CMT1A), a disease without a known cure. Although demyelination represents a characteristic feature, the clinical phenotype of CMT1A is determined by the degree of axonal loss, and patients suffer from progressive muscle weakness and impaired sensation. CMT1A disease manifests within the first two decades of life, and walking disabilities, foot deformities and electrophysiological abnormalities are already present in childhood. Here, we show in Pmp22-transgenic rodent models of CMT1A that Schwann cells acquire a persistent differentiation defect during early postnatal development, caused by imbalanced activity of the PI3K-Akt and the Mek-Erk signaling pathways. We demonstrate that enhanced PI3K-Akt signaling by axonally overexpressed neuregulin-1 (NRG1) type I drives diseased Schwann cells toward differentiation and preserves peripheral nerve axons. Notably, in a preclinical experimental therapy using a CMT1A rat model, when treatment is restricted to early postnatal development, soluble NRG1 effectively overcomes impaired peripheral nerve development and restores axon survival into adulthood. Our findings suggest a model in which Schwann cell differentiation within a limited time window is crucial for the long-term maintenance of axonal support.
Collapse
|
15
|
Klein D, Groh J, Wettmarshausen J, Martini R. Nonuniform molecular features of myelinating Schwann cells in models for CMT1: Distinct disease patterns are associated with NCAM and c-Jun upregulation. Glia 2014; 62:736-50. [DOI: 10.1002/glia.22638] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Dennis Klein
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| | - Janos Groh
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| | - Jennifer Wettmarshausen
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| | - Rudolf Martini
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| |
Collapse
|
16
|
Abstract
The peripheral nervous system (PNS) comprises the cranial nerves, the spinal nerves with their roots and rami, dorsal root ganglia neurons, the peripheral nerves, and peripheral components of the autonomic nervous system. Cell-mediated or antibody-mediated immune attack on the PNS results in distinct clinical syndromes, which are classified based on the tempo of illness, PNS component(s) involved, and the culprit antigen(s) identified. Insights into the pathogenesis of autoimmune neuropathy have been provided by ex vivo immunologic studies, biopsy materials, electrophysiologic studies, and experimental models. This review article summarizes earlier seminal observations and highlights the recent progress in our understanding of immunopathogenesis of autoimmune neuropathies based on data from animal models.
Collapse
Affiliation(s)
- Betty Soliven
- Address correspondence and reprint requests to Dr. Betty Soliven, Room S225, Department of Neurology MC2030, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 or
| |
Collapse
|
17
|
Alvarez S, Moldovan M, Krarup C. Prolonged high frequency electrical stimulation is lethal to motor axons of mice heterozygously deficient for the myelin protein P0 gene. Exp Neurol 2013; 247:552-61. [DOI: 10.1016/j.expneurol.2013.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/09/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
18
|
Ydens E, Lornet G, Smits V, Goethals S, Timmerman V, Janssens S. The neuroinflammatory role of Schwann cells in disease. Neurobiol Dis 2013; 55:95-103. [DOI: 10.1016/j.nbd.2013.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 12/27/2022] Open
|
19
|
Fledrich R, Stassart RM, Sereda MW. Murine therapeutic models for Charcot-Marie-Tooth (CMT) disease. Br Med Bull 2012; 102:89-113. [PMID: 22551516 DOI: 10.1093/bmb/lds010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION OR BACKGROUND Charcot-Marie-Tooth (CMT) disease represents a broad group of inherited motor and sensory neuropathies which can originate from various genetic aberrations, e.g. mutations, deletions and duplications. SOURCES OF DATA We performed a literature review on murine animal models of CMT disease with regard to experimental therapeutic approaches. Hereby, we focussed on the demyelinating subforms of CMT (CMT1). PubMed items were CMT, animal model, demyelination and therapy. AREAS OF AGREEMENT Patients affected by CMT suffer from slowly progressive, distally pronounced muscle atrophy caused by an axonal loss. The disease severity is highly variable and impairments may result in wheelchair boundness. No therapy is available yet. AREAS OF CONTROVERSY Numerous rodent models for the various CMT subtypes are available today. The selection of the correct animal model for the specific CMT subtype provides an important prerequisite for the successful translation of experimental findings in patients. GROWING POINTS Despite more than 20 years of remarkable progress in CMT research, the disease is still left untreatable. There is a growing number of experimental therapeutic strategies that may be translated into future clinical trials in patients with CMT. AREAS TIMELY FOR DEVELOPING RESEARCH The slow disease progression and insensitive outcome measures hamper clinical therapy trials in CMT. Biomarkers may provide powerful tools to monitor therapeutic efficacy. Recently, we have shown that transcriptional profiling can be utilized to assess and predict the disease severity in a transgenic rat model and in affected humans.
Collapse
Affiliation(s)
- Robert Fledrich
- Research Group 'Molecular and Translational Neurology', Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | | | | |
Collapse
|
20
|
Bremer M, Fröb F, Kichko T, Reeh P, Tamm ER, Suter U, Wegner M. Sox10 is required for Schwann-cell homeostasis and myelin maintenance in the adult peripheral nerve. Glia 2011; 59:1022-32. [PMID: 21491499 DOI: 10.1002/glia.21173] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/16/2011] [Indexed: 11/07/2022]
Abstract
The transcription factor Sox10 functions during multiple consecutive stages of Schwann-cell development in the peripheral nervous system (PNS). Although Sox10 continues to be expressed in mature Schwann cells of the adult peripheral nerve, it is currently unclear whether it is still functional. Here, we used a genetic strategy to selectively delete Sox10 in glia of adult mice in a tamoxifen-dependent manner. The tamoxifen-treated mice developed a severe peripheral neuropathy that was associated with dramatic alterations in peripheral nerve structure and function. Demyelination and axonal degeneration were as much evident as signs of neuroinflammation. Compound action potentials exhibited pathophysiological alterations. Sox10-deleted Schwann cells persisted in the peripheral nerve, but did not exhibit a mature, myelinating phenotype arguing that Sox10 is rather required for differentiation and maintenance of the differentiated state than for survival. Our report is the first evidence that Sox10 is still essentially required for Schwann-cell function in the adult PNS and establishes a useful model in which to study human peripheral neuropathies.
Collapse
Affiliation(s)
- Magdalena Bremer
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
King RHM, Chandler D, Lopaticki S, Huang D, Blake J, Muddle JR, Kilpatrick T, Nourallah M, Miyata T, Okuda T, Carter KW, Hunter M, Angelicheva D, Morahan G, Kalaydjieva L. Ndrg1 in development and maintenance of the myelin sheath. Neurobiol Dis 2011; 42:368-80. [PMID: 21303696 DOI: 10.1016/j.nbd.2011.01.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/13/2011] [Accepted: 01/28/2011] [Indexed: 02/04/2023] Open
Abstract
CMT4D disease is a severe autosomal recessive demyelinating neuropathy with extensive axonal loss leading to early disability, caused by mutations in the N-myc downstream regulated gene 1 (NDRG1). NDRG1 is expressed at particularly high levels in the Schwann cell (SC), but its physiological function(s) are unknown. To help with their understanding, we characterise the phenotype of a new mouse model, stretcher (str), with total Ndrg1 deficiency, in comparison with the hypomorphic Ndrg1 knock-out (KO) mouse. While both models display normal initial myelination and a transition to overt pathology between weeks 3 and 5, the markedly more severe str phenotype suggests that even low Ndrg1 expression results in significant phenotype rescue. Neither model replicates fully the features of CMT4D: although axon damage is present, regenerative capacity is unimpaired and the mice do not display the early severe axonal loss typical of the human disease. The widespread large fibre demyelination coincides precisely with the period of rapid growth of the animals and the dramatic (160-500-fold) increase in myelin volume and length in large fibres. This is followed by stabilisation after week 10, while small fibres remain unaffected. Gene expression profiling of str peripheral nerve reveals non-specific secondary changes at weeks 5 and 10 and preliminary data point to normal proteasomal function. Our findings do not support the proposed roles of NDRG1 in growth arrest, terminal differentiation, gene expression regulation and proteasomal degradation. Impaired SC trafficking failing to meet the considerable demands of nerve growth, emerges as the likely pathogenetic mechanism in NDRG1 deficiency.
Collapse
Affiliation(s)
- Rosalind H M King
- Department of Clinical Neurosciences, Institute of Neurology, UCL, London NW3 2PF, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Filali M, Dequen F, Lalonde R, Julien JP. Sensorimotor and cognitive function of a NEFL(P22S) mutant model of Charcot-Marie-Tooth disease type 2E. Behav Brain Res 2010; 219:175-80. [PMID: 21168446 DOI: 10.1016/j.bbr.2010.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 11/15/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most frequently encountered hereditary disease causing sensorimotor neuropathies and slowly progressive muscle weakness and atrophy. The P22S mutation of the NEFL gene encoding the light polypeptide neurofilament (NFL) is associated with CMT. To understand more clearly the pathogenesis of sensorimotor dysfunction in CMT, we generated transgenic mice with the NEFL(P22S) mutation under the tet-off tetracycline regulated system with involvement of the Thy1 neuron-specific promoter. NEFL(P22S) transgenic mice exhibited extended duration of the hindlimb clasping response and gait anomalies, as well as sensorimotor deficits in stationary beam and suspended bar tests. In addition, the NEFL(P22S) mice were deficient in the reversal phase of left-right discrimination learning in a water maze. This model mimics some aspects of human CMT pathology and provides an opportunity of ameliorating CMT symptoms with experimental therapies.
Collapse
Affiliation(s)
- Mohammed Filali
- CHUL Research Center and Department of Molecular Medicine, Laval University, 2705 Laurier boul., Québec G1V 4G2, Canada.
| | | | | | | |
Collapse
|
23
|
|
24
|
Kohl B, Fischer S, Groh J, Wessig C, Martini R. MCP-1/CCL2 modifies axon properties in a PMP22-overexpressing mouse model for Charcot-Marie-tooth 1A neuropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1390-9. [PMID: 20093502 DOI: 10.2353/ajpath.2010.090694] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Charcot-Marie-Tooth 1A (CMT1A) neuropathy, the most common inherited peripheral neuropathy, is primarily caused by a gene duplication for the peripheral myelin protein-22 (PMP22). In an accordant mouse model, we investigated the role of monocyte chemoattractant protein-1 (MCP-1/CCL2) as a regulator of nerve macrophages and neural damage including axonopathy and demyelination. By generating PMP22tg mice with reduced levels or lack of MCP-1/CCL2, we found that MCP-1/CCL2 is involved in the increase of macrophages in mutant nerves. PMP22tg mice with wild-type levels of MCP-1/CCL2 showed strong macrophage increase in the diseased nerves, whereas either 50% reduction or total absence of MCP-1/CCL2 led to a moderate or a strong reduction of nerve macrophages, respectively. Interestingly, MCP-1/CCL2 expression level and macrophage numbers were correlated with features indicative of axon damage, such as maldistribution of K+ channels, reduced compound muscle action potentials, and muscle weakness. Demyelinating features, however, were most highly reduced when MCP-1/CCL2 was diminished by 50%, whereas complete lack of MCP-1/CCL2 showed an intermediate demyelinating phenotype. We also identified the MEK1/2-ERK1/2-pathway as being involved in MCP-1/CCL2 expression in the Schwann cells of the CMT1A model. Our data show that, in a CMT1A model, MCP-1/CCL2 activates nerve macrophages, mediates both axon damage and demyelination, and may thus be a promising target for therapeutic approaches.
Collapse
Affiliation(s)
- Bianca Kohl
- Department of Neurology University of Wuerzburg, Josef Schneider Strasse 11, 97080 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Lack of evidence for a pathogenic role of T-lymphocytes in an animal model for Charcot-Marie-Tooth disease 1A. Neurobiol Dis 2010; 38:78-84. [PMID: 20064611 DOI: 10.1016/j.nbd.2010.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/23/2009] [Accepted: 01/03/2010] [Indexed: 11/21/2022] Open
Abstract
We have previously shown that in two distinct models for inherited neuropathies of the Charcot-Marie-Tooth (CMT) type, T-lymphocytes are critically involved in demyelination. In the present study, we tested whether T-lymphocytes have a similar pathogenetic impact in another CMT model, i.e., in mice overexpressing the peripheral myelin protein (PMP)-22, representing the most prevalent form CMT1A. By cross breeding the myelin mutant mice with mutants lacking mature T- and B-lymphocytes (RAG-1-deficient mice), the pathological alterations were not changed in comparison to PMP22 mutants with a normal immune system. Reciprocal enhancement of lymphocyte activation, by inactivation of the lymphocytic co-inhibitor programmed death-1, also did not alter pathological changes, as opposed to models with approved lymphocytic involvement. These findings strongly suggest that lymphocytes are not pathogenetically relevant in this model for CMT1A. We suggest that - in contrast to myelin phagocytosing macrophages - T-lymphocytes are not a promising target for treatment of CMT1A.
Collapse
|
26
|
Itou J, Suyama M, Imamura Y, Deguchi T, Fujimori K, Yuba S, Kawarabayasi Y, Kawasaki T. Functional and comparative genomics analyses of pmp22 in medaka fish. BMC Neurosci 2009; 10:60. [PMID: 19534778 PMCID: PMC2714311 DOI: 10.1186/1471-2202-10-60] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 06/17/2009] [Indexed: 01/23/2023] Open
Abstract
Background Pmp22, a member of the junction protein family Claudin/EMP/PMP22, plays an important role in myelin formation. Increase of pmp22 transcription causes peripheral neuropathy, Charcot-Marie-Tooth disease type1A (CMT1A). The pathophysiological phenotype of CMT1A is aberrant axonal myelination which induces a reduction in nerve conduction velocity (NCV). Several CMT1A model rodents have been established by overexpressing pmp22. Thus, it is thought that pmp22 expression must be tightly regulated for correct myelin formation in mammals. Interestingly, the myelin sheath is also present in other jawed vertebrates. The purpose of this study is to analyze the evolutionary conservation of the association between pmp22 transcription level and vertebrate myelin formation, and to find the conserved non-coding sequences for pmp22 regulation by comparative genomics analyses between jawed fishes and mammals. Results A transgenic pmp22 over-expression medaka fish line was established. The transgenic fish had approximately one fifth the peripheral NCV values of controls, and aberrant myelination of transgenic fish in the peripheral nerve system (PNS) was observed. We successfully confirmed that medaka fish pmp22 has the same exon-intron structure as mammals, and identified some known conserved regulatory motifs. Furthermore, we found novel conserved sequences in the first intron and 3'UTR. Conclusion Medaka fish undergo abnormalities in the PNS when pmp22 transcription increases. This result indicates that an adequate pmp22 transcription level is necessary for correct myelination of jawed vertebrates. Comparison of pmp22 orthologs between distantly related species identifies evolutionary conserved sequences that contribute to precise regulation of pmp22 expression.
Collapse
Affiliation(s)
- Junji Itou
- Department of Radiation Biomedical Science IV, Radiation Biology Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Barbaria EM, Kohl B, Buhren BA, Hasenpusch-Theil K, Kruse F, Küry P, Martini R, Müller HW. The α-chemokine CXCL14 is up-regulated in the sciatic nerve of a mouse model of Charcot–Marie–Tooth disease type 1A and alters myelin gene expression in cultured Schwann cells. Neurobiol Dis 2009; 33:448-58. [DOI: 10.1016/j.nbd.2008.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/30/2008] [Accepted: 11/28/2008] [Indexed: 10/21/2022] Open
|
28
|
Martini R, Fischer S, López-Vales R, David S. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 2008; 56:1566-1577. [DOI: 10.1002/glia.20766] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Herrmann DN. Experimental therapeutics in hereditary neuropathies: the past, the present, and the future. Neurotherapeutics 2008; 5:507-15. [PMID: 19019301 PMCID: PMC4514696 DOI: 10.1016/j.nurt.2008.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Hereditary neuropathies represent approximately 40% of undiagnosed neuropathies in a tertiary clinic setting. The Charcot-Marie-Tooth neuropathies (CMT) are the most common. Mutations in more than 40 genes have been identified to date in CMT. Approximately 50% of CMT cases are accounted for by CMT type 1A, due to a duplication within the peripheral myelin protein 22 gene (PMP22). Mutations in the gap junction beta 1 gene (GJB1), the myelin protein zero gene (MPZ), and the mitofusin 2 gene (MFN2) account for a substantial proportion of other genetically definable CMT. Some 15% of demyelinating CMT and 70% of axonal CMT await genetic clarification. Other hereditary neuropathies include the hereditary sensory and autonomic neuropathies, the familial amyloid polyneuropathies, and multisystem disorders (e.g., lipid storage diseases and inherited ataxias) that have peripheral neuropathy as a major or minor component. This review surveys the challenges of developing effective therapies for hereditary neuropathies in terms of past, present, and future experimental therapeutics in CMT.
Collapse
Affiliation(s)
- David N Herrmann
- Department of Neurology-NMD, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
30
|
Fischer S, Kleinschnitz C, Müller M, Kobsar I, Ip CW, Rollins BJ, Martini R. Monocyte chemoattractant protein-1 is a pathogenic component in a model for a hereditary peripheral neuropathy. Mol Cell Neurosci 2008; 37:359-66. [DOI: 10.1016/j.mcn.2007.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
31
|
Fricker B, Muller A, René F. Evaluation Tools and Animal Models of Peripheral Neuropathies. NEURODEGENER DIS 2008; 5:72-108. [DOI: 10.1159/000112835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/12/2007] [Indexed: 11/19/2022] Open
|
32
|
Immune effects of mesenchymal stem cells: Implications for Charcot–Marie–Tooth disease. Cell Immunol 2008; 253:11-5. [DOI: 10.1016/j.cellimm.2008.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 12/12/2022]
|
33
|
Nave KA, Sereda MW, Ehrenreich H. Mechanisms of disease: inherited demyelinating neuropathies--from basic to clinical research. ACTA ACUST UNITED AC 2007; 3:453-64. [PMID: 17671523 DOI: 10.1038/ncpneuro0583] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/25/2007] [Indexed: 01/30/2023]
Abstract
The hereditary motor and sensory neuropathies (also known as Charcot-Marie-Tooth disease or CMT) are characterized by a length-dependent loss of axonal integrity in the PNS, which leads to progressive muscle weakness and sensory deficits. The 'demyelinating' neuropathies (CMT disease types 1 and 4) are genetically heterogeneous, but their common feature is that the primary defect perturbs myelination. As we discuss in this Review, several new genes associated with CMT1 and CMT4 have recently been identified. The emerging view is that a range of different subcellular defects in Schwann cells can cause axonal loss, which represents the final common pathway of all CMT disease and is independent of demyelination. We propose that Schwann cells provide a first line of axonal neuroprotection. A better understanding of axon-glia interactions should open the way to therapeutic interventions for demyelinating neuropathies. Transgenic animal models have become essential for dissecting CMT disease mechanisms and exploring novel therapies.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | | | | |
Collapse
|
34
|
Da Y, Jia J. Study of antibodies to PMP22, IL-6 and TNF-alpha concentrations in serum in a CMTX1 family. Neurosci Lett 2007; 424:73-7. [PMID: 17714866 DOI: 10.1016/j.neulet.2007.06.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
To further understand X-linked dominant Charcot-Marie-Tooth disease (CMTX1), we followed a family of 22 members in China, including 8 patients, 2 asymptomatic carriers and 12 normal family members. Twenty-two family members as well as 60 normal controls unrelated to this family were screened for point mutation by denaturing high performance liquid chromatography (DHPLC). All patients and asymptomatic carriers from this family, but none of the normal population controls, showed a T-C transition at position 266 in codon 89 of exon 2 of connexin 32, resulting in a leucine to proline (L89P) exchange. To study whether the immune system is involved in the pathogenesis of CMTX1 patients and asymptomatic carriers, we measured serum concentrations of antibodies to peripheral nerve myelin protein 22 (PMP22), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-alpha) by ELISA. Serological results were also compared with those from GBS patients (n=11) and with normal subjects (n=20). Our analysis showed anti-PMP22 sera reactivity in 50.0% of CMTX1 patients, 63.6% of GBS patients and 10% of normal controls. Our results also indicated that anti-PMP22 antibodies in the CMTX1 family varied with sex. Anti-PMP22 antibodies were found in all male patients but not in all females, which may be one of the reasons that male patients usually have more severe clinical symptoms than that of female patients. There was no statistical difference in serum concentrations of IL-6 and TNF-alpha between CMTX1 patients and normal subjects. In conclusion, we identified a L89P mutation for the first time in a CMTX1 family in China and an associated response to PMP22 in males.
Collapse
Affiliation(s)
- Yuwei Da
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | | |
Collapse
|
35
|
Meyer zu Hörste G, Hu W, Hartung HP, Lehmann HC, Kieseier BC. The immunocompetence of Schwann cells. Muscle Nerve 2007; 37:3-13. [PMID: 17823955 DOI: 10.1002/mus.20893] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Schwann cells are the myelinating glial cells of the peripheral nervous system that support and ensheath axons with myelin to enable rapid saltatory signal propagation in the axon. Immunocompetence, however, has only recently been recognized as an important feature of Schwann cells. An autoimmune response against components of the peripheral nervous system triggers disabling inflammatory neuropathies in patients and corresponding animal models. The immune system participates in nerve damage and disease manifestation even in non-inflammatory hereditary neuropathies. A growing body of evidence suggests that Schwann cells may modulate local immune responses by recognizing and presenting antigens and may also influence and terminate nerve inflammation by secreting cytokines. This review summarizes current knowledge on the interaction of Schwann cells with the immune system, which is involved in diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Gerd Meyer zu Hörste
- Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
36
|
Khajavi M, Shiga K, Wiszniewski W, He F, Shaw CA, Yan J, Wensel TG, Snipes GJ, Lupski JR. Oral curcumin mitigates the clinical and neuropathologic phenotype of the Trembler-J mouse: a potential therapy for inherited neuropathy. Am J Hum Genet 2007; 81:438-53. [PMID: 17701891 PMCID: PMC1950845 DOI: 10.1086/519926] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/16/2007] [Indexed: 11/03/2022] Open
Abstract
Mutations in myelin genes cause inherited peripheral neuropathies that range in severity from adult-onset Charcot-Marie-Tooth disease type 1 to childhood-onset Dejerine-Sottas neuropathy and congenital hypomyelinating neuropathy. Many myelin gene mutants that cause severe disease, such as those in the myelin protein zero gene (MPZ) and the peripheral myelin protein 22 gene (PMP22), appear to make aberrant proteins that accumulate primarily within the endoplasmic reticulum (ER), resulting in Schwann cell death by apoptosis and, subsequently, peripheral neuropathy. We previously showed that curcumin supplementation could abrogate ER retention and aggregation-induced apoptosis associated with neuropathy-causing MPZ mutants. We now show reduced apoptosis after curcumin treatment of cells in tissue culture that express PMP22 mutants. Furthermore, we demonstrate that oral administration of curcumin partially mitigates the severe neuropathy phenotype of the Trembler-J mouse model in a dose-dependent manner. Administration of curcumin significantly decreases the percentage of apoptotic Schwann cells and results in increased number and size of myelinated axons in sciatic nerves, leading to improved motor performance. Our findings indicate that curcumin treatment is sufficient to relieve the toxic effect of mutant aggregation-induced apoptosis and improves the neuropathologic phenotype in an animal model of human neuropathy, suggesting a potential therapeutic role in selected forms of inherited peripheral neuropathies.
Collapse
Affiliation(s)
- Mehrdad Khajavi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sereda MW, Nave KA. Animal models of Charcot-Marie-Tooth disease type 1A. Neuromolecular Med 2007; 8:205-16. [PMID: 16775377 DOI: 10.1385/nmm:8:1-2:205] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 01/10/2006] [Accepted: 01/17/2006] [Indexed: 11/11/2022]
Abstract
The most frequent genetic subtype of Charcot-Marie-Tooth disease is CMT1A, linked to chromosome 17p11.2. In the majority of cases, CMT1A is a gene dosage disease associated with a 1.5 Mb large genomic duplication. Transgenic models with extra copies of the Pmp22 gene have provided formal proof that overexpression of only this candidate gene is sufficent to cause peripheral demyelination, onion bulb formation, secondary axonal loss, and progressive muscle atrophy, the pathological hallmarks of CMT1A. The transgenic CMT rat with about 1.6-fold PMP22 overexpression exhibits clinical abnormalities, such as reduced nerve conduction velocity and lower grip strength that mimick findings in CMT1A patients. Also transgenic mice, carrying yeast artifical chromosomes as Pmp22 transgenes, demonstrate the variability of disease expression as a function of increased gene dosage. Recently, the first rational experimental therapies of CMT1A were tested, using transgenic animal models. In one proof-of-principle study with the CMT rat, a synthetic antagonist of the nuclear progesterone receptor was shown to reduce PMP22 overexpression and to ameliorate the clinical severity. In another study, administration of ascorbic acid, an essential factor of in vitro myelination, prolonged the survival and restored myelination of a dysmyelinated mouse model. Application of gene expression analysis to nerve biopsies that are readily available from such CMT1A animal models might identify additional pharmacological targets.
Collapse
Affiliation(s)
- M W Sereda
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
38
|
Ip CW, Kroner A, Crocker PR, Nave KA, Martini R. Sialoadhesin deficiency ameliorates myelin degeneration and axonopathic changes in the CNS of PLP overexpressing mice. Neurobiol Dis 2007; 25:105-11. [PMID: 17064921 DOI: 10.1016/j.nbd.2006.08.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/24/2006] [Accepted: 08/30/2006] [Indexed: 02/05/2023] Open
Abstract
PLP overexpressing mice display demyelination and axonopathic changes, accompanied by an elevation of CD8+ T-lymphocytes and CD11b+ macrophages in the CNS. By crossbreeding these mutants with RAG-1-deficient mice lacking mature lymphocytes, we could recently demonstrate a pathogenetic impact of the CD8+ cells. In the present study, we investigated the pathogenetic impact of CD11b+ macrophages by crossbreeding the myelin mutants with knockout mice deficient for the macrophage-restricted adhesion molecule sialoadhesin (Sn). In the wild-type mice, Sn is barely detectable on CD11b+ cells, whereas in the myelin mutants, almost all CD11b+ cells express Sn. In the double mutants, upregulation of CD8+ T-cells and CD11b+ macrophages is reduced and pathological alterations are ameliorated. These data indicate that in a primarily genetically caused myelin disorder of the CNS macrophages expressing Sn partially mediate pathogenesis. These findings may have substantial impact on treatment strategies for leukodystrophic disorders and some forms of multiple sclerosis.
Collapse
Affiliation(s)
- Chi Wang Ip
- Department of Neurology, Section of Developmental Neurobiology, University of Wuerzburg, Josef-Schneider Str. 11, D-97080 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Schenone A, Nobbio L. Inherited Peripheral Neuropathies. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Abstract
PURPOSE OF REVIEW Mutations in a number of genes have been associated with inherited neuropathies (Charcot-Marie-Tooth or CMT disease). This review highlights how animal models of demyelinating CMT have improved our understanding of disease mechanisms. Transgenic CMT models also allow therapies to be developed in a preclinical setting. RECENT FINDINGS Rodent models for the most common subtypes of human CMT disease are now available, and two mouse mutants modeling the rare CMT4B subform have lately extended this repertoire. In a peripheral myelin protein 22 kDa (Pmp22) transgenic rat model of CMT1A, administration of a progesterone receptor antagonist reduced Pmp22 overexpression, axon loss and clinical impairments. Dietary ascorbic acid prevented dysmyelination and premature death in a Pmp22 transgenic mouse line. Neurotrophin-3 promoted small fiber remyelination in CMT1A xenografts and sensory functions in CMT1A patients. Gene expression profiling in rodent models of CMT may identify further therapeutical targets. While original classifications distinguish the demyelinating and axonal forms of CMT, recent findings emphasize that axon loss is a common feature, possibly caused by Schwann cell defects rather than demyelination per se. This supports our model that myelination and long-term axonal support are distinct functions of all myelinating glial cells. SUMMARY Animal models have opened up new perspectives on the pathomechanisms and possible treatment strategies of inherited neuropathies.
Collapse
|
41
|
Wang Ip C, Kroner A, Fischer S, Berghoff M, Kobsar I, Mäurer M, Martini R. Role of immune cells in animal models for inherited peripheral neuropathies. Neuromolecular Med 2006; 8:175-90. [PMID: 16775375 DOI: 10.1385/nmm:8:1-2:175] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 11/10/2005] [Accepted: 11/15/2005] [Indexed: 12/20/2022]
Abstract
Mice expressing half of the normal dose of protein zero (P0+/- mice) or completely deficient gap-junction protein connexin 32 -/- mice mimic demyelinating forms of inherited neuropathies, such as Charcot-Marie-Tooth (CMT) neuropathies type 1B and CMT type 1X, respectively. In both models, an almost normal myelin formation is observed during the first months of life, followed by a slowly progressing demyelinating neuropathy. In both models, there is a substantial increase of CD8+ T-lymphocytes and macrophages within the demyelinating nerves. Recently, this has also been observed in mice mildly overexpressing human peripheral myelin protein 22 kD mimicking the most common form of CMT, CMT type 1A. In all demyelinating models, the macrophages show close contacts with intact myelin sheaths or demyelinated axons, suggesting an active role of these cells in myelin degeneration. Additionally, fibroblast-like cells contact macrophages, suggesting a functional role of fibroblast-like cells in macrophage activation. By cross-breeding P0+/- and gap-junction protein connexin 32-/- mice with immunodeficient recombination activating gene-1-deficient mutants, a substantial alleviation of the demyelinating phenotype was observed. Similarly, cross-breeding of P0+/- mice with mutants with a defect in macrophage activation led to an alleviated phenotype as well. These findings demonstrate that the immune system is involved in the pathogenesis of demyelinating neuropathies. In contrast, in P0-/- mice, which display a compromised myelin compaction and axonal loss from onset, immune cells appear to have a neuroprotective effect because cross-breeding with recombination activating gene-1 mutants leads to an aggravation of axonopathic changes. In the present review, we discuss the influence of the immune system on inherited de- and dysmyelination regarding disease mechanisms and possible clinical implications.
Collapse
Affiliation(s)
- Chi Wang Ip
- Department of Neurology, Developmental Neurobiology, University of Wuerzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|