1
|
Woo KM, Guo Y, Mehrabian Z, Miller NR, Bernstein SL. Refining Flash Visual Evoked Potential Analysis in Rats: A Novel Approach Using Bilateral Epidural Electrodes. Transl Vis Sci Technol 2024; 13:24. [PMID: 39680393 DOI: 10.1167/tvst.13.12.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Purpose Visual evoked potentials (VEPs) are electrical signals generated at the visual cortex following visual stimulation. Flash VEPs (fVEPs) are produced by global retinal stimulation and are considered an objective measure of the integrity of the entire visual pathway. However, fVEP measurements are highly sensitive to external variables, making relative comparisons of the fVEP waveforms between the two eyes in the same individual challenging. Methods We used the rodent non-arteritic anterior ischemic optic neuropathy (rNAION) model to induce unilateral ischemic optic neuropathy. The severity of optic disc edema was measured with spectral-domain optical coherence tomography, and visual acuity was measured using a virtual optokinetic system. We developed a procedure utilizing implanted bilateral epidural electrodes and derived a mathematical formula to accurately estimate functional differences between the optic nerves. Immunohistology was performed to quantify retinal ganglion cell (RGC) survival using stereology. Results Compared to subcutaneous methods, the new approach significantly improves the signal-to-noise ratio and is more repeatable when comparing the two eyes. The derived formula accounts for asymmetry in the afferent inputs to the visual cortex. Visual function calculated using the formula correlates strongly with other recognized metrics of visual function, including RGC survival and visual acuity. Conclusions We have developed a repeatable and accurate method to calculate the relative visual function of diseased optic nerves compared with a contralateral control eye. Translational Relevance Our novel method improves fVEP measurement sensitivity and accuracy in rodent preclinical trials, reducing the number of animals needed to achieve statistical significance.
Collapse
Affiliation(s)
- Kwang Min Woo
- Weill Cornell Medical College, New York, NY, USA
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yan Guo
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zara Mehrabian
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neil R Miller
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven L Bernstein
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Neurobiology and Anatomy, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Lu S, Xia T, Zhang Y. Evaluation of Retinal Ganglion Cell via Visual Evoked Potential. Methods Mol Biol 2023; 2708:141-146. [PMID: 37558968 DOI: 10.1007/978-1-0716-3409-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Visual Evoked Potential (VEP) is an electrical signal recorded from the visual cortex in response to light stimulation. It can be used as an in vivo method to objectively access the functional integrity of the retinogeniculocortical pathway. Here we describe the methods to perform flash VEP (FVEP) recording in rodents and goat and pattern VEP (PVEP) recording in rhesus macaque.
Collapse
Affiliation(s)
- Shengjian Lu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Tian Xia
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yikui Zhang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Lee CH, Walczak P, Zhang J. Inhomogeneous magnetization transfer MRI of white matter structures in the hypomyelinated shiverer mouse brain. Magn Reson Med 2022; 88:332-340. [PMID: 35344613 DOI: 10.1002/mrm.29207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 12/31/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Inhomogeneous magnetization transfer (ihMT) MRI is uniquely sensitive to myelin with lipids as a primary source of its contrast. In this study, we investigated whether ihMT can detect white matter structures in the hypomyelinated shiverer mouse brain, a model of dysmyelination. METHODS Conventional MT and ihMT images were acquired from ex vivo Rag2-/- control and shiverer mouse brains at 7T using previously reported optimized saturation parameters. RESULTS ihMT ratio (ihMTR) maps revealed hypomyelinated corpus callosum in the shiverer mouse brain, whereas conventional MT ratio (MTR) maps showed no clear contrast. The ihMTR values of the corpus callosum in the shiverer mice were reduced by approximately 40% compared to controls, but remained significantly higher than the ihMTR values of the cortex. CONCLUSION The finding further confirms ihMT's high myelin specificity and suggests its use as a marker to detect early myelination or myelin repair.
Collapse
Affiliation(s)
- Choong Heon Lee
- Center for Biomedical Imaging, Department of Radiology, New York University Langone School of Medicine, New York, NY, USA
| | - Piotr Walczak
- Department of Radiology, University of Maryland, Baltimore, MD, USA
| | - Jiangyang Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University Langone School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Marenna S, Huang SC, Castoldi V, d’Isa R, Costa GD, Comi G, Leocani L. Functional evolution of visual involvement in experimental autoimmune encephalomyelitis. Mult Scler J Exp Transl Clin 2020; 6:2055217320963474. [PMID: 35145730 PMCID: PMC8822451 DOI: 10.1177/2055217320963474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) is a common animal model of multiple sclerosis (MS). C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein exhibit chronic disease course, together with optic neuritis, consisting of demyelination/axonal loss of the optic nerve. Objectives To characterize functional and structural visual damages in two different phases of EAE: pre- and post-motor onset. Methods Visual alterations were detected with Visual Evoked Potential (VEP), Electroretinogram (ERG) and Optical Coherence Tomography (OCT). Optic nerve histology was performed at 7 (pre-motor onset) or 37 (post-motor onset) days post-immunization (dpi). Results At 7 dpi, optic nerve inflammation was similar in EAE eyes with and without VEP latency delay. Demyelination was detected in EAE eyes with latency delay (p < 0.0001), while axonal loss (p < 0.0001) and ERG b-wave amplitude (p = 0.004) were decreased in EAE eyes without latency delay compared to Healthy controls. At 37 dpi, functional and structural optic nerve damage were comparable between EAE groups, while a decrease of ERG amplitude and NGCC thickness were found in EAE eyes with VEP latency delay detected post-motor onset. Conclusions Thanks to non-invasive methods, we studied the visual system in a MS model, which could be useful for developing specific therapeutic strategies to target different disease phases.
Collapse
Affiliation(s)
- Silvia Marenna
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Raffaele d’Isa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Gloria Dalla Costa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
5
|
Foxley S, Wildenberg G, Sampathkumar V, Karczmar GS, Brugarolas P, Kasthuri N. Sensitivity to myelin using model-free analysis of the water resonance line-shape in postmortem mouse brain. Magn Reson Med 2020; 85:667-677. [PMID: 32783262 DOI: 10.1002/mrm.28440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Dysmyelinating diseases are characterized by abnormal myelin formation and function. Such microstructural abnormalities in myelin have been demonstrated to produce measurable effects on the MR signal. This work examines these effects on measurements of voxel-wise, high-resolution water spectra acquired using a 3D echo-planar spectroscopic imaging (EPSI) pulse sequence from both postmortem fixed control mouse brains and a dysmyelination mouse brain model. METHODS Perfusion fixed, resected control (n = 5) and shiverer (n = 4) mouse brains were imaged using 3D-EPSI with 100 µm isotropic resolution. The free induction decay (FID) was sampled every 2.74 ms over 192 echoes, for a total sampling duration of 526.08 ms. Voxel-wise FIDs were Fourier transformed to produce water spectra with 1.9 Hz resolution. Spectral asymmetry was computed and compared between the two tissue types. RESULTS The water resonance is more asymmetrically broadened in the white matter of control mouse brain compared with dysmyelinated white matter. In control brain, this is modulated by and consistent with previously reported orientationally dependent effects of white matter relative to B0 . Similar sensitivity to orientation is observed in dysmyelinated white matter as well; however, the magnitude of the resonance asymmetry is much lower across all directions. CONCLUSION Results demonstrate that components of the spectra are specifically differentially affected by myelin concentration. This suggests that water proton spectra may be sensitive to the presence of myelin, and as such, could serve as a MRI-based biomarker of dysmyelinating disease, free of mathematical models.
Collapse
Affiliation(s)
- Sean Foxley
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Gregg Wildenberg
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | | | | | - Pedro Brugarolas
- Department of Radiology, Harvard Medical School, Boston, Maryland, USA.,Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Maryland, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Cody JD. The Consequences of Abnormal Gene Dosage: Lessons from Chromosome 18. Trends Genet 2020; 36:764-776. [PMID: 32660784 DOI: 10.1016/j.tig.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
Accurate interpretation of genomic copy number variation (CNV) remains a challenge and has important consequences for both congenital and late-onset disease. Hemizygosity dosage characterization of the genes on chromosome 18 reveals a spectrum of outcomes ranging from no clinical effect, to risk factors for disease, to both low- and high-penetrance disease. These data are important for accurate and predictive clinical management. Additionally, the potential mechanisms of reduced penetrance due to dosage compensation are discussed as a key to understanding avenues for potential treatment. This review describes the chromosome 18 findings, and discusses the molecular mechanisms that allow haploinsufficiency, reduced penetrance, and dosage compensation.
Collapse
Affiliation(s)
- Jannine DeMars Cody
- Department of Pediatrics, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Chromosome 18 Registry and Research Society, San Antonio, TX 78229, USA.
| |
Collapse
|
7
|
Marenna S, Castoldi V, d'Isa R, Marco C, Comi G, Leocani L. Semi-invasive and non-invasive recording of visual evoked potentials in mice. Doc Ophthalmol 2019; 138:169-179. [PMID: 30840173 DOI: 10.1007/s10633-019-09680-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Visual evoked potentials (VEPs) are used to assess visual function in preclinical models of neurodegenerative diseases. VEP recording with epidural screw electrodes is a common method to study visual function in rodents, despite being an invasive procedure that can damage the tissue under the skull. The present study was performed to test a semi-invasive (epicranial) and a non-invasive (epidermal) VEP recording technique, comparing them with the classic epidural acquisition method. METHODS Flash VEPs were recorded from C57BL/6 mice on three separate days within 2 weeks. Waveforms, latencies and amplitudes of the components were compared between the three different methods, utilizing coefficient of repeatability, coefficient of variation and intersession standard deviation to evaluate reproducibility. RESULTS While epidural electrodes succeeded in recording two negative peaks (N1 and N2), epicranial and epidermal electrodes recorded a single peak (N1). Statistical indexes showed a comparable reproducibility between the three techniques, with a greater stability of N1 latency recorded through epicranial electrodes. Moreover, N1 amplitudes recorded with the new less-invasive methods were more reproducible compared to the invasive gold-standard technique. CONCLUSIONS These results demonstrate the reliability of semi- and non-invasive VEP recordings, which can be useful to evaluate murine models of neurological diseases.
Collapse
Affiliation(s)
- Silvia Marenna
- University Vita-Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Valerio Castoldi
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Raffaele d'Isa
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Cursi Marco
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Giancarlo Comi
- University Vita-Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Letizia Leocani
- University Vita-Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy. .,Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
8
|
Petiet A, Adanyeguh I, Aigrot MS, Poirion E, Nait-Oumesmar B, Santin M, Stankoff B. Ultrahigh field imaging of myelin disease models: Toward specific markers of myelin integrity? J Comp Neurol 2019; 527:2179-2189. [PMID: 30520034 DOI: 10.1002/cne.24598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Specific magnetic resonance imaging (MRI) markers of myelin are critical for the evaluation and development of regenerative therapies for demyelinating diseases. Several MRI methods have been developed for myelin imaging, based either on acquisition schemes or on mathematical modeling of the signal. They generally showed good sensitivity but validation for specificity toward myelin is still warranted to allow a reliable interpretation in an in vivo complex pathological environment. Experimental models of dys-/demyelination are characterized by various levels of myelin disorders, axonal damage, gliosis and inflammation, and offer the opportunity for powerful correlative studies between imaging metrics and histology. Here, we review how ultrahigh field MRI markers have been correlated with histology in these models and provide insights into the trends for future developments of MRI tools in human myelin diseases. To this end, we present the biophysical basis of the main MRI methods for myelin imaging based on T1 , T2 , water diffusion, and magnetization transfer signal, the characteristics of animal models used and the outcomes of histological validations. To date such studies are limited, and demonstrate partial correlations with immunohistochemical and electron microscopy measures of myelin. These MRI metrics also often correlate with axons, glial, or inflammatory cells in models where axonal degeneration or inflammation occur as potential confounding factors. Therefore, the MRI markers' specificity for myelin is still perfectible and future developments should improve mathematical modeling of the MR signal based on more complex systems or provide multimodal approaches to better disentangle the biological processes underlying the MRI metrics.
Collapse
Affiliation(s)
- Alexandra Petiet
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France.,Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Isaac Adanyeguh
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France.,Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Marie-Stéphane Aigrot
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Emilie Poirion
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Brahim Nait-Oumesmar
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Mathieu Santin
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France.,Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Bruno Stankoff
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neurology, AP-HP, Saint-Antoine hospital, Paris, France
| |
Collapse
|
9
|
Castoldi V, Marenna S, Santangelo R, d'Isa R, Cursi M, Chaabane L, Quattrini A, Comi G, Leocani L. Optic nerve involvement in experimental autoimmune encephalomyelitis to homologous spinal cord homogenate immunization in the dark agouti rat. J Neuroimmunol 2018; 325:1-9. [PMID: 30340030 DOI: 10.1016/j.jneuroim.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Dark-Agouti rats were immunized with spinal cord homogenate to develop Experimental Autoimmune Encephalomyelitis, a model of multiple sclerosis. We assessed motor signs and recorded VEPs for five or eight weeks with epidural or epidermal electrodes, respectively, with final histopathology of optic nerves (ONs). Injected rats exhibited motor deficits a week after immunization. VEP delays arose from the 2nd to the 5th week, when a recovery occurred in epidermal-recorded rats. ON damage appeared in epidural-, but not in epidermal-recorded rats, probably due to a remyelination process. VEP could be exploited as neurophysiological marker to test novel treatments against neurodegeneration involving ONs.
Collapse
Affiliation(s)
- Valerio Castoldi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Silvia Marenna
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | | | - Raffaele d'Isa
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marco Cursi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Linda Chaabane
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Angelo Quattrini
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Giancarlo Comi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Letizia Leocani
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
10
|
Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch L, Frederiksen J, Skeen M, Jaffe GJ, Butzkueven H, Ziemssen F, Massacesi L, Chai Y, Xu L, Freeman S. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2017; 16:189-199. [PMID: 28229892 DOI: 10.1016/s1474-4422(16)30377-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND The human monoclonal antibody opicinumab (BIIB033, anti-LINGO-1) has shown remyelinating activity in preclinical studies. We therefore assessed the safety and tolerability, and efficacy of opicinumab given soon after a first acute optic neuritis episode. METHODS This randomised, double-blind, placebo-controlled, phase 2 study (RENEW) was done at 33 sites in Australia, Canada, and Europe in participants (aged 18-55 years) with a first unilateral acute optic neuritis episode within 28 days from study baseline. After treatment with high-dose methylprednisolone (1 g/day, intravenously, for 3-5 days), participants were assigned with a computer-generated sequence with permuted block randomisation (1:1) using a centralised interactive voice and web response system to receive 100 mg/kg opicinumab intravenously or placebo once every 4 weeks (six doses) and followed up to week 32. All study participants and all study staff, including the central readers, were masked to treatment assignment apart from the pharmacist responsible for preparing the study treatments and the pharmacy monitor at each site. The primary endpoint was remyelination at 24 weeks, measured as recovery of affected optic nerve conduction latency using full-field visual evoked potential (FF-VEP) versus the unaffected fellow eye at baseline. Analysis was by intention-to-treat (ITT); prespecified per-protocol (PP) analyses were also done. This study is registered with ClinicalTrials.gov, number NCT01721161. FINDINGS The study was done between Dec 21, 2012, and Oct 21, 2014. 82 participants were enrolled, and 41 in each group comprised the ITT population; 33 participants received opicinumab and 36 received placebo in the PP population. Adjusted mean treatment difference of opicinumab versus placebo was -3·5 ms (17·3 vs 20·8 [95% CI -10·6 to 3·7]; 17%; p=0·33) in the ITT population, and -7·6 ms in the PP population (14·7 vs 22·2 [-15·1 to 0·0]; 34%; p=0·050) at week 24 and -6·1 ms (15·1 vs 21·2 [-12·7 to 0·5]; 29%; p=0·071) in the ITT population and -9·1 ms (13·2 vs 22·4 [-16·1 to -2·1]; 41%; p=0·011) in the PP population at week 32. The overall incidence (34 [83%] of 41 in each group) and severity of adverse events (two [5%] of 41 severe adverse events with placebo vs three [7%] of 41 with opicinumab) were similar between groups and no significant effects on brain MRI measures were noted in either group (mean T2 lesion volume change, 0·05 mL [SD 0·21] for placebo vs 0·20 mL [0·52] with opicinumab; 27 [77%] of 35 participants with no change in gadolinium-enhancing [Gd+] lesion number with opicinumab vs 27 [79%] of 34 with placebo; mean 0·4 [SD 0·79 for the placebo group and 0·85 for the opicinumab group] new Gd+ lesions per participant in both groups). Treatment-related serious adverse events were reported in three (7%) of 41 participants in the opicinumab group (hypersensitivity [n=2], asymptomatic increase in transaminase concentrations [n=1]) and none of the participants in the placebo group. INTERPRETATION Remyelination did not differ significantly between the opicinumab and placebo groups in the ITT population at week 24. However, results from the prespecified PP population suggest that enhancing remyelination in the human CNS with opicinumab might be possible and warrant further clinical investigation. FUNDING Biogen.
Collapse
Affiliation(s)
| | - Laura Balcer
- Departments of Neurology, Population Health, and Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Steven Galetta
- Departments of Neurology, Population Health, and Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tjalf Ziemssen
- MS Centre Dresden, Centre of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ludo Vanopdenbosch
- Department of Neurology, AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium
| | - Jette Frederiksen
- Department of Neurology, Rigshospitalet-Glostrup and University of Copenhagen, Glostrup, Denmark
| | - Mark Skeen
- Department of Neurology, Duke University, Durham, NC, USA
| | - Glenn J Jaffe
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Helmut Butzkueven
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Focke Ziemssen
- Center for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Luca Massacesi
- Department of Neurosciences, Drug Research, and Child's Health, University of Florence, Florence, Italy
| | | | - Lei Xu
- Biogen, Cambridge, MA, USA
| | | | | |
Collapse
|
11
|
Nurieva O, Kotikova K, Urban P, Pelclova D, Petrik V, Navratil T, Zakharov S. Prevalence, dynamics, and biochemical predictors of optic nerve remyelination after methanol-induced acute optic neuropathy: a 2-year prospective study in 54 patients. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1580-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Cody JD, Sebold C, Heard P, Carter E, Soileau B, Hasi-Zogaj M, Hill A, Rupert D, Perry B, O'Donnell L, Gelfond J, Lancaster J, Fox PT, Hale DE. Consequences of chromsome18q deletions. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2015; 169:265-80. [PMID: 26235940 DOI: 10.1002/ajmg.c.31446] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 11/11/2022]
Abstract
Providing clinically relevant prognoses and treatment information for people with a chromsome18q deletion is particularly challenging because every unrelated person has a unique region of hemizygosity. The hemizygous region can involve almost any region of 18q including between 1 and 101 genes (30 Mb of DNA). Most individuals have terminal deletions, but in our cohort of over 350 individuals 23% have interstitial deletions. Because of this heterogeneity, we take a gene by gene approach to understanding the clinical consequences. There are 196 genes on 18q. We classified 133 of them as dosage insensitive, 15 (8%) as dosage sensitive leading to haploinsufficiency while another 10 (5%) have effects that are conditionally haploinsufficient and are dependent on another factor, genetic or environmental in order to cause an abnormal phenotype. Thirty-seven genes (19%) have insufficient information to classify their dosage effect. Phenotypes attributed to single genes include: congenital heart disease, minor bone morphology changes, central nervous system dysmyelination, expressive speech delay, vesicouretreral reflux, polyposis, Pitt-Hopkins syndrome, intellectual disability, executive function impairment, male infertility, aural atresia, and high frequency sensorineural hearing loss. Additionally, identified critical regions for other phenotypes include: adolescent idiopathic scoliosis and pectus excavatum, Virchow-Robin perivascular spaces, small corpus callosum, strabismus, atopic disorders, mood disorder, IgA deficiency, nystagmus, congenital heart disease, kidney malformation, vertical talus, CNS dysmyelination growth hormone deficiency and cleft palate. Together these findings make it increasingly feasible to compile an individualized syndrome description based on each person's individuated genotype. Future work will focus on understanding molecular mechanisms leading to treatment.
Collapse
|
13
|
Parallel changes in structural and functional measures of optic nerve myelination after optic neuritis. PLoS One 2015; 10:e0121084. [PMID: 26020925 PMCID: PMC4447428 DOI: 10.1371/journal.pone.0121084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/28/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction Visual evoked potential (VEP) latency prolongation and optic nerve lesion length after acute optic neuritis (ON) corresponds to the degree of demyelination, while subsequent recovery of latency may represent optic nerve remyelination. We aimed to investigate the relationship between multifocal VEP (mfVEP) latency and optic nerve lesion length after acute ON. Methods Thirty acute ON patients were studied at 1,3,6 and 12 months using mfVEP and at 1 and 12 months with optic nerve MRI. LogMAR and low contrast visual acuity were documented. By one month, the mfVEP amplitude had recovered sufficiently for latency to be measured in 23 (76.7%) patients with seven patients having no recordable mfVEP in more than 66% of segments in at least one test. Only data from these 23 patients was analysed further. Results Both latency and lesion length showed significant recovery during the follow-up period. Lesion length and mfVEP latency were highly correlated at 1 (r = 0.94, p = <0.0001) and 12 months (r = 0.75, p < 0.001). Both measures demonstrated a similar trend of recovery. Speed of latency recovery was faster in the early follow-up period while lesion length shortening remained relatively constant. At 1 month, latency delay was worse by 1.76ms for additional 1mm of lesion length while at 12 months, 1mm of lesion length accounted for 1.94ms of latency delay. Conclusion A strong association between two putative measures of demyelination in early and chronic ON was found. Parallel recovery of both measures could reflect optic nerve remyelination.
Collapse
|
14
|
Herrera SL, Palmer VL, Whittaker H, Smith BC, Kim A, Schellenberg AE, Thiessen JD, Buist R, Del Bigio MR, Martin M. Damage to the optic chiasm in myelin oligodendrocyte glycoprotein-experimental autoimmune encephalomyelitis mice. MAGNETIC RESONANCE INSIGHTS 2014; 7:23-31. [PMID: 25520558 PMCID: PMC4226389 DOI: 10.4137/mri.s19750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022]
Abstract
Optic chiasm lesions in myelin oligodendrocyte glycoprotein (MOG)–experimental autoimmune encephalomyelitis (EAE) mice were characterized using magnetic resonance imaging (MRI) and validated using electron microscopy (EM). MR images were collected from 3 days after induction to remission, approximately 20 days after induction. Hematoxylin and eosin, solochrome cyanin–stained sections, and EM images were obtained from the optic chiasms of some mice approximately 4 days after disease onset when their scores were thought to be the highest. T2-weighted imaging and apparent diffusion coefficient map hyperintensities corresponded to abnormalities in the optic chiasms of EAE mice. Mixed inflammation was concentrated at the lateral surface. Degeneration of oligodendrocytes, myelin, and early axonal damage were also apparent. A marked increase in chiasm thickness was observed. T2-weighted and diffusion-weighted MRI can detect abnormalities in the optic chiasms of MOG-EAE mice. MRI is an important method in the study of this model toward understanding optic neuritis.
Collapse
Affiliation(s)
- Sheryl L Herrera
- Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vanessa L Palmer
- Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Heather Whittaker
- Biopsychology Program, University of Winnipeg, Winnipeg, Manitoba, Canada
| | | | - Annie Kim
- Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Angela E Schellenberg
- Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada. ; General Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan D Thiessen
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada. ; Medical Biophysics, Western University, London, Ontario, Canada
| | - Richard Buist
- Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Melanie Martin
- Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada. ; Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, Canada. ; Physics, University of Winnipeg, Winnipeg, Manitoba, Canada. ; Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada. ; Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
15
|
Tada H, Takanashi JI. MR spectroscopy in 18q(-) syndrome suggesting other than hypomyelination. Brain Dev 2014; 36:57-60. [PMID: 23332863 DOI: 10.1016/j.braindev.2012.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/17/2012] [Accepted: 12/06/2012] [Indexed: 11/17/2022]
Abstract
We reported a 5-year-old boy with 18q(-) syndrome who showed typical magnetic resonance imaging (MRI) findings of high signal intensity on T2-weighted imaging, and a slightly high but lower than normal signal on T1-weighted imaging of the white matter. MR spectroscopy (MRS) revealed increased concentrations of creatine, myoinositol and choline with a normal N-acetylaspartate one. The cerebral white matter lesions observed on MRI in patients with 18q(-) syndrome have been considered to reflect hypomyelination due to a decrease in myelin basic protein so far, however, MRS suggested reactive astrocytic gliosis and accelerated myelin turnover, which are compatible with recent pathological reports of 18q(-) syndrome.
Collapse
Affiliation(s)
- Hiroko Tada
- Department of Pediatrics, Chibaken Saiseikai Narashino Hospital, Narashino, Japan.
| | - Jun-ichi Takanashi
- Department of Pediatrics, Kameda Medical Center, Kamogawa, Japan; Department of Radiology, Toho University Sakura Medical Center, Sakura, Japan
| |
Collapse
|
16
|
Takanashi JI, Nitta N, Iwasaki N, Saito S, Tanaka R, Barkovich AJ, Aoki I. Neurochemistry in shiverer mouse depicted on MR spectroscopy. J Magn Reson Imaging 2013; 39:1550-7. [DOI: 10.1002/jmri.24306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/18/2013] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jun-ichi Takanashi
- Molecular Imaging Center; National Institute of Radiological Sciences; Chiba Japan
- Department of Pediatrics; Kameda Medical Center; Kamogawa Japan
- Department of Radiology; Toho University Sakura Medical Center; Sakura Japan
| | - Nobuhiro Nitta
- Molecular Imaging Center; National Institute of Radiological Sciences; Chiba Japan
| | - Nobuaki Iwasaki
- Department of Pediatrics; Ibaraki Prefectural University of Health Sciences; Amimachi Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering; Graduate School of Medicine; Osaka University; Suita Japan
| | - Ryuta Tanaka
- Department of Pediatrics; University of Tsukuba; Tsukuba Japan
| | - A. James Barkovich
- Department of Radiology and Biomedical Imaging; University of California San Francisco; California USA
| | - Ichio Aoki
- Molecular Imaging Center; National Institute of Radiological Sciences; Chiba Japan
| |
Collapse
|
17
|
Establishing a reference group for distal 18q-: clinical description and molecular basis. Hum Genet 2013; 133:199-209. [PMID: 24092497 DOI: 10.1007/s00439-013-1364-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/18/2013] [Indexed: 12/16/2022]
Abstract
Although constitutional chromosome abnormalities have been recognized since the 1960s, clinical characterization and development of treatment options have been hampered by their obvious genetic complexity and relative rarity. Additionally, deletions of 18q are particularly heterogeneous, with no two people having the same breakpoints. We identified 16 individuals with deletions that, despite unique breakpoints, encompass the same set of genes within a 17.6-Mb region. This group represents the most genotypically similar group yet identified with distal 18q deletions. As the deletion is of average size when compared with other 18q deletions, this group can serve as a reference point for the clinical and molecular description of this condition. We performed a thorough medical record review as well as a series of clinical evaluations on 14 of the 16 individuals. Common functional findings included developmental delays, hypotonia, growth hormone deficiency, and hearing loss. Structural anomalies included foot anomalies, ear canal atresia/stenosis, and hypospadias. The majority of individuals performed within the low normal range of cognitive ability but had more serious deficits in adaptive abilities. Of interest, the hemizygous region contains 38 known genes, 26 of which are sufficiently understood to tentatively determine dosage sensitivity. Published data suggest that 20 are unlikely to cause an abnormal phenotype in the hemizygous state and five are likely to be dosage sensitive: TNX3, NETO1, ZNF407, TSHZ1, and NFATC. A sixth gene, ATP9B, may be conditionally dosage sensitive. Not all distal 18q- phenotypes can be attributed to these six genes; however, this is an important advance in the molecular characterization of 18q deletions.
Collapse
|
18
|
Giampetruzzi A, Carson JH, Barbarese E. FMRP and myelin protein expression in oligodendrocytes. Mol Cell Neurosci 2013; 56:333-41. [PMID: 23891804 DOI: 10.1016/j.mcn.2013.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/19/2013] [Accepted: 07/21/2013] [Indexed: 11/15/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by lack of expression of fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. In many cases FXS is associated with abnormalities in CNS myelination. Although FMRP is expressed in oligodendrocyte progenitor cells and immature oligodendrocytes (OLGs) previous studies have not detected it in mature, myelin-producing OLGs. FMRP represses translation of myelin basic protein (MBP) RNA in vitro and is believed to prevent premature MBP expression in immature OLGs. Lack of FMRP in FXS could lead to premature myelination and/or myelin abnormalities. Here we show that FMRP is expressed in mature, MBP-positive OLGs of rodents and in MBP-positive human OLGs. We confirm that FMRP is a translational repressor of MBP mRNA in vitro, but at concentrations likely too high to be physiologically relevant in vivo. We find MBP expression in cultured Fmr1 KO OLGs to be similar to wild type, and expression of MBP and other myelin proteins in brain homogenates of the Fmr1 KO mouse to be similar to wild type before, during, and after the period of active myelination. These results suggest that while FMRP is expressed in mature OLGs, myelin abnormalities caused by lack of FMRP expression in FXS are not recapitulated in rodents.
Collapse
Affiliation(s)
- Anthony Giampetruzzi
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA.
| | | | | |
Collapse
|
19
|
Sriram P, Klistorner A, Arvind H, Graham SL. Reproducibility of multifocal VEP latency using different stimulus presentations. Doc Ophthalmol 2012; 125:43-9. [PMID: 22669286 DOI: 10.1007/s10633-012-9334-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 05/21/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Prema Sriram
- Australian School of Advanced Medicine, Macquarie University, Hub 1, Building F10A, 2 Technology Place, Sydney, NSW 2109, Australia.
| | | | | | | |
Collapse
|
20
|
Gupta AA, Ding D, Lee RK, Levy RB, Bhattacharya SK. Spontaneous ocular and neurologic deficits in transgenic mouse models of multiple sclerosis and noninvasive investigative modalities: a review. Invest Ophthalmol Vis Sci 2012; 53:712-24. [PMID: 22331505 DOI: 10.1167/iovs.11-8351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory, neurodegenerative, demyelinating disease of the central nervous system, predominantly involving myelinated neurons of the brain, spinal cord, and optic nerve. Optic neuritis is frequently associated with MS and often precedes other neurologic deficits associated with MS. A large number of patients experience visual defects and have abnormalities concomitant with neurologic abnormalities. Transgenic mice manifesting spontaneous neurologic and ocular disease are unique models that have revolutionized the study of MS. Spontaneous experimental autoimmune encephalomyelitis (sEAE) presents with spontaneous onset of demyelination, without the need of an injectable immunogen. This review highlights the various models of sEAE, their disease characteristics, and applicability for future research. The study of optic neuropathy and neurologic manifestations of demyelination in sEAE will expand our understanding of the pathophysiological mechanisms underlying MS. Early and precise diagnosis of MS with different noninvasive methods has opened new avenues in managing symptoms, reducing morbidity, and limiting disease burden. This review discusses the spectrum of available noninvasive techniques, such as electrophysiological and behavioral assessment, optical coherence tomography, scanning laser polarimetry, confocal scanning laser ophthalmoscopy, pupillometry, magnetic resonance imaging, positron emission tomography, gait, and cardiovascular monitoring, and their clinical relevance.
Collapse
Affiliation(s)
- Archana A Gupta
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
21
|
Utrera J, Romero R, Verdaguer E, Junyent F, Auladell C. Recovery of axonal myelination sheath and axonal caliber in the mouse corpus callosum following damage induced by N,N-diethyldithiocarbamate. Eur J Neurosci 2011; 34:2007-14. [DOI: 10.1111/j.1460-9568.2011.07928.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Klistorner A, Chaganti J, Garrick R, Moffat K, Yiannikas C. Magnetisation transfer ratio in optic neuritis is associated with axonal loss, but not with demyelination. Neuroimage 2011; 56:21-6. [PMID: 21338694 DOI: 10.1016/j.neuroimage.2011.02.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 02/08/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022] Open
|
23
|
Cambiaghi M, Teneud L, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, Leocani L. Flash visual evoked potentials in mice can be modulated by transcranial direct current stimulation. Neuroscience 2011; 185:161-5. [PMID: 21515340 DOI: 10.1016/j.neuroscience.2011.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/27/2022]
Abstract
Transcranial direct current stimulation (tDCS) in humans has been shown to affect the size of visual evoked potentials (VEPs) in a polarity-dependent way. VEPs have been widely employed in mice to study the visual system in physiological and pathological conditions and are extensively used as animal models of neurological and visual disorders. The present study was performed to evaluate whether mice VEPs could be modulated by tDCS in the same manner as in humans. We describe here the effects of 10 min tDCS (anodal, cathodal or no stimulation) on flash-VEPs in C57BL/6 mice under sevoflurane anesthesia. VEP amplitudes of the first major peak (P1) were analyzed before, at 0, 5 and 10 min after tDCS. Compared with no stimulation condition, anodal tDCS increased P1 amplitude slightly more than 25%, while cathodal stimulation had opposite effects, with a decrease of P1 amplitude by about 30%. After-effects tended to reverse toward basal levels within 10 min after tDCS. These results, suggesting polarity-dependent modulation similar to what described in humans of tDCS effects on VEPs, encourage the use of mice models to study tDCS mechanisms of action and explore therapeutic applications on neurological models of disease.
Collapse
Affiliation(s)
- M Cambiaghi
- San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Institute of Experimental Neurology (INSPE), Experimental Neurophysiology Unit, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Yu M, Narayanan SP, Wang F, Morse E, Macklin WB, Peachey NS. Visual abnormalities associated with enhanced optic nerve myelination. Brain Res 2010; 1374:36-42. [PMID: 21172315 DOI: 10.1016/j.brainres.2010.12.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 11/25/2022]
Abstract
Expression of the constitutively active serine/threonine kinase Akt in oligodendrocytes results in enhanced myelination in the CNS. Here, we have examined the effects of this Akt overexpression on optic nerve structure and on optic nerve function, assessed using the visual evoked potential (VEP). Transgenic mice have been generated with the Plp promoter driving expression of a modified form of Akt, in which aspartic acids are substituted for Thr308 and Ser473. These Plp-Akt-DD (Akt-DD) mice, and littermate controls, were studied at different ages. Optic nerves were examined anatomically at 2 and 6 months of age. At 2 months of age, optic nerves were substantially thicker in Akt-DD mice, reflecting an increase in myelination of optic nerve axons. By electron microscopy, myelin thickness was increased in Akt-DD optic nerve, with extended paranodal domains having excess paranodal loops, and the density of nodes of Ranvier was reduced, relative to control mice. We recorded VEPs in response to strobe flash ganzfeld stimuli presented after overnight dark- and light-adapted conditions at ages ranging from 1 to 10 months. It was possible to record a clear VEP from Akt-DD mice at all ages examined. At 1 month of age, VEP implicit times were somewhat shorter in Akt-DD transgenic mice than in control animals. Beyond 6months of age, VEP latencies were consistently delayed in Akt-DD transgenic mice. These abnormalities did not reflect an alteration in retinal function as there were no significant differences between ERGs obtained from control or Akt-DD transgenic mice. In young mice, the somewhat faster responses may reflect improved transmission due to increased myelination of optic nerve axons. In older mice, where the Akt-DD optic nerve is markedly thicker than control, it is remarkable that optic nerves continue to function.
Collapse
Affiliation(s)
- Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Klistorner A, Arvind H, Garrick R, Yiannikas C, Paine M, Graham SL. Remyelination of optic nerve lesions: spatial and temporal factors. Mult Scler 2010; 16:786-95. [DOI: 10.1177/1352458510371408] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Optic neuritis provides an in vivo model to study demyelination. The effects of myelin loss and recovery can be measured by the latency of the multifocal visual evoked potentials. We investigated whether the extent of initial inflammatory demyelination in optic neuritis correlates with the remyelinating capacity of the optic nerve. Forty subjects with acute unilateral optic neuritis and good visual recovery underwent multifocal visual evoked potentials testing at 1, 3, 6 and 12 months. Average latency changes were analyzed. Extensive latency delay at baseline significantly improved over time with rate of recovery slowed down after 6 months. Magnitude of latency recovery was independent of initial latency delay. Latency recovery ranged from 7 to 17 ms across the whole patient cohort (average = 11.3 (3.1) ms) despite the fact that in a number of cases the baseline latency delay was more than 35—40 ms. Optic nerve lesions tend to remyelinate at a particular rate irrespective of the size of the initial demyelinated zone with smaller lesions accomplishing recovery more completely. The extent of the initial inflammatory demyelination is probably the single most important factor determining completeness of remyelination. The time period favorable to remyelination is likely to be within the first 6 months after the attack.
Collapse
Affiliation(s)
- Alexandr Klistorner
- Department of Ophthalmology, Save Sight Institute, University of Sydney, Sydney, Australia,
| | - Hemamalini Arvind
- Department of Ophthalmology, Save Sight Institute, University of Sydney, Sydney, Australia
| | | | | | - Mark Paine
- Royal Eye and Ear Hospital, Melbourne, Australia
| | - Stuart L Graham
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| |
Collapse
|
26
|
Dyakin VV, Chen Y, Branch CA, Yuan A, Rao M, Kumar A, Peterhoff CM, Nixon RA. The contributions of myelin and axonal caliber to transverse relaxation time in shiverer and neurofilament-deficient mouse models. Neuroimage 2010; 51:1098-105. [PMID: 20226865 DOI: 10.1016/j.neuroimage.2010.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 01/17/2023] Open
Abstract
White matter disorders can involve injury to myelin or axons but the respective contribution of each to clinical course is difficult to evaluate non-invasively. Here, to develop a paradigm for further investigations of axonal pathology by MRI, we compared two genetic mouse models exhibiting relatively selective axonal or myelin deficits using quantitative MRI relaxography of the transverse relaxation times (T2) in vivo and ultrastructural morphometry. In HM-DKO mice, which lack genes encoding the heavy (NF-H) and medium (NF-M) subunits of neurofilaments, neurofilament content of large myelinated axons of the central nervous system (CNS) is markedly reduced in the absence of changes in myelin thickness and volume. In shiverer mutant mice, which lack functional myelin basic protein, CNS myelin sheath formation is markedly reduced but neurofilament content is normal. We observed increases in T2 in nearly all white matter in shiverer mice compared to their wild type, while more subtle increases in T2 were observed in HM-DKO in the corpus callosum. White matter T2 was generally greater in shiverer mice than HM-DKO mice. Ultrastructural morphometry of the corpus callosum, which exhibited the greatest T2 differences, confirmed that total cross-sectional area occupied by axons was similar in the two mouse models and that the major ultrastructural differences, determined by morphometry, were an absence of myelin and larger unmyelinated axons in shiverer mice and absence of neurofilaments in HM-DKO mice. Our findings indicate that T2 is strongly influenced by myelination state and axonal volume, while neurofilament structure within the intra-axonal compartment has a lesser effect upon single compartment T2 estimates.
Collapse
Affiliation(s)
- Victor V Dyakin
- Center for Dementia Research, Nathan Kline Institute Orangeburg, New York 10962, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Scott-McKean JJ, Chang B, Hurd RE, Nusinowitz S, Schmidt C, Davisson MT, Costa ACS. The mouse model of Down syndrome Ts65Dn presents visual deficits as assessed by pattern visual evoked potentials. Invest Ophthalmol Vis Sci 2010; 51:3300-8. [PMID: 20130276 DOI: 10.1167/iovs.09-4465] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE The Ts65Dn mouse is the most complete widely available animal model of Down syndrome (DS). Quantitative information was generated about visual function in the Ts65Dn mouse by investigating their visual capabilities by means of electroretinography (ERG) and patterned visual evoked potentials (pVEPs). METHODS pVEPs were recorded directly from specific regions of the binocular visual cortex of anesthetized mice in response to horizontal sinusoidal gratings of different spatial frequency, contrast, and luminance generated by a specialized video card and presented on a 21-in. computer display suitably linearized by gamma correction. RESULTS ERG assessments indicated no significant deficit in retinal physiology in Ts65Dn mice compared with euploid control mice. The Ts65Dn mice were found to exhibit deficits in luminance threshold, spatial resolution, and contrast threshold, compared with the euploid control mice. The behavioral counterparts of these parameters are luminance sensitivity, visual acuity, and the inverse of contrast sensitivity, respectively. CONCLUSIONS DS includes various phenotypes associated with the visual system, including deficits in visual acuity, accommodation, and contrast sensitivity. The present study provides electrophysiological evidence of visual deficits in Ts65Dn mice that are similar to those reported in persons with DS. These findings strengthen the role of the Ts65Dn mouse as a model for DS. Also, given the historical assumption of integrity of the visual system in most behavioral assessments of Ts65Dn mice, such as the hidden-platform component of the Morris water maze, the visual deficits described herein may represent a significant confounding factor in the interpretation of results from such experiments.
Collapse
|
28
|
A Novel Caspr Mutation Causes the Shambling Mouse Phenotype by Disrupting Axoglial Interactions of Myelinated Nerves. J Neuropathol Exp Neurol 2009; 68:1207-18. [DOI: 10.1097/nen.0b013e3181be2e96] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Wuerfel J, Tysiak E, Prozorovski T, Smyth M, Mueller S, Schnorr J, Taupitz M, Zipp F. Mouse model mimics multiple sclerosis in the clinico-radiological paradox. Eur J Neurosci 2007; 26:190-8. [PMID: 17596194 DOI: 10.1111/j.1460-9568.2007.05644.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The value of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, in deriving novel diagnostic and therapeutic input has been subject to recent debate. This study is the first to report a disseminated distribution of plaques including cranial nerves, prior to or at early stages of disease in murine adoptive transfer EAE, irrespective of the development of clinical symptoms. We induced EAE by adoptive proteolipid protein-specific T-cell transfer in 26 female SJL/J mice, and applied high-field-strength magnetic resonance imaging (MRI) scans longitudinally, assessing blood-brain barrier (BBB) disruption by gadopentate dimeglumine enhancement. We visualized inflammatory nerve injury by gadofluorine M accumulation, and phagocytic cells in inflamed tissue by very small anionic iron oxide particles (VSOP-C184). MRI was correlated with immunohistological sections. In this study, we discovered very early BBB breakdown of white and grey brain matter in 25 mice; one mouse developed exclusively spinal cord inflammation. Widely disseminated contrast-enhancing lesions preceded the onset of disease in 10 animals. Such lesions were present despite the absence of any clinical disease formation in four mice, and coincided with the first detectable symptoms in others. Cranial nerves, predominantly the optic and trigeminal nerves, showed signal intensity changes in nuclei and fascicles of 14 mice. At all sites of MRI lesions we detected cellular infiltrates on corresponding histological sections. The discrepancy between the disease burden visualized by MRI and the extent of disability indeed mimics the human clinico-radiological paradox. MRI should therefore be implemented into evaluational in vivo routines of future therapeutic EAE studies.
Collapse
Affiliation(s)
- Jens Wuerfel
- Cecilie-Vogt-Clinic for Molecular Neurology, Charité - University Medicine Berlin, and Max-Delbrueck-Center for Molecular Medicine, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Martin M, Reyes SD, Hiltner TD, Givogri MI, Tyszka JM, Fisher R, Campagnoni AT, Fraser SE, Jacobs RE, Readhead C. T(2)-weighted microMRI and evoked potential of the visual system measurements during the development of hypomyelinated transgenic mice. Neurochem Res 2006; 32:159-65. [PMID: 16927171 DOI: 10.1007/s11064-006-9121-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
Our objective was to follow the course of a dysmyelinating disease followed by partial recovery in transgenic mice using non-invasive high-resolution (117 x 117 x 70 microm) magnetic resonance (microMRI) and evoked potential of the visual system (VEP) techniques. We used JOE (for J37 golli overexpressing) transgenic mice engineered to overexpress golli J37, a product of the Golli-mbp gene complex, specifically in oligodendrocytes. Individual JOE transgenics and their unaffected siblings were followed from 21 until 75-days-old using non-invasive in vivo VEPs and 3D T2-weighted microMRI on an 11.7 T scanner, performing what we believe is the first longitudinal study of its kind. The microMRI data indicated clear, global hypomyelination during the period of peak myelination (21-42 days), which was partially corrected at later ages (>60 days) in the JOE mice compared to controls. These microMRI data correlated well with [Campagnoni AT (1995) "Molecular biology of myelination". In: Ransom B, Kettenmann H (eds) Neuroglia--a Treatise. Oxford University Press, London, pp 555-570] myelin staining, [Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene-expression. Mol Neurobiol 2:41-89] a transient intention tremor during the peak period of myelination, which abated at later ages, and [Lees MB, Brostoff SW (1984) Proteins in myelin. In: Morell (ed) Myelin. Plenum Press, New York and London, pp 197-224] VEPs which all indicated a significant delay of CNS myelin development and persistent hypomyelination in JOE mice. Overall these non-invasive techniques are capable of spatially resolving the increase in myelination in the normally developing and developmentally delayed mouse brain.
Collapse
Affiliation(s)
- Melanie Martin
- Department of Physics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada, R3B 2E9.
| | | | | | | | | | | | | | | | | | | |
Collapse
|