1
|
Holota R, Dečmanová V, Alexovič Matiašová A, Košuth J, Slovinská L, Pačut L, Tomori Z, Daxnerová Z, Ševc J. Cleaved caspase-3 is present in the majority of glial cells in the intact rat spinal cord during postnatal life. Histochem Cell Biol 2024; 161:269-286. [PMID: 37938347 PMCID: PMC10912154 DOI: 10.1007/s00418-023-02249-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Cell death is an essential process that occurs during the development of the central nervous system. Despite the availability of a wide range of commercially produced antibodies against various apoptotic markers, data regarding apoptosis in intact spinal cord during postnatal development and adulthood are mostly missing. We investigated apoptosis in rat spinal cord at different stages of ontogenesis (postnatal days 8, 29, and 90). For this purpose, we applied immunofluorescent detection of two widely used apoptotic markers, cleaved caspase-3 (cC3) and cleaved poly(ADP-ribose) polymerase (cPARP). Surprisingly, we found significant discrepancy between the number of cC3+ cells and PARP+ cells, with a ratio between 500:1 and 5000:1 in rat spinal cord at all postnatal time points. The majority of cC3+ cells were glial cells and did not exhibit an apoptotic phenotype. In contrast with in vivo results, in vitro analysis of primary cell cultures derived from neonatal rat spinal cord and treated with the apoptotic inductor staurosporine revealed a similar onset of occurrence of both cC3 and cPARP in cells subjected to apoptosis. Gene expression analysis of spinal cord revealed elevated expression of the Birc4 (XIAP), Birc2, and Birc5 (Survivin) genes, which are known potent inhibitors of apoptosis. Our data indicate that cC3 is not an exclusive marker of apoptosis, especially in glial cells, owing its possible presence in inhibited forms and/or its participation in other non-apoptotic roles. Therefore, cPARP appears to be a more appropriate marker to detect apoptosis.
Collapse
Affiliation(s)
- R Holota
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - V Dečmanová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - A Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic.
| | - J Košuth
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - L Slovinská
- Associated Tissue Bank, Faculty of Medicine, P. J. Šafárik University in Košice and L. Pasteur University Hospital, Tr. SNP 1, 04011, Košice, Slovak Republic
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 04001, Košice, Slovak Republic
| | - L Pačut
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - Z Tomori
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Košice, Slovak Republic
| | - Z Daxnerová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - J Ševc
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| |
Collapse
|
2
|
Jiang Y, Cai NN, Zhao XX, Zhu WQ, Zhang J, Yang R, Tang B, Li ZY, Zhang XM. Decreased abundance of GDNF mRNA transcript in the immature Sertoli cells of cattle in response to protein kinase inhibitor staurosporine. Anim Reprod Sci 2020; 214:106303. [PMID: 32087919 DOI: 10.1016/j.anireprosci.2020.106303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 01/15/2023]
Abstract
Sertoli cells (SC) have important functions in spermatogenesis by regulating development of spermatogenic cells. Glial cell line-derived neurotrophic factor (GDNF) are produced by SC. Although the effects of GDNF on spermatogenesis have been well studied, the understanding of how GDNF is synthesized is still limited, especially in food animal producing species. Because protein kinase (PK) has varied functions in multiple cellular processes and the PK pathway modulates SC functions, the objective of the present study was to determine whether PK modulates the abundance of GDNF protein in SC of cattle. To conduct this study, immature SC were enriched from cryopreserved testicular tissues of 1-day-old bulls. These cells had a marked proliferation capacity. Results from immunostaining analysis indicated that there was a sustained abundance of SC mRNA marker protein transcripts and marker proteins: androgen bind protein (ABP), GATA4 and VIMENTIN. There was subsequent characterization of SC treated with the PK inhibitor staurosporine for 0, 1 or 2 h. Results from real-time-PCR and Western blot analyses indicated the treatment (2 h) resulted in a decrease in Gdnf mRNA transcript and GDNF protein. Additionally, the staurosporine treatment resulted in an increase in the abundance of anti-apoptosis Bcl2 and decrease in pro-apoptosis Bax mRNA transcripts. Furthermore, results of the TUNEL assay indicated there was a decrease in apoptosis in the staurosprine-treated SC. Collectively, results indicate the PK signaling is involved in regulation of GDNF protein abundance in the immature SC and the survival of these cells in cattle.
Collapse
Affiliation(s)
- Yu Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ning-Ning Cai
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin-Xin Zhao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Qian Zhu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi-Yi Li
- First Hospital, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Investigation of Neuregulin-1 and Glial Cell-Derived Neurotrophic Factor in Rodent Astrocytes and Microglia. J Mol Neurosci 2019; 67:484-493. [PMID: 30680593 DOI: 10.1007/s12031-019-1258-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
Growth factors play a crucial role during de- and remyelination of the central nervous system (CNS) due to their neurotrophic functions. We have previously shown that the growth factors neuregulin-1 (Nrg-1) and glial cell-derived neurotrophic factor (Gdnf) are upregulated during the first 2 weeks after induction of toxic demyelination in the CNS. Nevertheless, the factors responsible for Nrg-1/Gdnf upregulation and their effects on glia cells are unknown. We investigated the effect on Nrg-1 and Gdnf expressions after stimulation of primary mouse microglia or astrocytes with various pro- and anti-inflammatory factors. Additionally, primary cells were incubated with NRG-1 and/or GDNF followed by determining the gene expression level of their receptors, chemokines, and other growth factors. We demonstrate that inflammatory stimuli have a distinct impact on the expression of Gdnf, Nrg-1, and their receptors in astrocytes and microglia. In microglia, LPS or simultaneous treatment with IFNγ plus TNFα led to downregulation of Nrg-1, whereas LPS treatment slightly increased Nrg-1 expression in astrocytes. Furthermore, Gdnf was slightly upregulated after TFG-β treatment in microglia, while Gdnf was significantly upregulated after LPS treatment in astrocytes. In contrast, treatment with GDNF or/and NRG-1 did not alter any measured gene expression in microglia or astrocytes. Taken together, our in vitro studies show that Nrg-1, Gdnf, and their receptors are differently regulated in astrocytes and microglia upon inflammatory stimuli. The lack of response of astrocytes and microglia to NRG-1 and GDNF suggests that both factors exert their effects directly on neurons.
Collapse
|
4
|
History of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and Its Use for Spinal Cord Injury Repair. Brain Sci 2018; 8:brainsci8060109. [PMID: 29899247 PMCID: PMC6025482 DOI: 10.3390/brainsci8060109] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
Following an initial mechanical insult, traumatic spinal cord injury (SCI) induces a secondary wave of injury, resulting in a toxic lesion environment inhibitory to axonal regeneration. This review focuses on the glial cell line-derived neurotrophic factor (GDNF) and its application, in combination with other factors and cell transplantations, for repairing the injured spinal cord. As studies of recent decades strongly suggest that combinational treatment approaches hold the greatest therapeutic potential for the central nervous system (CNS) trauma, future directions of combinational therapies will also be discussed.
Collapse
|
5
|
Sotoyama H, Iwakura Y, Oda K, Sasaoka T, Takei N, Kakita A, Enomoto H, Nawa H. Striatal hypodopamine phenotypes found in transgenic mice that overexpress glial cell line-derived neurotrophic factor. Neurosci Lett 2017. [PMID: 28645787 DOI: 10.1016/j.neulet.2017.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) positively regulates the development and maintenance of in vitro dopaminergic neurons. However, the in vivo influences of GDNF signals on the brain dopamine system are controversial and not fully defined. To address this question, we analyzed dopaminergic phenotypes of the transgenic mice that overexpress GDNF under the control of the glial Gfap promoter. Compared with wild-type, the GDNF transgenic mice contained higher levels of GDNF protein and phosphorylated RET receptors in the brain. However, there were reductions in the levels of tyrosine hydroxylase (TH), dopamine, and its metabolite homovanillic acid in the striatum of transgenic mice. The TH reduction appeared to occur during postnatal development. Immunohistochemistry revealed that striatal TH density was reduced in transgenic mice with no apparent signs of neurodegeneration. In agreement with these neurochemical traits, basal levels of extracellular dopamine and high K+-induced dopamine efflux were decreased in the striatum of transgenic mice. We also explored the influences of GDNF overexpression on lomomotor behavior. GDNF transgenic mice exhibited lower stereotypy and rearing in a novel environment compared with wild-type mice. These results suggest that chronic overexpression of GDNF in brain astrocytes exerts an opposing influence on nigrostriatal dopamine metabolism and neurotransmission.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Japan
| | - Kanako Oda
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Japan
| | - Hideki Enomoto
- Laboratory for Neural Differentiation and Regeneration, Graduate School of Medicine, Kobe University, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Japan.
| |
Collapse
|
6
|
Ortega-de San Luis C, Pascual A. Simultaneous Detection of Both GDNF and GFRα1 Expression Patterns in the Mouse Central Nervous System. Front Neuroanat 2016; 10:73. [PMID: 27445711 PMCID: PMC4919337 DOI: 10.3389/fnana.2016.00073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is proposed as a therapeutic tool in Parkinson's disease, addiction-related disorders, and neurodegenerative conditions affecting motor neurons (MNs). Despite the high amount of work about GDNF therapeutic application, the neuronal circuits requiring GDNF trophic support in the brain and spinal cord (SC) are poorly characterized. Here, we defined GDNF and GDNF family receptor-α 1 (GFRα1) expression pattern in the brain and SC of newborn and adult mice. We performed systematic and simultaneous detection of EGFP and LacZ expressing alleles in reporter mice and asked whether modifications of this signaling pathway lead to a significant central nervous system (CNS) alteration. GFRα1 was predominantly expressed by neurons but also by an unexpected population of non-neuronal cells. GFRα1 expression pattern was wider in neonatal than in adult CNS and GDNF expression was restricted in comparison with GFRα1 at both developmental time points. The use of confocal microscopy to imaging X-gal deposits and EGFP allowed us to identify regions containing cells that expressed both proteins and to discriminate between auto and non-autotrophic signaling. We also suggested long-range GDNF-GFRα1 circuits taking advantage of the ability of the EGFP genetically encoded reporter to label long distance projecting axons. The complete elimination of either the ligand or the receptor during development did not produce major abnormalities, suggesting a preponderant role for GDNF signaling during adulthood. In the SC, our results pointed to local modulatory interneurons as the main target of GDNF produced by Clarke's column (CC) cells. Our work increases the understanding on how GDNF signals in the CNS and establish a crucial framework for posterior studies addressing either the biological role of GDNF or the optimization of trophic factor-based therapies.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| |
Collapse
|
7
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
8
|
Zhou Y, Duan S, Zhou Y, Yu S, Wu J, Wu X, Zhao J, Zhao Y. Sulfiredoxin-1 attenuates oxidative stress via Nrf2/ARE pathway and 2-Cys Prdxs after oxygen-glucose deprivation in astrocytes. J Mol Neurosci 2015; 55:941-50. [PMID: 25407820 DOI: 10.1007/s12031-014-0449-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/15/2014] [Indexed: 12/30/2022]
Abstract
Sulfiredoxin-1 (Srxn1), an endogenous antioxidant protein, is involved in keeping the balance of the cell's oxidation/reduction and can resist oxidative stress. However, the exact antioxidant effects of Srxn1 remain fully unclear. The study aims to examine the effects of Srxn1 on oxidative stress and explore the potential mechanisms in astrocytes with 6 h/oxygen-glucose deprivation (OGD), 24 h/respiration. In the study, silencing Srxn1 was performed before exposure to 6 h/OGD, 24 h/respiration in primary astrocytes. Decreased cell viability and increased cellular damage measured by CellTiter 96H AQueous Non-Radioactive Cell Proliferation Assay (MTS) and lactate dehydrogenase (LDH) were observed in Srxn1 silencing astrocytes. In addition, Srxn1 silencing resulted in a decrease in both intracellular superoxide dismutase (SOD) and glutathione (GSH). NF-E2-related factor 2 (Nrf2), a transcription factor known to influence susceptibility to oxidative stress, upregulated Srxn1 expression during oxidative stress caused by OGD in the astrocytes. Electromobility shift assay (EMSA) demonstrated a decreased binding of Nrf2 to oligomers containing Srxn1 ter-specific antioxidant response element (ARE)-binding site in Nrf2 silencing astrocytes. We also found that a reduction of peroxiredoxin (Prdx)-SO3 was closely dependent on Srxn1. In addition, 2-Cys Prdxs protein levels were increased in the astrocytes exposed to OGD, as evaluated by immunoblot analysis. All taken together, the study suggested that silencing Srxn1 would result into increasing sensitivity to OGD-induced oxidative stress injury in astrocytes. Furthermore, Nrf2/ARE pathway was involved into Srxn1, playing its antioxidant protection against oxidative stress, all of which would provide a novel therapeutic theory for treating acute ischemic brain injury.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Pathology, Chongqing Medical University, No. 1 Yixueyuan Street, Yu Zhong District, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Liang HJ, Chai RC, Li X, Kong JG, Jiang JH, Ma J, Vatcher G, Yu ACH. Astrocytic exportin-7 responds to ischemia through mediating LKB1 translocation from the nucleus to the cytoplasm. J Neurosci Res 2014; 93:253-67. [PMID: 25250856 DOI: 10.1002/jnr.23486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/16/2014] [Accepted: 08/18/2014] [Indexed: 11/06/2022]
Abstract
The superfamily of importin-β-related proteins is the largest class of nuclear transport receptors and can be generally divided into importins and exportins according to their transport directions. Eleven importins and seven exportins have been identified, and the expression patterns of both classes are important for their functions in nucleocytoplasmic transport activities. This study demonstrates that all of the importins (importin-β; transportin-1, -2, and -3; and importin-4, -5, -7, -8, -9, -11, and -13) and all the exportins (exportin-1, -2, -4, -5, -6, -7, and -t) are differentially expressed in the cerebral cortex, cerebellum, hippocampus, and brainstem and in primary cultures of cerebral cortical astrocytes and neurons. For astrocytes, we observed that different importins and exportins displayed different expression changes during 0-6 hr of ischemia treatment, especially an increase of both the mRNA and the protein of exportin-7. Immunostaining showed that exportin-7 accumulated inside the nucleus and around the nuclear envelope. In addition, we noticed an increased cytoplasmic distribution of one of the cargo proteins of exportin-7, LKB1, an important element in maintaining energy homeostasis. This increased cytoplasmic distribution was accompanied by an increased expression of exportin-7 under ischemia in astrocytes. We demonstrate that exportin-7 responds to ischemia in astrocytes and that this response involves translocation of LKB1, a protein that plays important roles during metabolic stress, from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Hai Jie Liang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory for Neuroscience of the Ministry of Education and Key Laboratory for Neuroscience of the National Health and Family Planning Commission, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Elmann A, Telerman A, Mordechay S, Erlank H, Rindner M, Ofir R, Kashman Y. 3,5,4'-Trihydroxy-6,7,3'-trimethoxyflavone protects astrocytes against oxidative stress via interference with cell signaling and by reducing the levels of intracellular reactive oxygen species. Neurochem Int 2014; 78:67-75. [PMID: 25217804 DOI: 10.1016/j.neuint.2014.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 12/11/2022]
Abstract
Oxidative stress is tightly involved in various neurodegenerative diseases such as Parkinson's and Alzheimer's diseases, and conditions such as ischemia. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS) and provide them with trophic support. Therefore, any damage to astrocytes will affect neuronal survival. In a previous study we have demonstrated that an extract prepared from the plant Achillea fragrantissima (Af) prevented the oxidative stress-induced death of astrocytes and attenuated the intracellular accumulation of ROS in astrocytes under oxidative stress. In the present study, using activity guided fractionation, we have purified from this plant the active compound, determined to be a flavonoid named 3,5,4'-trihydroxy-6,7,3'-trimethoxyflavone (TTF). The effects of TTF in any biological system have not been studied previously, and this is the first study to characterize the anti-oxidant and protective effects of this compound in the context of neurodegenerative diseases. Using primary cultures of astrocytes we have found that TTF prevented the hydrogen peroxide (H2O2)-induced death of astrocytes, and attenuated the intracellular accumulation of ROS following treatment of these cells with H2O2 or the peroxyl radicals generating molecule 2,2'-Azobis(amidinopropane) (ABAP). TTF also interfered with cell signaling events and inhibited the phosphorylation of the signaling proteins stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), extracellular signal regulated kinase (ERK 1/2) and mitogen activated protein kinase kinase (MEK1) and the phosphorylation of the transcription factor cyclic AMP response element-binding protein (CREB). The mechanism of the protective effect of TTF against H2O2-cytotoxicity could not be attributed to a direct H2O2 scavenging but rather to the scavenging of free radicals as was shown in cell free systems. Thus, TTF might be a therapeutic candidate for the prevention/treatment of neurodegenerative diseases where oxidative stress is part of the pathophysiology.
Collapse
Affiliation(s)
- Anat Elmann
- Department of Food Quality and Safety, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel.
| | - Alona Telerman
- Department of Food Quality and Safety, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Sharon Mordechay
- Department of Food Quality and Safety, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Hilla Erlank
- Department of Food Quality and Safety, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Miriam Rindner
- Department of Food Quality and Safety, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Rivka Ofir
- The Dead Sea & Arava Science Center and Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheba, 84105, Israel
| | - Yoel Kashman
- School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
11
|
Protective and antioxidant effects of a chalconoid from Pulicaria incisa on brain astrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:694398. [PMID: 24069503 PMCID: PMC3771428 DOI: 10.1155/2013/694398] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/23/2022]
Abstract
Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS) and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF). Thus, any damage to astrocytes will affect neuronal survival. In the present study, by activity-guided fractionation, we have purified from the desert plant Pulicaria incisa two protective compounds and determined their structures by spectroscopic methods. The compounds were found to be new chalcones—pulichalconoid B and pulichalconoid C. This is the first study to characterize the antioxidant and protective effects of these compounds in any biological system. Using primary cultures of astrocytes, we have found that pulichalconoid B attenuated the accumulation of ROS following treatment of these cells with hydrogen peroxide by 89% and prevented 89% of the H2O2-induced death of astrocytes. Pulichalconoid B exhibited an antioxidant effect both in vitro and in the cellular antioxidant assay in astrocytes and microglial cells. Pulichalconoid B also caused a fourfold increase in GDNF transcription in these cells. Thus, this chalcone deserves further studies in order to evaluate if beneficial therapeutic effect exists.
Collapse
|
12
|
Liu J, Wang X, Liu Y, Yang N, Xu J, Ren X. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction. Neural Regen Res 2013; 8:2190-7. [PMID: 25206528 PMCID: PMC4146126 DOI: 10.3969/j.issn.1673-5374.2013.23.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/25/2013] [Indexed: 02/05/2023] Open
Abstract
From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12(th) day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neonatology and NICU of Bayi Children's Hospital, General Hospital of Beijing Military Command, Beijing 100700, China
- Corresponding author: Jing Liu, Chief physician, Professor, Department of Neonatology and NICU of Bayi Children's Hospital, General Hospital of Beijing Military Command, Beijing 100700, China, (N20120721001)
| | - Xiaofeng Wang
- Department of Neonatology and NICU of Bayi Children's Hospital, General Hospital of Beijing Military Command, Beijing 100700, China
| | - Ying Liu
- Department of Neonatology and NICU of Bayi Children's Hospital, General Hospital of Beijing Military Command, Beijing 100700, China
| | - Na Yang
- Department of Neonatology and NICU of Bayi Children's Hospital, General Hospital of Beijing Military Command, Beijing 100700, China
| | - Jing Xu
- Department of Neonatology and NICU of Bayi Children's Hospital, General Hospital of Beijing Military Command, Beijing 100700, China
| | - Xiaotun Ren
- Department of Neonatology and NICU of Bayi Children's Hospital, General Hospital of Beijing Military Command, Beijing 100700, China
| |
Collapse
|
13
|
Antioxidant and astroprotective effects of a Pulicaria incisa infusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:157598. [PMID: 23320126 PMCID: PMC3540991 DOI: 10.1155/2012/157598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 11/21/2012] [Indexed: 12/30/2022]
Abstract
Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS) and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF). Thus, any damage to astrocytes will affect neuronal survival. In the present study, an infusion prepared from the desert plant Pulicaria incisa (Pi) was tested for its protective and antioxidant effects on astrocytes subjected to oxidative stress. The Pi infusion attenuated the intracellular accumulation of ROS following treatment with hydrogen peroxide and zinc and prevented the H(2)O(2)-induced death of astrocytes. The Pi infusion also exhibited an antioxidant effect in vitro and induced GDNF transcription in astrocytes. It is proposed that this Pi infusion be further evaluated for use as a functional beverage for the prevention and/or treatment of brain injuries and neurodegenerative diseases in which oxidative stress plays a role.
Collapse
|
14
|
Abstract
The glial cell line-derived neurotrophic factor (GDNF) was first identified as a survival factor for midbrain dopaminergic neurons, but additional studies provided evidences for a role as a trophic factor for other neurons of the central and peripheral nervous systems. GDNF regulates cellular activity through interaction with glycosyl-phosphatidylinositol-anchored cell surface receptors, GDNF family receptor-α1, which might signal through the transmembrane Ret tyrosine receptors or the neural cell adhesion molecule, to promote cell survival, neurite outgrowth, and synaptogenesis. The neuroprotective effect of exogenous GDNF has been shown in different experimental models of focal and global brain ischemia, by local administration of the trophic factor, using viral vectors carrying the GDNF gene and by transplantation of GDNF-expressing cells. These different strategies and the mechanisms contributing to neuroprotection by GDNF are discussed in this review. Importantly, neuroprotection by GDNF was observed even when administered after the ischemic injury.
Collapse
Affiliation(s)
- Emília P Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | | | | | | |
Collapse
|
15
|
Chen B, Tuuli MG, Longtine MS, Shin JS, Lawrence R, Inder T, Michael Nelson D. Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts. Am J Physiol Endocrinol Metab 2012; 302:E1142-52. [PMID: 22374759 PMCID: PMC3361977 DOI: 10.1152/ajpendo.00003.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human placenta is key to pregnancy outcome, and the elevated oxidative stress present in many complicated pregnancies contributes to placental dysfunction and suboptimal pregnancy outcomes. We tested the hypothesis that pomegranate juice, which is rich in polyphenolic antioxidants, limits placental trophoblast injury in vivo and in vitro. Pregnant women with singleton pregnancies were randomized at 35∼38 wk gestation to 8 oz/day of pomegranate juice or apple juice (placebo) until the time of delivery. Placental tissues from 12 patients (4 in the pomegranate group and 8 in the control group) were collected for analysis of oxidative stress. The preliminary in vivo results were extended to oxidative stress and cell death assays in vitro. Placental explants and cultured primary human trophoblasts were exposed to pomegranate juice or glucose (control) under defined oxygen tensions and chemical stimuli. We found decreased oxidative stress in term human placentas from women who labored after prenatal ingestion of pomegranate juice compared with apple juice as control. Moreover, pomegranate juice reduced in vitro oxidative stress, apoptosis, and global cell death in term villous explants and primary trophoblast cultures exposed to hypoxia, the hypoxia mimetic cobalt chloride, and the kinase inhibitor staurosporine. Punicalagin, but not ellagic acid, both prominent polyphenols in pomegranate juice, reduced oxidative stress and stimulus-induced apoptosis in cultured syncytiotrophoblasts. We conclude that pomegranate juice reduces placental oxidative stress in vivo and in vitro while limiting stimulus-induced death of human trophoblasts in culture. The polyphenol punicalagin mimics this protective effect. We speculate that antenatal intake of pomegranate may limit placental injury and thereby may confer protection to the exposed fetus.
Collapse
Affiliation(s)
- Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nakajima E, Hammond KB, Rosales JL, Shearer TR, Azuma M. Calpain, not caspase, is the causative protease for hypoxic damage in cultured monkey retinal cells. Invest Ophthalmol Vis Sci 2011; 52:7059-67. [PMID: 21757584 DOI: 10.1167/iovs.11-7497] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Cell death occurring in human retina during AMD, high IOP, and diabetic retinopathy could be caused by activation of calpain or caspase proteolytic enzymes. The purpose of the present study was to determine whether calpains and/or caspase-3 were involved in cell death during retinal hypoxia in a monkey model. METHODS Dissociated monkey retinal cells were cultured for two weeks and subjected to 24-hour hypoxia/24-hour reoxygenation. TUNEL staining and immunostaining for Müller and photoreceptor markers were used to detect which retinal cell types were damaged. RESULTS Culturing dissociated monkey retina cells for two weeks resulted in proliferation of Müller cells and maintenance of some rod and cone photoreceptor cells, as identified by vimentin, recoverin, and rhodopsin immunocytochemical staining. Hypoxia/reoxygenation increased the number of cells staining positive for TUNEL. Immunoblotting showed that the calpain-specific 145 kDa α-spectrin breakdown product (SBDP) increased in hypoxic cells, but no caspase-specific 120 kDa α-spectrin breakdown product was detected. TUNEL staining and proteolysis were significantly reduced in the retinal cells treated with 10 and 100 μM calpain inhibitor SNJ-1945. Caspase inhibitor, z-VAD, did not inhibit cell damage from hypoxia/reoxygenation. Intact pro-caspase-3 was in fact cleaved by activated calpain during hypoxia/reoxygenation to pre 29 kDa caspase-3 and 24 kDa inactive fragments. No 17 and 12 kDa fragments, which form the active caspase-3 hetero-dimer, were detected. Calpain-induced cleavage of caspase was inhibited by SNJ-1945. CONCLUSIONS Calpain, not caspase-3, was involved in hypoxic damage in cultured monkey retinal cells.
Collapse
Affiliation(s)
- Emi Nakajima
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
17
|
Iwama S, Sugimura Y, Suzuki H, Suzuki H, Murase T, Ozaki N, Nagasaki H, Arima H, Murata Y, Sawada M, Oiso Y. Time-dependent changes in proinflammatory and neurotrophic responses of microglia and astrocytes in a rat model of osmotic demyelination syndrome. Glia 2010; 59:452-62. [PMID: 21264951 DOI: 10.1002/glia.21114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 10/29/2010] [Indexed: 01/27/2023]
Abstract
Osmotic demyelination syndrome (ODS) is a serious demyelinating disease in the central nervous system usually caused by rapid correction of hyponatremia. In an animal model of ODS, we previously reported microglial accumulation expressing proinflammatory cytokines. Microglia and astrocytes secreting proinflammatory cytokines and neurotrophic factors are reported to be involved in the pathogenesis of demyelinative diseases. Therefore, to clarify the role of microglial and astrocytic function in ODS, we examined the time-dependent changes in distribution, morphology, proliferation, and mRNA/protein expression of proinflammatory cytokines, neurotrophic factors, and matrix metalloproteinase (MMP) in microglia and astrocytes 2 days (early phase) and 5 days (late phase) after the rapid correction of hyponatremia in ODS rats. The number of microglia time dependently increased at demyelinative lesion sites, proliferated, and expressed tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and MMP2, 9, and 12 at the early phase. Microglia also expressed leukemia inhibitory factor (a neurotrophic factor) and phagocytosed myelin debris at the late phase. The number of astrocytes time dependently increased around demyelinative lesions, extended processes to lesions, proliferated, and expressed nerve growth factor and glial cell line-derived neurotrophic factor at the late phase. Moreover, treatment with infliximab, a monoclonal antibody against TNF-α, significantly attenuated neurological impairments. Our results suggest that the role of microglia in ODS is time dependently shifted from detrimental to protective and that astrocytes play a protective role at the late phase. Modulation of excessive proinflammatory responses in microglia during the early phase after rapid correction may represent a therapeutic target for ODS.
Collapse
Affiliation(s)
- Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bai Y, Meng Z, Cui M, Zhang X, Chen F, Xiao J, Shen L, Zhang Y. An Ang1-Tie2-PI3K axis in neural progenitor cells initiates survival responses against oxygen and glucose deprivation. Neuroscience 2009; 160:371-81. [PMID: 19409199 DOI: 10.1016/j.neuroscience.2009.01.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 12/25/2022]
Abstract
Neural progenitor cells (NPCs) have the potential to survive brain ischemia and participate in neurogenesis after stroke. However, it is not clear how survival responses are initiated in NPCs. Using embryonic mouse NPCs and the in vitro oxygen and glucose deprivation (OGD) model, we found that angiopoietin-1 (Ang1) could prevent NPCs from OGD-induced apoptosis, as evidenced by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and annexin V labeling. Ang1 significantly elevated tunica intima endothelial kinase 2 (Tie2) autophosphorylation level, suggesting the existence of functional Tie2 receptors on NPCs. NPCs under OGD conditions exhibited reduction of Akt phosphorylation, decrease of the Bcl-2/Bax ratio, activation of caspase-3, cleavage of PARP, and downregulation of beta-catenin and nestin. Ang1 reversed the above changes concomitantly with significant rising of survival rates of NPCs under OGD, but all these effects of Ang1 could be blocked by either soluble extracellular domain of Tie2 Fc fusion protein (sTie2Fc) or the phosphoinositide 3-kinase (PI3K) inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one (LY294002). Our findings suggest the existence of an Ang1-Tie2-PI3K signaling axis that is essential in initiation of survival responses in NPCs against cerebral ischemia and hypoxia.
Collapse
Affiliation(s)
- Y Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, 38 XueYuan Road, Beijing, 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dong Y, Liu HD, Zhao R, Yang CZ, Chen XQ, Wang XH, Lau LT, Chen J, Yu ACH. Ischemia activates JNK/c-Jun/AP-1 pathway to up-regulate 14-3-3γ in astrocyte. J Neurochem 2009; 109 Suppl 1:182-8. [DOI: 10.1111/j.1471-4159.2009.05974.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Xu ZY, Liu HD, Lau LT, Yingge Z, Zhao R, Tong GL, Chan PH, Yu ACH. Responses of astrocyte to simultaneous glutamate and arachidonic acid treatment. Neurochem Int 2009; 55:143-50. [DOI: 10.1016/j.neuint.2009.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/17/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
|
21
|
Chu LF, Wang WT, Ghanta VK, Lin CH, Chiang YY, Hsueh CM. Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-kB signaling pathway. Brain Res 2008; 1239:24-35. [PMID: 18804095 DOI: 10.1016/j.brainres.2008.08.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/08/2008] [Accepted: 08/24/2008] [Indexed: 02/03/2023]
Abstract
Conditioned medium (CM) collected from cultures of ischemic microglia, astrocytes, and neurons were protective to astrocytes under the in vitro ischemic condition (deprivation of oxygen, glucose and serum). Molecular and signaling pathway(s) responsible for the CMs protective activity were investigated. Results showed that CMs from the ischemic microglia (MCM), astrocytes (ACM) and neurons (NCM) contained glial cell line-derived neurotrophic factor (GDNF), which protects astrocytes against the in vitro ischemia. Expression of extra cellular signal-regulated kinase (ERK1/2) and nuclear factor-kappa B (NF-kB) by GDNF led to the inhibition of apoptosis of the ischemic astrocytes in a caspase 3-independent manner. However, CMs- and GDNF-mediated protection of the ischemic astrocytes was protein kinase B (Akt) independent. These results provided mechanistic data regarding how GDNF- and CMs-mediated protection of the ischemic astrocytes is taking place. These observations provide information for the use of GDNF and GDNF containing CMs in the control of cerebral ischemia.
Collapse
Affiliation(s)
- Lan-Feng Chu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | |
Collapse
|