1
|
Han J, Chear S, Talbot J, Swier V, Booth C, Reuben-Thomas C, Dalvi S, Weimer JM, Hewitt AW, Cook AL, Singh R. Genetic and Cellular Basis of Impaired Phagocytosis and Photoreceptor Degeneration in CLN3 Disease. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39535788 PMCID: PMC11563035 DOI: 10.1167/iovs.65.13.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose CLN3 Batten disease (also known as juvenile neuronal ceroid lipofuscinosis) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease induced pluripotent stem cell-RPE cells show defective phagocytosis of photoreceptor outer segment (POS). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3Δ7-8/Δ7-8 (CLN3) Yucatan miniswine was also used to study the impact of CLN3Δ7-8/Δ7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3Δ7-8/Δ7-8 and wild-type miniswine eyes were carried out at 6, 36, or 48 months of age. Results CLN3Δ7-8/Δ7-8 RPE (CLN3 RPE) displayed decreased POS binding and consequently decreased uptake of POS compared with isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3Δ7-8/Δ7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months of age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions CLN3Δ7-8/Δ7-8 mutation (which affects ≤85% of patients) affects both RPE and POS and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.
Collapse
Affiliation(s)
- Jimin Han
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Sueanne Chear
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Vicki Swier
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
| | - Clarissa Booth
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
| | - Cheyenne Reuben-Thomas
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Sonal Dalvi
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Jill M. Weimer
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
- Department of Pediatrics; Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| |
Collapse
|
2
|
Han J, Chear S, Talbot J, Swier V, Booth C, Reuben-Thomas C, Dalvi S, Weimer JM, Hewitt AW, Cook AL, Singh R. Genetic and cellular basis of impaired phagocytosis and photoreceptor degeneration in CLN3 disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.597388. [PMID: 38895469 PMCID: PMC11185776 DOI: 10.1101/2024.06.09.597388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Purpose CLN3 Batten disease (also known as Juvenile Neuronal Ceroid Lipofuscinosis; JNCL) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease iPSC-RPE cells show defective phagocytosis of photoreceptor outer segments (POSs). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3 Δ 7-8/ Δ 7-8 ( CLN3 ) Yucatan miniswine was also used to study the impact of CLN3 Δ 7-8/ Δ 7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3 Δ 7/8 and wild-type miniswine eyes were carried out at 6-, 36-, or 48-month age. Results CLN3 Δ 7-8/ Δ 7-8 RPE ( CLN3 RPE) displayed reduced POS binding and consequently decreased uptake of POS compared to isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3 Δ 7-8/ Δ 7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months-of-age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions CLN3 Δ 7-8/ Δ 7-8 mutation (that affects up to 85% patients) affects both RPE and POSs and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.
Collapse
|
3
|
Dannhausen K, Möhle C, Langmann T. Immunomodulation with minocycline rescues retinal degeneration in juvenile neuronal ceroid lipofuscinosis mice highly susceptible to light damage. Dis Model Mech 2018; 11:dmm.033597. [PMID: 30042155 PMCID: PMC6176999 DOI: 10.1242/dmm.033597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (jNCL) is a rare but fatal inherited lysosomal storage disorder mainly affecting children. The disease is caused by mutations in the CLN3 gene that lead to the accumulation of storage material in many tissues, prominent immune responses and neuronal degeneration. One of the first symptoms is vision loss followed by motor dysfunction and mental decline. The established Cln3Δex7/8 mouse model mimics many pathological features of the human disease except the retinal phenotype, which is very mild and occurs only very late in these mice. Here, we first carefully analyzed the retinal structure and microglia responses in these animals. While prominent autofluorescent spots were present in the fundus, only a moderate reduction of retinal thickness and no prominent microgliosis was seen in young CLN3-deficient mice. We next genetically introduced a light-sensitive RPE65 variant and established a light-damage paradigm that showed a high susceptibility of young Cln3Δex7/8 mice after exposure to 10,000 lux bright light for 30 min. Under these ‘low light’ conditions, CLN3-deficient mice showed a strong retinal degeneration, microglial activation, deposition of autofluorescent material and transcriptomic changes compared to wild-type animals. Finally, we treated the light-exposed Cln3Δex7/8 animals with the immunomodulatory compound minocycline, and thereby rescued the retinal phenotype and diminished microgliosis. Our findings indicate that exposure to specific light conditions accelerates CLN3-dependent retinal degeneration, and that immunomodulation by minocycline could be a possible treatment option to delay vision loss in jNCL patients. This article has an associated First Person interview with the first author of the paper. Summary: Here, we established a light-damage paradigm to model retinal degeneration in the juvenile neuronal ceroid lipofuscinosis mouse and showed the beneficial effects of minocycline on retinal pathology.
Collapse
Affiliation(s)
- Katharina Dannhausen
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931 Cologne, Germany
| | - Christoph Möhle
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931 Cologne, Germany .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
4
|
Parviainen L, Dihanich S, Anderson GW, Wong AM, Brooks HR, Abeti R, Rezaie P, Lalli G, Pope S, Heales SJ, Mitchison HM, Williams BP, Cooper JD. Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons. Acta Neuropathol Commun 2017; 5:74. [PMID: 29041969 PMCID: PMC5645909 DOI: 10.1186/s40478-017-0476-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 11/18/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs or Batten disease) are a group of inherited, fatal neurodegenerative disorders of childhood. In these disorders, glial (microglial and astrocyte) activation typically occurs early in disease progression and predicts where neuron loss subsequently occurs. We have found that in the most common juvenile form of NCL (CLN3 disease or JNCL) this glial response is less pronounced in both mouse models and human autopsy material, with the morphological transformation of both astrocytes and microglia severely attenuated or delayed. To investigate their properties, we isolated glia and neurons from Cln3-deficient mice and studied their basic biology in culture. Upon stimulation, both Cln3-deficient astrocytes and microglia also showed an attenuated ability to transform morphologically, and an altered protein secretion profile. These defects were more pronounced in astrocytes, including the reduced secretion of a range of neuroprotective factors, mitogens, chemokines and cytokines, in addition to impaired calcium signalling and glutamate clearance. Cln3-deficient neurons also displayed an abnormal organization of their neurites. Most importantly, using a co-culture system, Cln3-deficient astrocytes and microglia had a negative impact on the survival and morphology of both Cln3-deficient and wildtype neurons, but these effects were largely reversed by growing mutant neurons with healthy glia. These data provide evidence that CLN3 disease astrocytes are functionally compromised. Together with microglia, they may play an active role in neuron loss in this disorder and can be considered as potential targets for therapeutic interventions.
Collapse
|
5
|
Groh J, Martini R. Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous system: Understanding pathogenesis and chances for treatment. Glia 2017; 65:1407-1422. [PMID: 28568966 DOI: 10.1002/glia.23162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
Genetically caused neurological disorders of the central nervous system (CNS) are usually orphan diseases with poor or even fatal clinical outcome and few or no treatments that will improve longevity or at least quality of life. Neuroinflammation is common to many of these disorders, despite the fact that a plethora of distinct mutations and molecular changes underlie the disorders. In this article, data from corresponding animal models are analyzed to define the roles of innate and adaptive inflammation as modifiers and amplifiers of disease. We describe both common and distinct patterns of neuroinflammation in genetically mediated CNS disorders and discuss the contrasting mechanisms that lead to adverse versus neuroprotective effects. Moreover, we identify the juxtaparanode as a neuroanatomical compartment commonly associated with inflammatory cells and ongoing axonopathic changes, in models of diverse diseases. The identification of key immunological effector pathways that amplify neuropathic features should lead to realistic possibilities for translatable therapeutic interventions using existing immunomodulators. Moreover, evidence emerges that neuroinflammation is not only able to modify primary neural damage-related symptoms but also may lead to unexpected clinical outcomes such as neuropsychiatric syndromes.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| |
Collapse
|
6
|
Hersrud SL, Kovács AD, Pearce DA. Antigen presenting cell abnormalities in the Cln3(-/-) mouse model of juvenile neuronal ceroid lipofuscinosis. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1324-36. [PMID: 27101989 PMCID: PMC4899816 DOI: 10.1016/j.bbadis.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Mutations of the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive lysosomal storage disorder that causes progressive neurodegeneration in children and adolescents. There is evidence of immune system involvement in pathology that has been only minimally investigated. We characterized bone marrow stem cell-derived antigen presenting cells (APCs), peritoneal macrophages, and leukocytes from spleen and blood, harvested from the Cln3(-/-) mouse model of JNCL. We detected dramatically elevated CD11c surface levels and increased total CD11c protein in Cln3(-/-) cell samples compared to wild type. This phenotype was specific to APCs and also to a loss of CLN3, as surface levels did not differ from wild type in other leukocyte subtypes nor in cells from two other NCL mouse models. Subcellularly, CD11c was localized to lipid rafts, indicating that perturbation of surface levels is attributable to derangement of raft dynamics, which has previously been shown in Cln3 mutant cells. Interrogation of APC function revealed that Cln3(-/-) cells have increased adhesiveness to CD11c ligands as well as an abnormal secretory pattern that closely mimics what has been previously reported for Cln3 mutant microglia. Our results show that CLN3 deficiency alters APCs, which can be a major contributor to the autoimmune response in JNCL.
Collapse
Affiliation(s)
- Samantha L Hersrud
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States
| | - Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States.
| |
Collapse
|
7
|
Hong M, Song KD, Lee HK, Yi S, Lee YS, Heo TH, Jun HS, Kim SJ. Fibrates inhibit the apoptosis of Batten disease lymphoblast cells via autophagy recovery and regulation of mitochondrial membrane potential. In Vitro Cell Dev Biol Anim 2015; 52:349-355. [PMID: 26659390 DOI: 10.1007/s11626-015-9979-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/08/2015] [Indexed: 11/29/2022]
Abstract
Batten disease (BD; also known as juvenile neuronal ceroid lipofuscinosis) is a genetic disorder inherited as an autosomal recessive trait and is characterized by blindness, seizures, cognitive decline, and early death resulting from the inherited mutation of the CLN3 gene. Mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, disrupted autophagy, and enhanced apoptosis have been suggested to play a role in BD pathogenesis. Fibrates, a class of lipid-lowering drugs that induce peroxisome proliferator-activated receptor-α (PPAR-α) activation, are the most commonly used PPAR agonists. Assuming that fibrates have a neuroprotective effect, we studied the effects of fibrates, fenofibrate, bezafibrate, and gemfibrozil on apoptosis, depolarization of mitochondrial membrane, and defective autophagy in BD lymphoblast cells. The viability of fibrate-treated BD lymphoblast cells increased to levels of normal lymphoblast cells. In addition, treatment with fibrates inhibited depolarization of mitochondrial membrane potential in BD lymphoblast cells. Defective autophagy in BD lymphoblast cells was normalized when treated with fibrates as indicated by increased acridine orange staining. The recovery of autophagy in BD lymphoblast cells is most likely attributed to the upregulation of autophagy proteins, lysosomal-associated membrane protein 1 (LAMP1), and LC3 I/II, after treatment with fibrates. This study therefore suggests that fibrates may have a therapeutic potential against BD.
Collapse
Affiliation(s)
- Minho Hong
- Department of Biotechnology, Hoseo University, 165, Baebang, Asan, Chungnam, 31499, Republic of Korea
| | - Ki Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - SunShin Yi
- Department of Biomedical Laboratory Science, College of Biomedical Sciences, Soonchunhyang University, Asan, 336-745, Republic of Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, Soonchunhyang University, Asan, 336-745, Republic of Korea
| | - Tae-Hwe Heo
- Lab of Immunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 420-743, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 339-700, Republic of Korea.
| | - Sung-Jo Kim
- Department of Biotechnology, Hoseo University, 165, Baebang, Asan, Chungnam, 31499, Republic of Korea.
| |
Collapse
|
8
|
Surgucheva I, He S, Rich MC, Sharma R, Ninkina NN, Stahel PF, Surguchov A. Role of synucleins in traumatic brain injury — an experimental in vitro and in vivo study in mice. Mol Cell Neurosci 2015; 63:114-23. [PMID: 25447944 DOI: 10.1016/j.mcn.2014.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 11/25/2022] Open
Abstract
Synucleins are small prone to aggregate proteins associated with several neurodegenerative diseases (NDDs), however their role in traumatic brain injury (TBI) is an emerging area of investigation. Using in vitro scratch injury model and in vivo mouse weight-drop model we have found that the injury causes alterations in the expression and localization of synucleins near the damaged area. Before injury, α-synuclein is diffused in the cytoplasm of neurons and γ-synuclein is both in the cytoplasm and nucleus of oligodendrocytes. After the scratch injury of the mixed neuronal and glial culture, α-synuclein forms punctate structures in the cytoplasm of neurons and γ-synuclein is almost completely localized to the nucleus of the oligodendrocytes. Furthermore, the amount of post-translationally modified Met38-oxidized γ-synuclein is increased 3.8 fold 24 h after the scratch. α- and γ-synuclein containing cells increased in the initially cell free scratch zone up to 24 h after the scratch.Intracellular expression and localization of synucleins are also changed in a mouse model of focal closed head injury, using a standardized weight drop device. γ-Synuclein goes from diffuse to punctate staining in a piriform cortex near the amygdala, which may reflect the first steps in the formation of deposits/inclusions. Surprisingly, oxidized γ-synuclein co-localizes with cofilin-actin rods in the thalamus, which are absent in all other regions of the brain. These structures reach their peak amounts 7 days after injury. The changes in γ-synuclein localization are accompanied by injury-induced alterations in the morphology of both astrocytes and neurons.
Collapse
|
9
|
Kang S, Heo TH, Kim SJ. Altered levels of α-synuclein and sphingolipids in Batten disease lymphoblast cells. Gene 2014; 539:181-5. [DOI: 10.1016/j.gene.2014.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/28/2014] [Accepted: 02/14/2014] [Indexed: 11/27/2022]
|
10
|
Xiong J, Kielian T. Microglia in juvenile neuronal ceroid lipofuscinosis are primed toward a pro-inflammatory phenotype. J Neurochem 2013; 127:245-58. [PMID: 23919525 DOI: 10.1111/jnc.12385] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a lysosomal storage disease caused by an autosomal recessive mutation in CLN3. Regions of microglial activation precede and predict areas of neuronal loss in JNCL; however, the functional role of activated microglia remains to be defined. The inflammasome is a key molecular pathway for activating pro-IL-1β in microglia, and IL-1β is elevated in the brains of JNCL patients and can induce neuronal cell death. Here, we utilized primary microglia isolated from CLN3(Δex7/8) mutant and wild-type (WT) mice to examine the impact of CLN3 mutation on microglial activation and inflammasome function. Treatment with neuronal lysates and ceramide, a lipid intermediate elevated in the JNCL brain, led to inflammasome activation and IL-1β release in CLN3(Δex7/8) microglia but not WT cells, as well as increased expression of additional pro-inflammatory mediators. Similar effects were observed following either TNF-α or IL-1β treatment, suggesting that CLN3(Δex7/8) microglia exist in primed state and hyper-respond to several inflammatory stimuli compared to WT cells. CLN3(Δex7/8) microglia displayed constitutive caspase-1 activity that when blocked led to increased glutamate release that coincided with hemichannel opening. Conditioned medium from activated CLN3(Δex7/8) or WT microglia induced significant cell death in CLN3(Δex7/8) but not WT neurons, demonstrating that intrinsically diseased CLN3(Δex7/8) neurons are less equipped to withstand cytotoxic insults generated by activated microglia. Collectively, aberrant microglial activation may contribute to the pathological chain of events leading to neurodegeneration during later stages of JNCL.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
11
|
Kang S, Seo JH, Heo TH, Kim SJ. Batten disease is linked to altered expression of mitochondria-related metabolic molecules. Neurochem Int 2013; 62:931-5. [PMID: 23524239 DOI: 10.1016/j.neuint.2013.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/01/2013] [Accepted: 03/12/2013] [Indexed: 12/29/2022]
Abstract
Batten disease (BD)--also known as juvenile neuronal ceroid lipofuscinoses-is an inherited neurodegenerative disorder caused by CLN3 gene mutations. Although CLN3-related oxidative and mitochondrial stresses have been studied in BD, the pathologic mechanism of the disease is not clearly understood. To address the molecular factors linked to high levels of oxidative stress in BD, we examined the expression of mitochondria-related metabolic molecules, including pyruvate dehydrogenase (PDH), ATP citrate lyase (ACL), and phosphoenolpyruvate carboxykinase (PEPCK), as well as the apoptosis-related ganglioside, acetyl-GD3. We observed an increased expression of PDH and a decreased expression of ACL, PEPCK, and acetyl-GD3 in BD lymphoblast cells compared to normal cells, possibly resulting in the high ROS levels, mitochondrial membrane depolarization, and apoptosis typically found in BD.
Collapse
Affiliation(s)
- Sunyang Kang
- Department of Biotechnology, Hoseo University, 165 Baebang, Asan, Chungnam, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Kang S, Kim JB, Heo TH, Kim SJ. Cell cycle arrest in Batten disease lymphoblast cells. Gene 2013; 519:245-50. [PMID: 23458879 DOI: 10.1016/j.gene.2013.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Batten disease is an inherited neurodegenerative disorder caused by a CLN3 gene mutation. Batten disease is characterized by blindness, seizures, cognitive decline, and early death. Although apoptotic cell death is one of the pathological hallmarks of Batten disease, little is known about the regulatory mechanism of apoptosis in this disease. Since the CLN3 gene is suggested to be involved in the cell cycle in a yeast model, we investigated the cell cycle profile and its regulatory factors in lymphoblast cells from Batten disease patients. We found G1/G0 cell cycle arrest in Batten disease cells, with overexpression of p21, sphingosine, glucosylceramide, and sulfatide as possible cell cycle regulators.
Collapse
Affiliation(s)
- Sunyang Kang
- Department of Biotechnology, Hoseo University, 165 Baebang, Asan, Chungnam, Republic of Korea
| | | | | | | |
Collapse
|
13
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1842-65. [PMID: 23338040 DOI: 10.1016/j.bbadis.2013.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/26/2022]
Abstract
Neuronal ceroid lipofuscinoses are a group of fatal progressive neurodegenerative diseases predominantly affecting children. Identification of mutations that cause neuronal ceroid lipofuscinosis, and subsequent functional and pathological studies of the affected genes, underpins efforts to investigate disease mechanisms and identify and test potential therapeutic strategies. These functional studies and pre-clinical trials necessitate the use of model organisms in addition to cell and tissue culture models as they enable the study of protein function within a complex organ such as the brain and the testing of therapies on a whole organism. To this end, a large number of disease models and genetic tools have been identified or created in a variety of model organisms. In this review, we will discuss the ethical issues associated with experiments using model organisms, the factors underlying the choice of model organism, the disease models and genetic tools available, and the contributions of those disease models and tools to neuronal ceroid lipofuscinosis research. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
15
|
Kovács AD, Saje A, Wong A, Ramji S, Cooper JD, Pearce DA. Age-dependent therapeutic effect of memantine in a mouse model of juvenile Batten disease. Neuropharmacology 2012; 63:769-75. [PMID: 22683643 DOI: 10.1016/j.neuropharm.2012.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 05/11/2012] [Accepted: 05/25/2012] [Indexed: 01/08/2023]
Abstract
Currently there is no treatment for juvenile Batten disease, a fatal childhood neurodegenerative disorder caused by mutations in the CLN3 gene. The Cln3-knockout (Cln3(Δex1-6)) mouse model recapitulates several features of the human disorder. Cln3(Δex1-6) mice, similarly to juvenile Batten disease patients, have a motor coordination deficit detectable as early as postnatal day 14. Previous studies demonstrated that acute attenuation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptor activity by the non-competitive AMPA antagonist, EGIS-8332, in both 1- and 6-7-month-old Cln3(Δex1-6) mice results in improvement in motor coordination. Here we show that acute inhibition of N-methyl-D-aspartate (NMDA)-type glutamate receptors by memantine (1 and 5 mg/kg i.p.) had no effect on the impaired motor coordination of one-month-old Cln3(Δex1-6) mice. At a later stage of the disease, in 6-7-month-old Cln3(Δex1-6) mice, memantine induced a delayed but extended (8 days) improvement of motor skills similarly to that observed previously with EGIS-8332 treatment. An age-dependent therapeutic effect of memantine implies that the pathomechanism in juvenile Batten disease changes during disease progression. In contrast to acute treatment, repeated administration of memantine or EGIS-8332 (1 mg/kg, once a week for 4 weeks) to 6-month-old Cln3(Δex1-6) mice had no beneficial effect on motor coordination. Moreover, repeated treatments did not impact microglial activation or the survival of vulnerable neuron populations. Memantine did not affect astrocytosis in the cortex. EGIS-8332, however, decreased astrocytic activation in the somatosensory barrelfield cortex. Acute inhibition of NMDA receptors can induce a prolonged therapeutic effect, identifying NMDA receptors as a new therapeutic target for juvenile Batten disease.
Collapse
Affiliation(s)
- Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA
| | | | | | | | | | | |
Collapse
|
16
|
Arfi A, Richard M, Gandolphe C, Bonnefont-Rousselot D, Thérond P, Scherman D. Neuroinflammatory and oxidative stress phenomena in MPS IIIA mouse model: the positive effect of long-term aspirin treatment. Mol Genet Metab 2011; 103:18-25. [PMID: 21353610 DOI: 10.1016/j.ymgme.2011.01.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/29/2022]
Abstract
Sanfilippo disease (MPS IIIA) is an autosomal recessive lysosomal storage disorder resulting from sulfamidase deficiency, which is characterized by severe neurological impairment. Various tissues of MPS IIIA mice accumulate undegraded glycosaminoglycans and mimic the human neurodegenerative disorder, and are an excellent tool to both delineate disease pathogenesis and test potential therapies. The relationship between abnormal glycosaminoglycan storage and neurodysfunction remains ill defined. Pathways such as inflammation or oxidative stress have been highlighted in many neurodegenerative disorders, including lysosomal storage diseases, as major components of the neuropathology. By using quantitative polymerase chain reaction, we have compared the expression of selected genes in normal and MPS IIIA mouse cerebral tissues, focusing on inflammation, apoptosis and oxidative stress-related genes. We have identified several genes strongly over-expressed in the central nervous system of a MPS IIIA mouse, reflecting a neurological deterioration state. We have used these genes as markers to follow-up a long-term aspirin treatment. Aspirin treatment led to the normalization of inflammation- and oxidative stress-related mRNA levels in treated MPS IIIA mouse brains. A biochemical correction of an oxidative stress phenomenon both in the brain and peripheral organs of treated MPS IIIA mice was also obtained. These results suggest that anti-inflammatory intervention may be of potential benefit in MPS IIIA disease.
Collapse
|
17
|
Tuxworth RI, Chen H, Vivancos V, Carvajal N, Huang X, Tear G. The Batten disease gene CLN3 is required for the response to oxidative stress. Hum Mol Genet 2011; 20:2037-47. [PMID: 21372148 PMCID: PMC3080613 DOI: 10.1093/hmg/ddr088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mutations in the CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early onset neurodegenerative disorder. JNCL is the most common of the NCLs, a group of disorders with infant or childhood onset that are caused by single gene mutations. The NCLs, although relatively rare, share many pathological and clinical similarities with the more common late-onset neurodegenerative disorders, while their simple genetic basis makes them an excellent paradigm. The early onset and rapid disease progression in the NCLs suggests that one or more key cellular processes are severely compromised. To identify the functional pathways compromised in JNCL, we have performed a gain-of-function modifier screen in Drosophila. We find that CLN3 interacts genetically with the core stress signalling pathways and components of stress granules, suggesting a function in stress responses. In support of this, we find that Drosophila lacking CLN3 function are hypersensitive to oxidative stress yet they respond normally to other physiological stresses. Overexpression of CLN3 is sufficient to confer increased resistance to oxidative stress. We find that CLN3 mutant flies perceive conditions of increased oxidative stress correctly but are unable to detoxify reactive oxygen species, suggesting that their ability to respond is compromised. Together, our data suggest that the lack of CLN3 function leads to a failure to manage the response to oxidative stress and this may be the key deficit in JNCL that leads to neuronal degeneration.
Collapse
Affiliation(s)
- Richard I Tuxworth
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
18
|
Kuronen M, Talvitie M, Lehesjoki AE, Myllykangas L. Genetic modifiers of degeneration in the cathepsin D deficient Drosophila model for neuronal ceroid lipofuscinosis. Neurobiol Dis 2009; 36:488-93. [PMID: 19761846 DOI: 10.1016/j.nbd.2009.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/14/2009] [Accepted: 09/07/2009] [Indexed: 11/20/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are pediatric, neurodegenerative, lysosomal storage disorders. Mutations in cathepsin D result in the most severe, congenital form of NCLs. We have previously generated a cathepsin D deficient Drosophila model, which exhibits the key features of NCLs: progressive intracellular accumulation of autofluorescent storage material and modest neurodegeneration in the brain areas related to visual functions. Here we extend the phenotypic characterization of cathepsin D deficient Drosophila and report that modest degenerative changes are also present in their retinae. Furthermore, by utilizing this phenotype, we examined the possible effect of 17 candidate modifiers, selected based on the results from other cathepsin D deficiency models. We found enhancers of this phenotype that support the involvement of endocytosis-, lipid metabolism- and oxidation-related factors in the cathepsin D deficiency induced degeneration. Our results warrant further investigation of these mechanisms in the pathogenesis of cathepsin D deficiency.
Collapse
Affiliation(s)
- Mervi Kuronen
- Folkhälsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
19
|
Metcalf DJ, Calvi AA, Seaman MNJ, Mitchison HM, Cutler DF. Loss of the Batten Disease Gene CLN3 Prevents Exit from the TGN of the Mannose 6-Phosphate Receptor. Traffic 2008; 9:1905-14. [DOI: 10.1111/j.1600-0854.2008.00807.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Weimer JM, Benedict JW, Elshatory YM, Short DW, Ramirez-Montealegre D, Ryan DA, Alexander NA, Federoff HJ, Cooper JD, Pearce DA. Alterations in striatal dopamine catabolism precede loss of substantia nigra neurons in a mouse model of juvenile neuronal ceroid lipofuscinosis. Brain Res 2007; 1162:98-112. [PMID: 17617387 PMCID: PMC4790084 DOI: 10.1016/j.brainres.2007.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 12/21/2022]
Abstract
Batten disease, or juvenile neuronal ceroid lipofuscinosis (JNCL), results from mutations in the CLN3 gene. This disorder presents clinically around the age of 5 years with visual deficits progressing to include seizures, cognitive impairment, motor deterioration, hallucinations, and premature death by the third to fourth decade of life. The motor deficits include coordination and gait abnormalities, myoclonic jerks, inability to initiate movements, and spasticity. Previous work from our laboratory has identified an early reduction in catechol-O-methyltransferase (COMT), an enzyme responsible for the efficient degradation of dopamine. Alterations in the kinetics of dopamine metabolism could cause the accumulation of undegraded or unsequestered dopamine leading to the formation of toxic dopamine intermediates. We report an imbalance in the catabolism of dopamine in 3 month Cln3(-/-) mice persisting through 9 months of age that may be causal to oxidative damage within the striatum at 9 months of age. Combined with the previously reported inflammatory changes and loss of post-synaptic D1alpha receptors, this could facilitate cell loss in striatal projection regions and underlie a general locomotion deficit that becomes apparent at 12 months of age in Cln3(-/-) mice. This study provides evidence for early changes in the kinetics of COMT in the Cln3(-/-) mouse striatum, affecting the turnover of dopamine, likely leading to neuron loss and motor deficits. These data provide novel insights into the basis of motor deficits in JNCL and how alterations in dopamine catabolism may result in oxidative damage and localized neuronal loss in this disorder.
Collapse
Affiliation(s)
- Jill M. Weimer
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jared W. Benedict
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Yasser M. Elshatory
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Douglas W. Short
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Denia Ramirez-Montealegre
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Deborah A. Ryan
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Noreen A. Alexander
- Pediatric Storage Disorders Laboratory, King's College London, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, King's College London, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK
| | - Howard J. Federoff
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, King's College London, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, King's College London, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK
| | - David A. Pearce
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- To whom reprint requests should be addressed at: David A. Pearce, University of Rochester School of Medicine and Dentistry, Center for Aging and Developmental Biology, Box 645, Rochester, New York 14642, (585) 273-1514, (585) 276-1972 Fax,
| |
Collapse
|