1
|
Kumari M, Bisht KS, Ahuja K, Motiani RK, Maiti TK. Glycation Produces Topologically Different α-Synuclein Oligomeric Strains and Modulates Microglia Response via the NLRP3-Inflammasome Pathway. ACS Chem Neurosci 2024. [PMID: 39320935 DOI: 10.1021/acschemneuro.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
α-Synuclein, a key player in Parkinson's disease and other synucleinopathies, possesses an inherently disordered structure that allows for versatile structural changes during aggregation. Microglia, the brain immune cells, respond differently to various α-synuclein strains, influencing their activation and release of harmful molecules, leading to neuronal death. Post-translational modifications, such as glycation in α-synuclein, add a layer of complexity to microglial activation. This study aimed to explore the impact of glycation on α-synuclein aggregation and microglial responses, which have not been studied before. Biophysical analyses revealed that glycated α-synuclein oligomers had distinct morphologies with a more negative and hydrophobic surface, preventing fibril formation and interfering with membrane interactions. Notably, there was increased cytosolic Ca2+ dysregulation, redox stress, and mitochondrial instability compared to cells exposed to unmodified α-synuclein oligomers. Additionally, glycated α-synuclein oligomers exhibited impaired binding to Toll-like receptor 2, compromising downstream signaling. Surprisingly, these oligomers promoted TLR4 endocytosis and degradation. In our experiments with oligomers, glycated α-synuclein oligomers preferred NLRP3 inflammasome-mediated neuroinflammation, contributing differently from unmodified α-synuclein oligomers. In summary, this study unveils the mechanism underlying the effect of glycation on α-synuclein oligomers and highlights the conformation-specific microglial responses toward extracellular α-synuclein.
Collapse
Affiliation(s)
- Manisha Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Krishna Singh Bisht
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
2
|
Banerjee S. Methylglyoxal-induced modification of myoglobin: An insight into glycation mediated protein aggregation. VITAMINS AND HORMONES 2024; 125:31-46. [PMID: 38997168 DOI: 10.1016/bs.vh.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with the proteins to form advanced glycation end products (AGEs) following a Maillard-like reaction. In a time-dependent reaction study of MG with the heme protein myoglobin (Mb), MG was found to induce significant structural alterations of the heme protein, such as heme loss, changes in tryptophan fluorescence, and decrease of α-helicity with increased β-sheet content. These changes were found to occur gradually with increasing period of incubation. Incubation of Mb with MG induced the formation of several AGE adducts, including, carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87, carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139. MG induced amyloid-like aggregation of Mb was detected at a longer period of incubation. MG-derived AGEs, therefore, appear to have an important role as the precursors of protein aggregation, which, in turn, may be associated with pathophysiological complications.
Collapse
|
3
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
König A, Outeiro TF. Diabetes and Parkinson's Disease: Understanding Shared Molecular Mechanisms. JOURNAL OF PARKINSON'S DISEASE 2024; 14:917-924. [PMID: 38995799 PMCID: PMC11307096 DOI: 10.3233/jpd-230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 07/14/2024]
Abstract
Aging is a major risk factor for Parkinson's disease (PD). Genetic mutations account for a small percentage of cases and the majority appears to be sporadic, with yet unclear causes. However, various environmental factors have been linked to an increased risk of developing PD and, therefore, understanding the complex interplay between genetic and environmental factors is crucial for developing effective disease-modifying therapies. Several studies identified a connection between type 2 diabetes (T2DM) and PD. T2DM is characterized by insulin resistance and failure of β-cells to compensate, leading to hyperglycemia and serious comorbidities. Both PD and T2DM share misregulated processes, including mitochondrial dysfunction, oxidative stress, chronic inflammation, altered proteostasis, protein aggregation, and misregulation of glucose metabolism. Chronic or recurring hyperglycemia is a T2DM hallmark and can lead to increased methylglyoxal (MGO) production, which is responsible for protein glycation. Glycation of alpha-synuclein (aSyn), a central player in PD pathogenesis, accelerates the deleterious aSyn effects. Interestingly, MGO blood plasma levels and aSyn glycation are significantly elevated in T2DM patients, suggesting a molecular mechanism underlying the T2DM - PD link. Compared to high constant glucose levels, glycemic variability (fluctuations in blood glucose levels), can be more detrimental for diabetic patients, causing oxidative stress, inflammation, and endothelial damage. Accordingly, it is imperative for future research to prioritize the exploration of glucose variability's influence on PD development and progression. This involves moving beyond the binary classification of patients as diabetic or non-diabetic, aiming to pave the way for the development of enhanced therapeutic interventions.
Collapse
Affiliation(s)
- Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
6
|
Alaei L, Ashengroph M, Moosavi-Movahedi AA. Sulfonamides stimulate ROS formation upon glycation of human carbonic anhydrase II. Int J Biol Macromol 2024; 255:128294. [PMID: 37992931 DOI: 10.1016/j.ijbiomac.2023.128294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Advanced glycation end products are the most important species of glycation pathway, and cause disorders such as oxidative stress and diabetes. Sulfonamide compounds, which are generally known as widespread inhibitors, are potential agents used in different drug products, which can readily enter biological matrices. In the present work, the structure and activity of human carbonic anhydrase II studied in the presence of glucose as well as four sulfonamide agents from different views. These included enzyme kinetics, free lysine content, fluorescence spectroscopy, circular dichroism, and ROS measurement. Our results indicated that upon glycation, the structure of HCA II collapses and 8 to 13 lysine residues will be more available based on ligand incubation. Secondary and tertiary structural changes were also observed in the presence and absence of sulfonamide agents using fluorescence and circular dichroism methods, respectively. These spectroscopic data also showed a remarkable increase in hydrophobicity and decrease in α-helix contents during glycation, especially after 35 days of incubation. ROS assay was studied in the presence of glucose and sulfonamide compounds, that demonstrated the role of sulfonamide compounds in ROS formation in the presence of glucose in a synergistic manner. Overall, our data indicated that sulfonamides act as a stimulant factor upon prolonged interaction with HCA II and may intensify the complications of some disorders, such as diabetes and other conformational diseases.
Collapse
Affiliation(s)
- Loghman Alaei
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran.
| | | |
Collapse
|
7
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
8
|
Chegão A, Vicente Miranda H. Unveiling new secrets in Parkinson's disease: The glycatome. Behav Brain Res 2023; 442:114309. [PMID: 36706808 DOI: 10.1016/j.bbr.2023.114309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
We are witnessing a considerable increase in the incidence of Parkinson's disease (PD), which may be due to the general ageing of the population. While there is a plethora of therapeutic strategies for this disease, they still fail to arrest disease progression as they do not target and prevent the neurodegenerative process. The identification of disease-causing mutations allowed researchers to better dissect the underlying causes of this disease, highlighting, for example, the pathogenic role of alpha-synuclein. However, most PD cases are sporadic, which is making it hard to unveil the major causative mechanisms of this disease. In the recent years, epidemiological evidence suggest that type-2 diabetes mellitus (T2DM) individuals have higher risk and worst outcomes of PD, allowing to raise the hypothesis that some dysregulated processes in T2DM may contribute or even trigger the neurodegenerative process in PD. One major consequence of T2DM is the unprogrammed reaction between sugars, increased in T2DM, and proteins, a reaction named glycation. Pre-clinical reports show that alpha-synuclein is a target of glycation, and glycation potentiates its pathogenicity which contributes for the neurodegenerative process. Moreover, it triggers, anticipates, or aggravates several PD-like motor and non-motor complications. A given profile of proteins are differently glycated in diseased conditions, altering the brain proteome and leading to brain dysfunction and neurodegeneration. Herein we coin the term Glycatome as the profile of glycated proteins. In this review we report on the mechanisms underlying the association between T2DM and PD, with particular focus on the impact of protein glycation.
Collapse
Affiliation(s)
- Ana Chegão
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
9
|
Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem 2022; 478:1307-1324. [PMID: 36308670 DOI: 10.1007/s11010-022-04587-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2022]
Abstract
Insulin resistance is common in type 2 diabetes mellitus (T2DM), neurodegenerative diseases, cardiovascular diseases, kidney diseases, and polycystic ovary syndrome. Impairment in insulin signaling pathways, such as the PI3K/Akt/mTOR pathway, would lead to insulin resistance. It might induce the synthesis and deposition of advanced glycation end products (AGEs), reactive oxygen species, and reactive nitrogen species, resulting in stress, protein misfolding, protein accumulation, mitochondrial dysfunction, reticulum function, and metabolic syndrome dysregulation, inflammation, and apoptosis. It plays a huge role in various neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyloid lateral sclerosis. In this review, we intend to focus on the possible effect of insulin resistance in the progression of neurodegeneration via the impaired P13K/Akt/mTOR signaling pathway, AGEs, and receptors for AGEs.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
10
|
Pap D, Veres-Székely A, Szebeni B, Vannay Á. PARK7/DJ-1 as a Therapeutic Target in Gut-Brain Axis Diseases. Int J Mol Sci 2022; 23:6626. [PMID: 35743072 PMCID: PMC9223539 DOI: 10.3390/ijms23126626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
It is increasingly known that Parkinson's (PD) and Alzheimer's (AD) diseases occur more frequently in patients with inflammatory gastrointestinal diseases including inflammatory bowel (IBD) or celiac disease, indicating a pathological link between them. Although epidemiological observations suggest the existence of the gut-brain axis (GBA) involving systemic inflammatory and neural pathways, little is known about the exact molecular mechanisms. Parkinson's disease 7 (PARK7/DJ-1) is a multifunctional protein whose protective role has been widely demonstrated in neurodegenerative diseases, including PD, AD, or ischemic stroke. Recent studies also revealed the importance of PARK7/DJ-1 in the maintenance of the gut microbiome and also in the regulation of intestinal inflammation. All these findings suggest that PARK7/DJ-1 may be a link and also a potential therapeutic target in gut and brain diseases. In this review, therefore, we discuss our current knowledge about PARK7/DJ-1 in the context of GBA diseases.
Collapse
Grants
- TKP2020-NKA-09 Ministry for Innovation and Technology, Hungary
- TKP2020-NKA-13 Ministry for Innovation and Technology, Hungary
- K125470 National Research, Development and Innovation Office (NKFI), Hungary
- STIA-KFI-2020 Semmelweis Science and Innovation Fund, Hungary
- 20382-3/2018 FEKUTSTRAT National Research, Development and Innovation Office, Hungary
- STIA-KFI-2021 (1492-15/IKP/2022) Semmelweis Science and Innovation Fund, Hungary
- K124549 National Research, Development and Innovation Office (NKFI), Hungary
Collapse
Affiliation(s)
- Domonkos Pap
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Apor Veres-Székely
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
11
|
D’Cunha NM, Sergi D, Lane MM, Naumovski N, Gamage E, Rajendran A, Kouvari M, Gauci S, Dissanayka T, Marx W, Travica N. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients 2022; 14:nu14122421. [PMID: 35745150 PMCID: PMC9227209 DOI: 10.3390/nu14122421] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins or lipids formed endogenously in the human body or consumed through diet. Ultra-processed foods and some culinary techniques, such as dry cooking methods, represent the main sources and drivers of dietary AGEs. Tissue accumulation of AGEs has been associated with cellular aging and implicated in various age-related diseases, including type-2 diabetes and cardiovascular disease. The current review summarizes the literature examining the associations between AGEs and neurocognitive and mental health disorders. Studies indicate that elevated circulating AGEs are cross-sectionally associated with poorer cognitive function and longitudinally increase the risk of developing dementia. Additionally, preliminary studies show that higher skin AGE accumulation may be associated with mental disorders, particularly depression and schizophrenia. Potential mechanisms underpinning the effects of AGEs include elevated oxidative stress and neuroinflammation, which are both key pathogenetic mechanisms underlying neurodegeneration and mental disorders. Decreasing dietary intake of AGEs may improve neurological and mental disorder outcomes. However, more sophisticated prospective studies and analytical approaches are required to verify directionality and the extent to which AGEs represent a mediator linking unhealthy dietary patterns with cognitive and mental disorders.
Collapse
Affiliation(s)
- Nathan M. D’Cunha
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Melissa M. Lane
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Elizabeth Gamage
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Anushri Rajendran
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Matina Kouvari
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Sarah Gauci
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
- Heart and Mind Research, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Thusharika Dissanayka
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Wolfgang Marx
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nikolaj Travica
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Correspondence:
| |
Collapse
|
12
|
In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022; 14:nu14020363. [PMID: 35057544 PMCID: PMC8777776 DOI: 10.3390/nu14020363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called “dicarbonyl stress”, resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.
Collapse
|
13
|
Savateev KV, Spasov AA, Rusinov VL. SMALL SYNTHETIC MOLECULES WITH ANTIGLYCATION ACTIVITY. STRUCTURE - ACTIVITY RELATIONSHIP. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Banerjee S. Biophysical and mass spectrometry based characterization of methylglyoxal-modified myoglobin: Role of advanced glycation end products in inducing protein structural alterations. Int J Biol Macromol 2021; 193:2165-2172. [PMID: 34774865 DOI: 10.1016/j.ijbiomac.2021.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/08/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Methylglyoxal (MG) is a highly reactive α-dicarbonyl compound which reacts with proteins to form advanced glycation end products (AGEs). MG-induced AGE (MAGE) formation is particularly significant in diabetic condition. In the current study, we have undertaken a time-dependant characterization of MG-modified myoglobin following incubation of the heme protein with the α-dicarbonyl compound for different time periods. Interestingly, mass spectrometric studies indicated modifications at two specific lysine residues, Lys-87 and Lys-133. The AGE adducts identified at Lys-87 were carboxymethyllysine and carboxyethyllysine, while those detected at Lys-133 included pyrraline-carboxymethyllysine and carboxyethyllysine, respectively. Far-UV CD studies revealed a decrease in the native α-helical content of the heme protein gradually with increasing time of MG incubation. In addition, MG modification was found to induce changes in tertiary structure as well as surface hydrophobicity of the heme protein. MG-derived AGE adducts thus appear to alter the structure of Mb considerably. Considering the increased level of MG in diabetic condition, the current study appears physiologically relevant in terms of understanding AGE-mediated protein modification and subsequent structural changes.
Collapse
Affiliation(s)
- Sauradipta Banerjee
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92, Acharyya Prafulla Chandra Road, Kolkata 700009, India.
| |
Collapse
|
15
|
Serratos IN, Hernández-Pérez E, Campos C, Aschner M, Santamaría A. An Update on the Critical Role of α-Synuclein in Parkinson's Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Mol Neurobiol 2021; 59:620-642. [PMID: 34750787 DOI: 10.1007/s12035-021-02596-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson's disease (PD) and other synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms affecting the structural and functional stability of α-Syn - such as endoplasmic reticulum stress, Golgi complex fragmentation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of extracellular toxic aggregates - contribute all to the pathogenic progression of PD and synucleinopathies. In this review, we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal cell death in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Elizabeth Hernández-Pérez
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Carolina Campos
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, SSA, 14269, Mexico City, Mexico.
| |
Collapse
|
16
|
Jaunay EL, Dhillon VS, Semple SJ, Simpson BS, Ghetia M, Deo P, Fenech M. Genotoxicity of advanced glycation end products in vitro is influenced by their preparation temperature, purification, and cell exposure time. Mutagenesis 2021; 36:445-455. [PMID: 34612487 DOI: 10.1093/mutage/geab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Advanced glycation end products (AGEs) are formed via non-enzymatic reactions between amino groups of proteins and the carbonyl groups of reducing sugars. Previous studies have shown that highly glycated albumin prepared using a glucose-bovine serum albumin (Glu-BSA) model system incubated at 60°C for 6 weeks induces genotoxicity in WIL2-NS cells at 9 days of exposure measured by the cytokinesis-block micronucleus cytome (CBMNcyt) assay. However, this AGE model system is not physiologically relevant as normal body temperature is 37°C and the degree of glycation may exceed the extent of albumin modification in vivo. We hypothesised that the incubation temperature and purification method used in these studies may cause changes to the chemical profile of the glycated albumin and may influence the extent of genotoxicity observed at 3, 6 and 9 days of exposure. We prepared AGEs generated using Glu-BSA model systems incubated at 60°C or 37°C purified using trichloroacetic acid (TCA) precipitation or ultrafiltration (UF) and compared their chemical profile (glycation, oxidation, and aggregation) and genotoxicity in WIL2-NS cells using the CBMNcyt assay after 3, 6, and 9 days of exposure. The number of micronuclei (MNi) was significantly higher for cells treated with Glu-BSA incubated at 60°C and purified via TCA (12 ± 1 MNi/1000 binucleated cells) compared to Glu-BSA incubated at 37°C and purified using UF (6 ± 1 MNi/1000 binucleated cells) after 9 days (p < 0.0001). The increase in genotoxicity observed could be explained by a higher level of protein glycation, oxidation, and aggregation of the Glu-BSA model system incubated at 60°C relative to 37°C. This study highlighted that the incubation temperature, purification method and cell exposure time are important variables to consider when generating AGEs in vitro and will enable future studies to better reflect in vivo situations of albumin glycation.
Collapse
Affiliation(s)
- Emma L Jaunay
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia.,University of South Australia, Clinical and Health Sciences, Quality Use of Medicines and Pharmacy Research Centre, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Varinderpal S Dhillon
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Susan J Semple
- University of South Australia, Clinical and Health Sciences, Quality Use of Medicines and Pharmacy Research Centre, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Bradley S Simpson
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Maulik Ghetia
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Permal Deo
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Michael Fenech
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia.,Faculty of Health Sciences, University Kebangsaan Malaysia, Malaysia
| |
Collapse
|
17
|
Atieh TB, Roth J, Yang X, Hoop CL, Baum J. DJ-1 Acts as a Scavenger of α-Synuclein Oligomers and Restores Monomeric Glycated α-Synuclein. Biomolecules 2021; 11:biom11101466. [PMID: 34680099 PMCID: PMC8533443 DOI: 10.3390/biom11101466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
Glycation of α-synuclein (αSyn), as occurs with aging, has been linked to the progression of Parkinson’s disease (PD) through the promotion of advanced glycation end-products and the formation of toxic oligomers that cannot be properly cleared from neurons. DJ-1, an antioxidative protein that plays a critical role in PD pathology, has been proposed to repair glycation in proteins, yet a mechanism has not been elucidated. In this study, we integrate solution nuclear magnetic resonance (NMR) spectroscopy and liquid atomic force microscopy (AFM) techniques to characterize glycated N-terminally acetylated-αSyn (glyc-ac-αSyn) and its interaction with DJ-1. Glycation of ac-αSyn by methylglyoxal increases oligomer formation, as visualized by AFM in solution, resulting in decreased dynamics of the monomer amide backbone around the Lys residues, as measured using NMR. Upon addition of DJ-1, this NMR signature of glyc-ac-αSyn monomers reverts to a native ac-αSyn-like character. This phenomenon is reversible upon removal of DJ-1 from the solution. Using relaxation-based NMR, we have identified the binding site on DJ-1 for glycated and native ac-αSyn as the catalytic pocket and established that the oxidation state of the catalytic cysteine is imperative for binding. Based on our results, we propose a novel mechanism by which DJ-1 scavenges glyc-ac-αSyn oligomers without chemical deglycation, suppresses glyc-ac-αSyn monomer–oligomer interactions, and releases free glyc-ac-αSyn monomers in solution. The interference of DJ-1 with ac-αSyn oligomers may promote free ac-αSyn monomer in solution and suppress the propagation of toxic oligomer and fibril species. These results expand the understanding of the role of DJ-1 in PD pathology by acting as a scavenger for aggregated αSyn.
Collapse
|
18
|
Sirangelo I, Iannuzzi C. Understanding the Role of Protein Glycation in the Amyloid Aggregation Process. Int J Mol Sci 2021; 22:ijms22126609. [PMID: 34205510 PMCID: PMC8235188 DOI: 10.3390/ijms22126609] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Protein function and flexibility is directly related to the native distribution of its structural elements and any alteration in protein architecture leads to several abnormalities and accumulation of misfolded proteins. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidosis characterized by the accumulation of amyloid aggregates both in the extracellular space of tissues and as intracellular deposits. Post-translational modifications are known to have an active role in the in vivo amyloid aggregation as able to affect protein structure and dynamics. Among them, a key role seems to be played by non-enzymatic glycation, the most unwanted irreversible modification of the protein structure, which strongly affects long-living proteins throughout the body. This study provided an overview of the molecular effects induced by glycation on the amyloid aggregation process of several protein models associated with misfolding diseases. In particular, we analyzed the role of glycation on protein folding, kinetics of amyloid formation, and amyloid cytotoxicity in order to shed light on the role of this post-translational modification in the in vivo amyloid aggregation process.
Collapse
|
19
|
Saeed M, Kausar MA, Singh R, Siddiqui AJ, Akhter A. The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders. Curr Protein Pept Sci 2021; 21:846-859. [PMID: 32368974 DOI: 10.2174/1389203721666200505101734] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/09/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
Glycation refers to the covalent binding of sugar molecules to macromolecules, such as DNA, proteins, and lipids in a non-enzymatic reaction, resulting in the formation of irreversibly bound products known as advanced glycation end products (AGEs). AGEs are synthesized in high amounts both in pathological conditions, such as diabetes and under physiological conditions resulting in aging. The body's anti-glycation defense mechanisms play a critical role in removing glycated products. However, if this defense system fails, AGEs start accumulating, which results in pathological conditions. Studies have been shown that increased accumulation of AGEs acts as key mediators in multiple diseases, such as diabetes, obesity, arthritis, cancer, atherosclerosis, decreased skin elasticity, male erectile dysfunction, pulmonary fibrosis, aging, and Alzheimer's disease. Furthermore, glycation of nucleotides, proteins, and phospholipids by α-oxoaldehyde metabolites, such as glyoxal (GO) and methylglyoxal (MGO), causes potential damage to the genome, proteome, and lipidome. Glyoxalase-1 (GLO-1) acts as a part of the anti-glycation defense system by carrying out detoxification of GO and MGO. It has been demonstrated that GLO-1 protects dicarbonyl modifications of the proteome and lipidome, thereby impeding the cell signaling and affecting age-related diseases. Its relationship with detoxification and anti-glycation defense is well established. Glycation of proteins by MGO and GO results in protein misfolding, thereby affecting their structure and function. These findings provide evidence for the rationale that the functional modulation of the GLO pathway could be used as a potential therapeutic target. In the present review, we summarized the newly emerged literature on the GLO pathway, including enzymes regulating the process. In addition, we described small bioactive molecules with the potential to modulate the GLO pathway, thereby providing a basis for the development of new treatment strategies against age-related complications.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Sataywati College, Delhi University, Delhi, India
| | - Arif J Siddiqui
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Asma Akhter
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| |
Collapse
|
20
|
Banerjee S. Long-term incubation of myoglobin with glyoxal induces amyloid like aggregation of the heme protein: Implications of advanced glycation end products in protein conformational disorders. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Haque E, Kamil M, Hasan A, Irfan S, Sheikh S, Khatoon A, Nazir A, Mir SS. Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis. Glycobiology 2020; 30:49-57. [PMID: 31508802 DOI: 10.1093/glycob/cwz073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.
Collapse
Affiliation(s)
- Ejazul Haque
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia
| | - Mohd Kamil
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia.,Department of Microbiology, Beykoz Life Sciences and Biotechnology Institute (BILSAB), Bezmialem Vakif University, Istanbul, Turkey
| | - Adria Hasan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Safia Irfan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Saba Sheikh
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Aisha Khatoon
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow, 226031, India
| | - Snober S Mir
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| |
Collapse
|
22
|
Candelise N, Schmitz M, Thüne K, Cramm M, Rabano A, Zafar S, Stoops E, Vanderstichele H, Villar-Pique A, Llorens F, Zerr I. Effect of the micro-environment on α-synuclein conversion and implication in seeded conversion assays. Transl Neurodegener 2020; 9:5. [PMID: 31988747 PMCID: PMC6966864 DOI: 10.1186/s40035-019-0181-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
Background α-Synuclein is a small soluble protein, whose physiological function in the healthy brain is poorly understood. Intracellular inclusions of α-synuclein, referred to as Lewy bodies (LBs), are pathological hallmarks of α-synucleinopathies, such as Parkinson’s disease (PD) or dementia with Lewy bodies (DLB). Main body Understanding of the molecular basis as well as the factors or conditions promoting α-synuclein misfolding and aggregation is an important step towards the comprehension of pathological mechanism of α-synucleinopathies and for the development of efficient therapeutic strategies. Based on the conversion and aggregation mechanism of α-synuclein, novel diagnostic tests, such as protein misfolding seeded conversion assays, e.g. the real-time quaking-induced conversion (RT-QuIC), had been developed. In diagnostics, α-synuclein RT-QuIC exhibits a specificity between 82 and 100% while the sensitivity varies between 70 and 100% among different laboratories. In addition, the α-synuclein RT-QuIC can be used to study the α-synuclein-seeding-characteristics of different α-synucleinopathies and to differentiate between DLB and PD. Conclusion The variable diagnostic accuracy of current α-synuclein RT-QuIC occurs due to different protocols, cohorts and material etc.. An impact of micro-environmental factors on the α-synuclein aggregation and conversion process and the occurrence and detection of differential misfolded α-synuclein types or strains might underpin the clinical heterogeneity of α-synucleinopathies.
Collapse
Affiliation(s)
- Niccolo Candelise
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,3Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Bologna, Italy
| | - Matthias Schmitz
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| | - Katrin Thüne
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| | - Maria Cramm
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| | - Alberto Rabano
- 4Departamento de Neuropatología y Banco de Tejidos (BT-CIEN), Fundación CIEN, Instituto de Salud Carlos III Centro Alzheimer Fundación Reina Sofíac, Valderrebollo n° 5, 28031 Madrid, Spain
| | - Saima Zafar
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,2Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 4, Ghent, Belgium
| | | | - Anna Villar-Pique
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,6CIBERNED (Network center for biomedical research of neurodegenerative diseases), Institute Carlos III, Madrid, Spain
| | - Franc Llorens
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,6CIBERNED (Network center for biomedical research of neurodegenerative diseases), Institute Carlos III, Madrid, Spain.,7Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Inga Zerr
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
23
|
Banerjee S. Methylglyoxal modification reduces the sensitivity of hen egg white lysozyme to stress-induced aggregation: Insight into the anti-amyloidogenic property of α-dicarbonyl compound. J Biomol Struct Dyn 2019; 38:5474-5487. [PMID: 31814530 DOI: 10.1080/07391102.2019.1702589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The reactive α-oxoaldehyde, methylglyoxal reacts with different proteins to form Advanced Glycation End Products (AGEs) through Maillard reaction. Its level increases significantly in diabetic condition. Here, we have investigated the effect of different concentrations of methylglyoxal (200-400 µM) on the monomeric protein, hen egg white lysozyme (HEWL) following incubation for 3 weeks. Reaction of methylglyoxal with HEWL induced considerable changes in tertiary structure of the protein, but no significant alteration in secondary structure, as evident from different spectroscopic and biophysical studies. Interestingly, methylglyoxal modification was found to enhance the thermal stability of the protein and reduce its sensitivity to stress-induced aggregation. Finally, peptide mass fingerprinting revealed modification of arginine (Arg-45, Arg-14, Arg-68 or Arg-72) and lysine (Lys-116) residues of the protein to AGE adducts, namely, hydroimidazolone, tetrahydropyrimidine, and carboxyethyllysine. Methylglyoxal-derived AGE adducts (MAGE) appear to be responsible for the observed changes in protein. As demonstrated in the present study, the findings may highlight a possible therapeutic potential of the α-oxoaldehyde against protein misfolding and conformational disorder.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sauradipta Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, Kolkata, India
| |
Collapse
|
24
|
Martínez-Orozco H, Mariño L, Uceda AB, Ortega-Castro J, Vilanova B, Frau J, Adrover M. Nitration and Glycation Diminish the α-Synuclein Role in the Formation and Scavenging of Cu 2+-Catalyzed Reactive Oxygen Species. ACS Chem Neurosci 2019; 10:2919-2930. [PMID: 30973706 DOI: 10.1021/acschemneuro.9b00142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human α-synuclein is a small monomeric protein (140 residues) essential to maintain the function of the dopaminergic neurons and the neuronal redox balance. However, it holds a dark side since it is able to clump inside the neurons forming insoluble aggregates known as Lewy bodies, which are considered the hallmark of Parkinson's disease. Sporadic mutations and nonenzymatic post-translational modifications are well-known to stimulate the formation of Lewy bodies. Yet, the effect of nonenzymatic post-translational modifications on the function of α-synuclein has been studied less intense. Therefore, here we study how nitration and glycation mediated by methylglyoxal affect the redox features of α-synuclein. Both diminish the ability of α-synuclein to chelate Cu2+, except when Nε-(carboxyethyl)lysine or Nε-(carboxymethyl)lysine (two advanced glycation end products highly prevalent in vivo) are formed. This results in a lower capacity to prevent the Cu-catalyzed ascorbic acid degradation and to delay the formation of H2O2. However, only methylglyoxal was able to abolish the ability of α-synuclein to inhibit the free radical release. Both nitration and glycation enhanced the α-synuclein availability to be damaged by O2•-, although glycation made α-synuclein less reactive toward HO•. Our data represent the first report describing how nonenzymatic post-translational modifications might affect the redox function of α-synuclein, thus contributing to a better understanding of its pathological implications.
Collapse
Affiliation(s)
- Humberto Martínez-Orozco
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Laura Mariño
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Ana Belén Uceda
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
25
|
Dilaveris P, Antoniou CK, Manolakou P, Tsiamis E, Gatzoulis K, Tousoulis D. Biomarkers Associated with Atrial Fibrosis and Remodeling. Curr Med Chem 2019; 26:780-802. [PMID: 28925871 DOI: 10.2174/0929867324666170918122502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation is the most common rhythm disturbance encountered in clinical practice. Although often considered as solely arrhythmic in nature, current evidence has established that atrial myopathy constitutes both the substrate and the outcome of atrial fibrillation, thus initiating a vicious, self-perpetuating cycle. This myopathy is triggered by stress-induced (including pressure/volume overload, inflammation, oxidative stress) responses of atrial tissue, which in the long term become maladaptive, and combine elements of both structural, especially fibrosis, and electrical remodeling, with contemporary approaches yielding potentially useful biomarkers of these processes. Biomarker value becomes greater given the fact that they can both predict atrial fibrillation occurrence and treatment outcome. This mini-review will focus on the biomarkers of atrial remodeling (both electrical and structural) and fibrosis that have been validated in human studies, including biochemical, histological and imaging approaches.
Collapse
Affiliation(s)
- Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Tsiamis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Ahmad S, Farhan M. Impact of Non-Enzymatic Glycation in Neurodegenerative Diseases: Role of Natural Products in Prevention. ADVANCES IN NEUROBIOLOGY 2018; 12:125-51. [PMID: 27651252 DOI: 10.1007/978-3-319-28383-8_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Non-enzymatic protein glycosylation is the addition of free carbonyls to the free amino groups of proteins, amino acids, lipoproteins and nucleic acids resulting in the formation of early glycation products. The early glycation products are also known as Maillard reaction which undergoes dehydration, cyclization and rearrangement to form advanced glycation end-products (AGEs). By and large the researchers in the past have also established that glycation and the AGEs are responsible for most type of metabolic disorders, including diabetes mellitus, cancer, neurological disorders and aging. The amassing of AGEs in the tissues of neurodegenerative diseases shows its involvement in diseases. Therefore, it is likely that inhibition of glycation reaction may extend the lifespan of an individual. The hunt for inhibitors of glycation, mainly using in vitro models, has identified natural compounds able to prevent glycation, especially polyphenols and other natural antioxidants. Extrapolation of results of in vitro studies on the in vivo situation is not straightforward due to differences in the conditions and mechanism of glycation, and bioavailability problems. Nevertheless, existing data allow postulating that enrichment of diet in natural anti-glycating agents may attenuate glycation and, in consequence may halt the aging and neurological problems.
Collapse
Affiliation(s)
- Saheem Ahmad
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-sciences, Integral University, Lucknow, UP, India.
| | - Mohammed Farhan
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-sciences, Integral University, Lucknow, UP, India
| |
Collapse
|
27
|
Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab 2018; 28:337-352. [PMID: 30184484 PMCID: PMC6355252 DOI: 10.1016/j.cmet.2018.08.014] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of advanced glycation end products (AGEs) on nucleotides, lipids, and peptides/proteins are an inevitable component of the aging process in all eukaryotic organisms, including humans. To date, a substantial body of evidence shows that AGEs and their functionally compromised adducts are linked to and perhaps responsible for changes seen during aging and for the development of many age-related morbidities. However, much remains to be learned about the biology of AGE formation, causal nature of these associations, and whether new interventions might be developed that will prevent or reduce the negative impact of AGEs-related damage. To facilitate achieving these latter ends, we show how invertebrate models, notably Drosophila melanogaster and Caenorhabditis elegans, can be used to explore AGE-related pathways in depth and to identify and assess drugs that will mitigate against the detrimental effects of AGE-adduct development.
Collapse
Affiliation(s)
- Jyotiska Chaudhuri
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | - Yasmin Bains
- Touro University College of Osteopathic Medicine, Glycation Oxidation and Research laboratory, Vallejo, CA, 94592, USA
| | - Sanjib Guha
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Arnold Kahn
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; University of California, Department of Urology, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - David Hall
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Neelanjan Bose
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; University of California, Department of Urology, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Alejandro Gugliucci
- Touro University College of Osteopathic Medicine, Glycation Oxidation and Research laboratory, Vallejo, CA, 94592, USA.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; University of California, Department of Urology, 400 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
28
|
Bisbal M, Remedi M, Quassollo G, Cáceres A, Sanchez M. Rotenone inhibits axonogenesis via an Lfc/RhoA/
ROCK
pathway in cultured hippocampal neurons. J Neurochem 2018; 146:570-584. [DOI: 10.1111/jnc.14547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/24/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Mariano Bisbal
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Mónica Remedi
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Gonzalo Quassollo
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Alfredo Cáceres
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Mónica Sanchez
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| |
Collapse
|
29
|
Abstract
α-Synuclein is an abundant neuronal protein that is highly enriched in presynaptic nerve terminals. Genetics and neuropathology studies link α-synuclein to Parkinson's disease (PD) and other neurodegenerative disorders. Accumulation of misfolded oligomers and larger aggregates of α-synuclein defines multiple neurodegenerative diseases called synucleinopathies, but the mechanisms by which α-synuclein acts in neurodegeneration are unknown. Moreover, the normal cellular function of α-synuclein remains debated. In this perspective, we review the structural characteristics of α-synuclein, its developmental expression pattern, its cellular and subcellular localization, and its function in neurons. We also discuss recent progress on secretion of α-synuclein, which may contribute to its interneuronal spread in a prion-like fashion, and describe the neurotoxic effects of α-synuclein that are thought to be responsible for its role in neurodegeneration.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Manu Sharma
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Thomas C Südhof
- Departments of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, California 94305
- Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305
| |
Collapse
|
30
|
König A, Vicente Miranda H, Outeiro TF. Alpha-Synuclein Glycation and the Action of Anti-Diabetic Agents in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2018; 8:33-43. [PMID: 29480231 PMCID: PMC5842785 DOI: 10.3233/jpd-171285] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with complex etiology and variable pathology. While a subset of cases is associated with single-gene mutations, the majority originates from a combination of factors we do not fully understand. Thus, understanding the underlying causes of PD is indispensable for the development of novel therapeutics. Glycation, the non-enzymatic reaction between reactive dicarbonyls and amino groups, gives rise to a variety of different reaction products known as advanced glycation end products (AGEs). AGEs accumulate over a proteins life-time, and increased levels of glycation reaction products play a role in diabetic complications. It is now also becoming evident that PD patients also display perturbed sugar metabolism and protein glycation, including that of alpha-synuclein, a key player in PD. Here, we hypothesize that anti-diabetic drugs targeting the levels of glycation precursors, or promoting the clearance of glycated proteins may also prove beneficial for PD patients.
Collapse
Affiliation(s)
- Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Hugo Vicente Miranda
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
31
|
Takeshita Y, Shibata N, Kasanuki K, Nagata T, Shinagawa S, Kobayashi N, Ohnuma T, Suzuki A, Kawai E, Takayama T, Nishioka K, Motoi Y, Hattori N, Nakayama K, Yamada H, Arai H. Genetic association between RAGE polymorphisms and Alzheimer's disease and Lewy body dementias in a Japanese cohort: a case-control study. Int J Geriatr Psychiatry 2017; 32:1241-1246. [PMID: 27699858 DOI: 10.1002/gps.4600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND/AIMS Interaction of receptor for advanced glycation end products (RAGE) with amyloid-β increases amplification of oxidative stress and plays pathological roles in Alzheimer's disease (AD). Oxidative stress leads to α-synuclein aggregation and is also a major contributing factor in the pathogenesis of Lewy body dementias (LBDs). Therefore, we aimed to investigate whether RAGE gene polymorphisms were associated with AD and LBDs. METHODS Four single nucleotide polymorphisms (SNPs)-rs1800624, rs1800625, rs184003, and rs2070600-of the gene were analyzed using a case-control study design comprising 288 AD patients, 76 LBDs patients, and 105 age-matched controls. RESULTS Linkage disequilibrium (LD) examination showed strong LD from rs1800624 to rs2070600 on the gene (1.1 kb) in our cases in Japan. Rs184003 was associated with an increased risk of AD. Although there were no statistical associations for the other three SNPs, haplotypic analyses detected genetic associations between AD and the RAGE gene. Although relatively few cases were studied, results from the SNPs showed that they did not modify the risk of developing LBDs in the Japanese population. CONCLUSION Our findings suggested that polymorphisms in the RAGE gene are involved in genetic susceptibility to AD. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoshihide Takeshita
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuto Shibata
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kasanuki
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoyuki Nagata
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan.,Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | | | - Nobuyuki Kobayashi
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan
| | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayako Suzuki
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Eri Kawai
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiki Takayama
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yumiko Motoi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhiko Nakayama
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan
| | - Hisashi Yamada
- Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Heii Arai
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Ono K. The Oligomer Hypothesis in α-Synucleinopathy. Neurochem Res 2017; 42:3362-3371. [PMID: 28828740 DOI: 10.1007/s11064-017-2382-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022]
Abstract
Lewy bodies and Lewy neurites in the brain constitute the main histopathological features of Parkinson's disease (PD) and dementia with Lewy bodies. They comprise amyloid-like fibrils composed of α-synuclein (αS), a small protein (~14 kDa). Because the aggregation of αS in the brain has been implicated as a critical step in the development of these diseases, the research for disease-modifying drugs has focused on modification of the αS aggregation process in the brain. Recent studies using synthetic αS peptides, a cell culture model, transgenic mice models, and human samples such as cerebrospinal fluids and the blood of PD patients have suggested that pre-fibrillar forms of αS (i.e., oligomers) are more critical than fibrillar forms (such as Lewy bodies) in the pathogenesis of α-synucleinopathies. Based on the accumulating evidence that oligomers play a central role in the pathogenesis of PD and other α-synucleinopathies (the "oligomer hypothesis"). This report reviews the recent findings regarding the oligomer hypothesis in the research of α-synucleinopathies.
Collapse
Affiliation(s)
- Kenjiro Ono
- Department of Neurology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| |
Collapse
|
33
|
Muronetz VI, Melnikova AK, Seferbekova ZN, Barinova KV, Schmalhausen EV. Glycation, glycolysis, and neurodegenerative diseases: Is there any connection? BIOCHEMISTRY (MOSCOW) 2017; 82:874-886. [DOI: 10.1134/s0006297917080028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9574201. [PMID: 28685011 PMCID: PMC5480050 DOI: 10.1155/2017/9574201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022]
Abstract
The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.
Collapse
|
35
|
Formation of Pentosidine Cross-Linking in Myoglobin by Glyoxal: Detection of Fluorescent Advanced Glycation End Product. J Fluoresc 2017; 27:1213-1219. [PMID: 28299531 DOI: 10.1007/s10895-017-2064-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/02/2017] [Indexed: 01/01/2023]
Abstract
Glyoxal, a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. Considering the significance of protein modification by glyoxal-derived AGEs, we investigated the in vitro effect of glyoxal (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) after incubation for one week at 25 °C. Glyoxal-treated Mb exhibited increased absorbance around the Soret region, decreased α-helicity and thermal stability compared to control Mb. Intrinsic fluorescence spectrum of the treated Mb showed an additional signal in the 400-500 nm region on excitation at 280 nm that was absent in control Mb. When excited at 335 nm, the glyoxal-treated sample gave a strong fluorescence indicating AGE formation. Mass spectrometric studies revealed formation of glyoxal-derived fluorescent AGE adduct pentosidine between Lys-145 and Arg-139 residues of Mb. Other than pentosidine, additional AGE adducts, namely, carboxymethyllysine at Lys-133, hydroimidazolone at Arg-31 and pyrrolidone-carboxymethyllysine at Lys-145 were also detected. Lys-145 was thus found to contain two different types of AGE adducts, indicating the heterogeneous nature of in vitro glycation reaction. AGE-induced protein modifications might be associated with complications in disease conditions.
Collapse
|
36
|
Methylglyoxal modification enhances the stability of hemoglobin and lowers its iron-mediated oxidation reactions: An in vitro study. Int J Biol Macromol 2017; 95:1159-1168. [DOI: 10.1016/j.ijbiomac.2016.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/03/2023]
|
37
|
Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK. α-synuclein aggregation and its modulation. Int J Biol Macromol 2016; 100:37-54. [PMID: 27737778 DOI: 10.1016/j.ijbiomac.2016.10.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder marked by the presence of cytoplasmic inclusions, Lewy bodies (LBs) and Lewy neurites (LNs) as well as the degeneration of dopamine producing neurons in the substantia nigra region of the brain. The LBs and LNs in PD are mainly composed of aggregated form of a presynaptic protein, α-synuclein (α-Syn). However, the mechanisms of α-Syn aggregation and actual aggregated species responsible for the degeneration of dopaminergic neurons have not yet been resolved. Despite the fact that α-Syn aggregation in LBs and LNs is crucial and mutations of α-Syn are associated with early onset PD, it is really a challenging task to establish a correlation between α-Syn aggregation rate and PD pathogenesis. Regardless of strong genetic contribution, PD is mostly sporadic and familial forms of the disease represent only a minor part (<10%) of all cases. The complexity in PD further increases due to the involvement of several cellular factors in the pathogenesis of the disease as well as the environmental factors associated with the risk of developing PD. Therefore, effect of these factors on α-Syn aggregation pathway and how these factors modulate the properties of wild type (WT) as well as mutated α-Syn should be collectively taken into account. The present review specifically provides an overview of recent research on α-Syn aggregation pathways and its modulation by several cellular factors potentially relevant to PD pathogenesis. We also briefly discuss about effect of environmental risk factors on α-Syn aggregation.
Collapse
Affiliation(s)
- Dhiman Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Shruti Sahay
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Pradeep K Singh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
38
|
Bayarsaikhan E, Bayarsaikhan D, Lee J, Son M, Oh S, Moon J, Park HJ, Roshini A, Kim SU, Song BJ, Jo SM, Byun K, Lee B. Microglial AGE-albumin is critical for neuronal death in Parkinson's disease: a possible implication for theranostics. Int J Nanomedicine 2016; 10 Spec Iss:281-92. [PMID: 27601894 PMCID: PMC5003553 DOI: 10.2147/ijn.s95077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Advanced glycation end products (AGEs) are known to play an important role in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD), by inducing protein aggregation and cross-link, formation of Lewy body, and neuronal death. In this study, we observed that AGE-albumin, the most abundant AGE product in the human PD brain, is synthesized in activated microglial cells and accumulates in the extracellular space. AGE-albumin synthesis in human-activated microglial cells is distinctly inhibited by ascorbic acid and cytochalasin treatment. Accumulated AGE-albumin upregulates the receptor to AGE, leading to apoptosis of human primary dopamine (DA) neurons. In animal experiments, we observed reduced DA neuronal cell death by treatment with soluble receptor to AGE. Our study provides evidence that activated microglial cells are one of the main contributors in AGE-albumin accumulation, deleterious to DA neurons in human and animal PD brains. Finally, activated microglial AGE-albumin could be used as a diagnostic and therapeutic biomarker with high sensitivity for neurodegenerative disorders, including PD.
Collapse
Affiliation(s)
- Enkhjargal Bayarsaikhan
- Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; Department of General Laboratory, National Cancer Center of Mongolia, Ulaanbaatar, Mongolia
| | - Delger Bayarsaikhan
- Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Jaesuk Lee
- Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Myeongjoo Son
- Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; Department of Anatomy and Cell Biology, Graduate School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Seyeon Oh
- Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Jeongsik Moon
- Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hye-Jeong Park
- Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Arivazhagan Roshini
- Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Seung U Kim
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Seung-Mook Jo
- Department of Emergency Medical Services, Eulji University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kyunghee Byun
- Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; Department of Anatomy and Cell Biology, Graduate School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Bonghee Lee
- Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; Department of Anatomy and Cell Biology, Graduate School of Medicine, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
39
|
De Simone U, Lonati D, Ronchi A, Coccini T. Brief exposure to nanosized and bulk titanium dioxide forms induces subtle changes in human D384 astrocytes. Toxicol Lett 2016; 254:8-21. [DOI: 10.1016/j.toxlet.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/09/2023]
|
40
|
Vicente Miranda H, El-Agnaf OMA, Outeiro TF. Glycation in Parkinson's disease and Alzheimer's disease. Mov Disord 2016; 31:782-90. [PMID: 26946341 DOI: 10.1002/mds.26566] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/21/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Glycation is a spontaneous age-dependent posttranslational modification that can impact the structure and function of several proteins. Interestingly, glycation can be detected at the periphery of Lewy bodies in the brain in Parkinson's disease. Moreover, α-synuclein can be glycated, at least under experimental conditions. In Alzheimer's disease, glycation of amyloid β peptide exacerbates its toxicity and contributes to neurodegeneration. Recent studies establish diabetes mellitus as a risk factor for several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, the mechanisms underlying this connection remain unclear. We hypothesize that hyperglycemia might play an important role in the development of these disorders, possibly by also inducing protein glycation and thereby dysfunction, aggregation, and deposition. Here, we explore protein glycation as a common player in Parkinson's and Alzheimer's diseases and propose it may constitute a novel target for the development of strategies for neuroprotective therapeutic interventions. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Omar M A El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, and College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825 Doha, Qatar
| | - Tiago Fleming Outeiro
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Lisboa, Portugal.,Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany
| |
Collapse
|
41
|
Banerjee S, Maity S, Chakraborti AS. Methylglyoxal-induced modification causes aggregation of myoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 155:1-10. [PMID: 26554310 DOI: 10.1016/j.saa.2015.10.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/10/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. We have investigated the in vitro effect of MG (200μM) on the monomeric heme protein myoglobin (Mb) (100μM) in a time-dependent manner (7 to 18days incubation at 25°C). MG induces significant structural alterations of the heme protein, including heme loss, changes in tryptophan fluorescence, decrease of α-helicity with increased β-sheet content etc. These changes occur gradually with increased period of incubation. Incubation of Mb with MG for 7days results in formation of the AGE adducts: carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87 and carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133. On increasing the period of incubation up to 14days, additional AGEs namely, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139 have been detected. MG also induces aggregation of Mb, which is clearly evident with longer period of incubation (18days), and appears to have amyloid nature. MG-derived AGEs may thus have an important role as the precursors of protein aggregation, which, in turn, may be associated with physiological complications.
Collapse
Affiliation(s)
- Sauradipta Banerjee
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92, Acharyya Prafulla Chandra Road, Kolkata 700009, India
| | - Subhajit Maity
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92, Acharyya Prafulla Chandra Road, Kolkata 700009, India
| | - Abhay Sankar Chakraborti
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92, Acharyya Prafulla Chandra Road, Kolkata 700009, India.
| |
Collapse
|
42
|
Tsai CJ, Aslam K, Drendel HM, Asiago JM, Goode KM, Paul LN, Rochet JC, Hazbun TR. Hsp31 Is a Stress Response Chaperone That Intervenes in the Protein Misfolding Process. J Biol Chem 2015; 290:24816-34. [PMID: 26306045 DOI: 10.1074/jbc.m115.678367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 12/17/2022] Open
Abstract
The Saccharomyces cerevisiae heat shock protein Hsp31 is a stress-inducible homodimeric protein that is involved in diauxic shift reprogramming and has glyoxalase activity. We show that substoichiometric concentrations of Hsp31 can abrogate aggregation of a broad array of substrates in vitro. Hsp31 also modulates the aggregation of α-synuclein (αSyn), a target of the chaperone activity of human DJ-1, an Hsp31 homolog. We demonstrate that Hsp31 is able to suppress the in vitro fibrillization or aggregation of αSyn, citrate synthase and insulin. Chaperone activity was also observed in vivo because constitutive overexpression of Hsp31 reduced the incidence of αSyn cytoplasmic foci, and yeast cells were rescued from αSyn-generated proteotoxicity upon Hsp31 overexpression. Moreover, we showed that Hsp31 protein levels are increased by H2O2, in the diauxic phase of normal growth conditions, and in cells under αSyn-mediated proteotoxic stress. We show that Hsp31 chaperone activity and not the methylglyoxalase activity or the autophagy pathway drives the protective effects. We also demonstrate reduced aggregation of the Sup35 prion domain, PrD-Sup35, as visualized by fluorescent protein fusions. In addition, Hsp31 acts on its substrates prior to the formation of large aggregates because Hsp31 does not mutually localize with prion aggregates, and it prevents the formation of detectable in vitro αSyn fibrils. These studies establish that the protective role of Hsp31 against cellular stress is achieved by chaperone activity that intervenes early in the protein misfolding process and is effective on a wide spectrum of substrate proteins, including αSyn and prion proteins.
Collapse
Affiliation(s)
- Chai-Jui Tsai
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Kiran Aslam
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Holli M Drendel
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Josephat M Asiago
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Kourtney M Goode
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Lake N Paul
- the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| | - Jean-Christophe Rochet
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Tony R Hazbun
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| |
Collapse
|
43
|
Krysyuk IP. Effect of bioactive aldehydes on gelatin properties. UKRAINIAN BIOCHEMICAL JOURNAL 2015. [DOI: 10.15407/ubj87.02.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Abstract
α-Synuclein is an abundant neuronal protein which localizes predominantly to presynaptic terminals, and is strongly linked genetically and pathologically to Parkinson's disease and other neurodegenerative diseases. While the accumulation of α-synuclein in the form of misfolded oligomers and large aggregates defines multiple neurodegenerative diseases called "synucleinopathies", its cellular function has remained largely unclear, and is the subject of intense investigation. In this review, I focus on the structural characteristics of α-synuclein, its cellular and subcellular localization, and discuss how this relates to its function in neurons, in particular at the neuronal synapse.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer’s Disease Research, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
45
|
Hmiel LK, Brorson KA, Boyne MT. Post-translational structural modifications of immunoglobulin G and their effect on biological activity. Anal Bioanal Chem 2014; 407:79-94. [DOI: 10.1007/s00216-014-8108-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/15/2022]
|
46
|
Meusel LAC, Kansal N, Tchistiakova E, Yuen W, MacIntosh BJ, Greenwood CE, Anderson ND. A systematic review of type 2 diabetes mellitus and hypertension in imaging studies of cognitive aging: time to establish new norms. Front Aging Neurosci 2014; 6:148. [PMID: 25071557 PMCID: PMC4085499 DOI: 10.3389/fnagi.2014.00148] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022] Open
Abstract
The rising prevalence of type 2 diabetes (T2DM) and hypertension in older adults, and the deleterious effect of these conditions on cerebrovascular and brain health, is creating a growing discrepancy between the "typical" cognitive aging trajectory and a "healthy" cognitive aging trajectory. These changing health demographics make T2DM and hypertension important topics of study in their own right, and warrant attention from the perspective of cognitive aging neuroimaging research. Specifically, interpretation of individual or group differences in blood oxygenation level dependent magnetic resonance imaging (BOLD MRI) or positron emission tomography (PET H2O(15)) signals as reflective of differences in neural activation underlying a cognitive operation of interest requires assumptions of intact vascular health amongst the study participants. Without adequate screening, inclusion of individuals with T2DM or hypertension in "healthy" samples may introduce unwanted variability and bias to brain and/or cognitive measures, and increase potential for error. We conducted a systematic review of the cognitive aging neuroimaging literature to document the extent to which researchers account for these conditions. Of the 232 studies selected for review, few explicitly excluded individuals with T2DM (9%) or hypertension (13%). A large portion had exclusion criteria that made it difficult to determine whether T2DM or hypertension were excluded (44 and 37%), and many did not mention any selection criteria related to T2DM or hypertension (34 and 22%). Of all the surveyed studies, only 29% acknowledged or addressed the potential influence of intersubject vascular variability on the measured BOLD or PET signals. To reinforce the notion that individuals with T2DM and hypertension should not be overlooked as a potential source of bias, we also provide an overview of metabolic and vascular changes associated with T2DM and hypertension, as they relate to cerebrovascular and brain health.
Collapse
Affiliation(s)
| | - Nisha Kansal
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada
| | - Ekaterina Tchistiakova
- Sunnybrook Research Institute, Heart and Stroke Foundation Canadian Partnership for Stroke Recovery Toronto, ON, Canada ; Department of Medical Biophysics, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - William Yuen
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada ; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Bradley J MacIntosh
- Sunnybrook Research Institute, Heart and Stroke Foundation Canadian Partnership for Stroke Recovery Toronto, ON, Canada ; Department of Medical Biophysics, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Carol E Greenwood
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada ; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Nicole D Anderson
- Baycrest Centre, Rotman Research Institute Toronto, ON, Canada ; Departments of Psychology and Psychiatry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
47
|
Kang KA, Lee HC, Lee JJ, Hong MN, Park MJ, Lee YS, Choi HD, Kim N, Ko YG, Lee JS. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells. JOURNAL OF RADIATION RESEARCH 2014; 55:265-276. [PMID: 24105709 PMCID: PMC3951078 DOI: 10.1093/jrr/rrt116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/04/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Hyung Chul Lee
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Je-Jung Lee
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Mi-Na Hong
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Myung-Jin Park
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Yun-Sil Lee
- College of Pharmacy and Division of Life Science and Pharmaceuticals, Ewha Womans University, Seoul 120-808, Republic of Korea
| | - Hyung-Do Choi
- EM Environment Research Team, Electronics and Telecommunications Research Institute, Daejeon 305-700, Korea
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju 361-763, Korea
| | - Young-Gyu Ko
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Jae-Seon Lee
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| |
Collapse
|
48
|
Kulkarni MJ, Korwar AM, Mary S, Bhonsle HS, Giri AP. Glycated proteome: from reaction to intervention. Proteomics Clin Appl 2014. [PMID: 23184864 DOI: 10.1002/prca.201200101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycation, a nonenzymatic reaction between reducing sugars and proteins, is a proteome wide phenomenon, predominantly observed in diabetes due to hyperglycemia. Glycated proteome of plasma, kidney, lens, and brain are implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative diseases, cancer, and aging. This review discusses the strategies to characterize protein glycation, its functional implications in different diseases, and intervention strategies to protect the deleterious effects of protein glycation.
Collapse
Affiliation(s)
- Mahesh J Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.
| | | | | | | | | |
Collapse
|
49
|
Montoro LA, Turrioni APS, Basso FG, de Souza Costa CA, Hebling J. Infrared LED irradiation photobiomodulation of oxidative stress in human dental pulp cells. Int Endod J 2013; 47:747-55. [PMID: 24215116 DOI: 10.1111/iej.12211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/07/2013] [Indexed: 01/29/2023]
Abstract
AIM To investigate the effect of infrared light-emitting diode (LED) irradiation on the oxidative stress induced in human dental pulp cells (HDPCs) by lipopolysaccharide (LPS). METHODOLOGY Human dental pulp cells (HDPCs) were harvested from sound primary teeth that were near exfoliation. Cells were seeded (10(5) cells cm(-2) ) using α-MEM supplemented with 10% FBS and after 24 h, were placed in contact with LPS (10 μg mL(-1) of culture medium). Immediately afterwards, HDPCs were subjected to a single irradiation with an infrared LED (855 nm) delivering different doses of energy (0, 2, 4, 8, 15 or 30 J cm(-2) ). For each dose, there was a control group without LPS application. Twenty-four hours after irradiation, groups were tested for nitric oxide (NO) quantification, cell viability (MTT assay) and qualitative assessment of reactive oxygen species (ROS). Data were submitted to Kruskal-Wallis and Mann-Whitney tests (α = 0.05). RESULTS Lipopolysaccharide (LPS)-induced stress resulted in significant increase in NO production by HDPC without causing damage to cell respiratory metabolism. Irrespective of energy dose delivered, NO production was significantly reduced when LPS-stressed cells were irradiated with infrared LED (2 J cm(-2) , P = 0.003; 95% CI = 5.84-27.71; 4 J cm(-2) , P = 0.001; 95% CI = 7.52-26.39; 8 J cm(-2) , P = 0.0195; 95% CI = -2.86-16.01; 15 J cm(-2) , P = 0.0001; 95% CI = 12.10-30.96; 30 J cm(-2) , P = 0.007; 95% CI = 5.84-24.71). The highest decrease in NO production was observed when 15 J cm(-2) was delivered to cells. Infrared LED irradiation resulted in a decrease in ROS production, whilst HDPC metabolism was not significantly affected. CONCLUSION Biomodulation of oxidative stress of HPDC can be achieved by irradiation with a single dose of infrared LED. Within the range investigated, 15 J cm(-2) resulted in the least production of NO.
Collapse
Affiliation(s)
- L A Montoro
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
50
|
Iannuzzi C, Maritato R, Irace G, Sirangelo I. Glycation accelerates fibrillization of the amyloidogenic W7FW14F apomyoglobin. PLoS One 2013; 8:e80768. [PMID: 24324625 PMCID: PMC3851467 DOI: 10.1371/journal.pone.0080768] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
Neurodegenerative diseases are associated with misfolding and deposition of specific proteins, either intra or extracellularly in the nervous system. Advanced glycation end products (AGEs) originate from different molecular species that become glycated after exposure to sugars. Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. To this concern, in the present study we have investigated the effect of glycation on the aggregation pathway of the amyloidogenic W7FW14F apomyoglobin. Although this protein has not been related to any amyloid disease, it represents a good model to resemble proteins that intrinsically evolve toward the formation of amyloid aggregates in physiological conditions. We show that D-ribose, but not D-glucose, rapidly induces the W7FW14F apomyoglobin to generate AGEs in a time-dependent manner and protein ribosylation is likely to involve lysine residues on the polypeptide chain. Ribosylation of the W7FW14F apomyoglobin strongly affects its aggregation kinetics producing amyloid fibrils within few days. Cytotoxicity of the glycated aggregates has also been tested using a cell viability assay. We propose that ribosylation in the W7FW14F apomyoglobin induces the formation of a cross-link that strongly reduces the flexibility of the H helix and/or induce a conformational change that favor fibril formation. These results open new perspectives for AGEs biological role as they can be considered not only a triggering factor in amyloidosis but also a player in later stages of the aggregation process.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Rosa Maritato
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Gaetano Irace
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Ivana Sirangelo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
- * E-mail:
| |
Collapse
|