1
|
Pavy CL, Shaw JC, Dyson RM, Palliser HK, Moloney RA, Sixtus RP, Berry MJ, Hirst JJ. Ganaxolone Therapy After Preterm Birth Restores Cerebellar Oligodendrocyte Maturation and Myelination in Guinea Pigs. Dev Psychobiol 2024; 66:e22554. [PMID: 39378309 DOI: 10.1002/dev.22554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
The postnatal environment is challenging for the preterm neonate with exposure to hypoxic and excitotoxic events, amplified by premature loss of placentally derived neurosteroids. Between preterm birth and term equivalent age (TEA), cerebellar development continues despite these challenges. We hypothesize that neurosteroid replacement therapy during this time will support optimal cerebellar development. Guinea pig sows delivered at term (∼69 days gestation) or were induced to deliver preterm (∼62 days), with preterm pups receiving ganaxolone or vehicle until TEA. Postnatal assessments comprised salivary cortisol (corrected postnatal age [CPA] 0, 7, 38), behavioral analysis (CPA7, 38), and tissue collection (CPA0 and CPA40). Neurodevelopmental markers (MBP, Olig2, and NeuN) were assessed in the cerebellum by immunohistochemistry, whereas RT-PCR was utilized to investigate key inhibitory/excitatory pathways and oligodendrocyte lineage markers. Following preterm birth, there was evidence of a hyperactive phenotype, increased salivary cortisol concentrations, and impaired myelination and oligodendrocyte maturation at the protein level. mRNA expressions of key inhibitory/excitatory pathways and myelin stability were also altered following preterm birth. Importantly, we showed that neurosteroid replacement therapy returns cerebellar development and behavior toward a term-like phenotype. Therefore, ganaxolone may reduce the vulnerability of the cerebellum to postnatal challenges arising from preterm birth.
Collapse
Affiliation(s)
- Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Ryan P Sixtus
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
2
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Aggarwal N, Tromp DP, Blackford JU, Pine DS, Roseboom PH, Williams LE, Kalin NH. Sex-Specific Distributed White Matter Microarchitectural Alterations in Preadolescent Youths With Anxiety Disorders: A Mega-Analytic Study. Am J Psychiatry 2024; 181:299-309. [PMID: 38476042 PMCID: PMC11129321 DOI: 10.1176/appi.ajp.20221048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Anxiety disorders are among the most common psychiatric disorders in youths and emerge during childhood. This is also a period of rapid white matter (WM) development, which is critical for efficient neuronal communication. Previous work in preadolescent children with anxiety disorders demonstrated anxiety disorder-related reductions in WM microstructural integrity (fractional anisotropy [FA]) in the uncinate fasciculus (UF), the major WM tract facilitating prefrontal cortical-limbic structural connectivity. Importantly, this association was found only in boys with anxiety disorders. To confirm this finding and more comprehensively understand WM changes in childhood anxiety, this mega-analytic study characterizes WM alterations related to anxiety disorders and sex in the largest sample of preadolescent children to date. METHODS Diffusion tensor imaging data from published studies of preadolescent children with anxiety disorders and healthy volunteers (ages 8-12) (N=198) were combined with a new data set (N=97) for a total sample of 165 children with anxiety disorders and 132 healthy volunteers. Children with anxiety disorders met DSM-5 criteria for current generalized, separation, and/or social anxiety disorder. Analyses of tractography and voxel-wise data assessed between-group differences (anxiety disorder vs. healthy volunteer), effects of sex, and their interaction. RESULTS Tract-based and voxel-wise analyses confirmed a significant reduction in UF FA in boys but not girls with anxiety disorders. Results also demonstrated other significant widespread anxiety disorder-related WM alterations specifically in boys, including in multiple commissural, association, projection, and brainstem regions. CONCLUSIONS In addition to confirming male-specific anxiety disorder-related reductions in UF FA, the results demonstrate that anxiety disorders in boys and not girls are associated with broadly distributed WM alterations across the brain. These findings support further studies focused on understanding the extent to which WM alterations in boys with anxiety disorders are involved in pathophysiological processes that mediate anxiety disorders. The findings also suggest the possibility that WM microarchitecture could serve as a novel treatment target for childhood anxiety disorders.
Collapse
Affiliation(s)
- Nakul Aggarwal
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, United States
| | - Do P.M. Tromp
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, United States
| | - Jennifer U. Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Daniel S. Pine
- Section on Developmental and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD 20814, United States
| | - Patrick H. Roseboom
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, United States
| | - Lisa E. Williams
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, United States
| | - Ned H. Kalin
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, United States
| |
Collapse
|
4
|
Michalettos G, Clausen F, Özen I, Ruscher K, Marklund N. Impaired oligodendrogenesis in the white matter of aged mice following diffuse traumatic brain injury. Glia 2024; 72:728-747. [PMID: 38180164 DOI: 10.1002/glia.24499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Senescence is a negative prognostic factor for outcome and recovery following traumatic brain injury (TBI). TBI-induced white matter injury may be partially due to oligodendrocyte demise. We hypothesized that the regenerative capacity of oligodendrocyte precursor cells (OPCs) declines with age. To test this hypothesis, the regenerative capability of OPCs in young [(10 weeks ±2 (SD)] and aged [(62 weeks ±10 (SD)] mice was studied in mice subjected to central fluid percussion injury (cFPI), a TBI model causing widespread white matter injury. Proliferating OPCs were assessed by immunohistochemistry for the proliferating cell nuclear antigen (PCNA) marker and labeled by 5-ethynyl-2'-deoxyuridine (EdU) administered daily through intraperitoneal injections (50 mg/kg) from day 2 to day 6 after cFPI. Proliferating OPCs were quantified in the corpus callosum and external capsule on day 2 and 7 post-injury (dpi). The number of PCNA/Olig2-positive and EdU/Olig2-positive cells were increased at 2dpi (p < .01) and 7dpi (p < .01), respectively, in young mice subjected to cFPI, changes not observed in aged mice. Proliferating Olig2+/Nestin+ cells were less common (p < .05) in the white matter of brain-injured aged mice, without difference in proliferating Olig2+/PDGFRα+ cells, indicating a diminished proliferation of progenitors with different spatial origin. Following TBI, co-staining for EdU/CC1/Olig2 revealed a reduced number of newly generated mature oligodendrocytes in the white matter of aged mice when compared to the young, brain-injured mice (p < .05). We observed an age-related decline of oligodendrogenesis following experimental TBI that may contribute to the worse outcome of elderly patients following TBI.
Collapse
Affiliation(s)
| | - Fredrik Clausen
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ilknur Özen
- Department of Clinical Sciences, Neurosurgery, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Department of Clinical Sciences, Neurosurgery, Lund University, Lund, Sweden
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences, Neurosurgery, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
5
|
Aggarwal N, Oler JA, Tromp DPM, Roseboom PH, Riedel MK, Elam VR, Brotman MA, Kalin NH. A preliminary study of the effects of an antimuscarinic agent on anxious behaviors and white matter microarchitecture in nonhuman primates. Neuropsychopharmacology 2024; 49:405-413. [PMID: 37516801 PMCID: PMC10724160 DOI: 10.1038/s41386-023-01686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Myelination subserves efficient neuronal communication, and alterations in white matter (WM) microstructure have been implicated in numerous psychiatric disorders, including pathological anxiety. Recent work in rodents suggests that muscarinic antagonists may enhance myelination with behavioral benefits; however, the neural and behavioral effects of muscarinic antagonists have yet to be explored in non-human primates (NHP). Here, as a potentially translatable therapeutic strategy for human pathological anxiety, we present data from a first-in-primate study exploring the effects of the muscarinic receptor antagonist solifenacin on anxious behaviors and WM microstructure. 12 preadolescent rhesus macaques (6 vehicle control, 6 experimental; 8F, 4M) were included in a pre-test/post-test between-group study design. The experimental group received solifenacin succinate for ~60 days. Subjects underwent pre- and post-assessments of: 1) anxious temperament (AT)-related behaviors in the potentially threatening no-eye-contact (NEC) paradigm (30-min); and 2) WM and regional brain metabolism imaging metrics, including diffusion tensor imaging (DTI), quantitative relaxometry (QR), and FDG-PET. In relation to anxiety-related behaviors expressed during the NEC, significant Group (vehicle control vs. solifenacin) by Session (pre vs. post) interactions were found for freezing, cooing, and locomotion. Compared to vehicle controls, solifenacin-treated subjects exhibited effects consistent with reduced anxiety, specifically decreased freezing duration, increased locomotion duration, and increased cooing frequency. Furthermore, the Group-by-Session-by-Sex interaction indicated that these effects occurred predominantly in the males. Exploratory whole-brain voxelwise analyses of post-minus-pre differences in DTI, QR, and FDG-PET metrics revealed some solifenacin-related changes in WM microstructure and brain metabolism. These findings in NHPs support the further investigation of the utility of antimuscarinic agents in targeting WM microstructure as a means to treat pathological anxiety.
Collapse
Affiliation(s)
- Nakul Aggarwal
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA.
| | - Jonathan A Oler
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Do P M Tromp
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Patrick H Roseboom
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Marissa K Riedel
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Victoria R Elam
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Melissa A Brotman
- Neuroscience and Novel Therapeutics Unit, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| |
Collapse
|
6
|
Lopez-Lee C, Kodama L, Fan L, Wong MY, Foxe NR, Jiaz L, Yu F, Ye P, Zhu J, Norman K, Torres ER, Kim RD, Mousa GA, Dubal D, Liddelow S, Luo W, Gan L. Sex Chromosomes and Gonads Shape the Sex-Biased Transcriptomic Landscape in Tlr7-Mediated Demyelination During Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558439. [PMID: 37781600 PMCID: PMC10541118 DOI: 10.1101/2023.09.19.558439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Demyelination occurs in aging and associated diseases, including Alzheimer's disease. Several of these diseases exhibit sex differences in prevalence and severity. Biological sex primarily stems from sex chromosomes and gonads releasing sex hormones. To dissect mechanisms underlying sex differences in demyelination of aging brains, we constructed a transcriptomic atlas of cell type-specific responses to illustrate how sex chromosomes, gonads, and their interaction shape responses to demyelination. We found that sex-biased oligodendrocyte and microglial responses are driven by interaction of sex chromosomes and gonads prior to myelin loss. Post demyelination, sex chromosomes mainly guide microglial responses, while gonadal composition influences oligodendrocyte signaling. Significantly, ablation of the X-linked gene Toll-like receptor 7 (Tlr7), which exhibited sex-biased expression during demyelination, abolished the sex-biased responses and protected against demyelination.
Collapse
Affiliation(s)
- Chloe Lopez-Lee
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Lay Kodama
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA
| | - Li Fan
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Man Ying Wong
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Nessa R. Foxe
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Laraib Jiaz
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Fangmin Yu
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Pearly Ye
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Jingjie Zhu
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Kendra Norman
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Eileen Ruth Torres
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Rachel D. Kim
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY
| | - Gergey Alzaem Mousa
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Dena Dubal
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Shane Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY
| | - Wenjie Luo
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Li Gan
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
7
|
Fabres RB, Cardoso DS, Aragón BA, Arruda BP, Martins PP, Ikebara JM, Drobyshevsky A, Kihara AH, de Fraga LS, Netto CA, Takada SH. Consequences of oxygen deprivation on myelination and sex-dependent alterations. Mol Cell Neurosci 2023; 126:103864. [PMID: 37268283 DOI: 10.1016/j.mcn.2023.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/07/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.
Collapse
Affiliation(s)
- Rafael Bandeira Fabres
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Débora Sterzeck Cardoso
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | | | - Bruna Petrucelli Arruda
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Pamela Pinheiro Martins
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Juliane Midori Ikebara
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | | | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Luciano Stürmer de Fraga
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre 90050-170, Brazil
| | - Carlos Alexandre Netto
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil.
| |
Collapse
|
8
|
Brivio E, Kos A, Ulivi AF, Karamihalev S, Ressle A, Stoffel R, Hirsch D, Stelzer G, Schmidt MV, Lopez JP, Chen A. Sex shapes cell-type-specific transcriptional signatures of stress exposure in the mouse hypothalamus. Cell Rep 2023; 42:112874. [PMID: 37516966 DOI: 10.1016/j.celrep.2023.112874] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Stress-related psychiatric disorders and the stress system show prominent differences between males and females, as well as strongly divergent transcriptional changes. Despite several proposed mechanisms, we still lack the understanding of the molecular processes at play. Here, we explore the contribution of cell types to transcriptional sex dimorphism using single-cell RNA sequencing. We identify cell-type-specific signatures of acute restraint stress in the paraventricular nucleus of the hypothalamus, a central hub of the stress response, in male and female mice. Further, we show that a history of chronic mild stress alters these signatures in a sex-specific way, and we identify oligodendrocytes as a major target for these sex-specific effects. This dataset, which we provide as an online interactive app, offers the transcriptomes of thousands of individual cells as a molecular resource for an in-depth dissection of the interplay between cell types and sex on the mechanisms of the stress response.
Collapse
Affiliation(s)
- Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | - Stoyo Karamihalev
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Andrea Ressle
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Stelzer
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
9
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
10
|
Pletzer B, Winkler-Crepaz K, Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 2023; 69:101060. [PMID: 36758768 DOI: 10.1016/j.yfrne.2023.101060] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
In this review we systematically summarize the effects of progesterone and synthetic progestins on neurogenesis, synaptogenesis, myelination and six neurotransmitter systems. Several parallels between progesterone and older generation progestin actions emerged, suggesting actions via progesterone receptors. However, existing results suggest a general lack of knowledge regarding the effects of currently used progestins in hormonal contraception regarding these cellular and molecular brain parameters. Human neuroimaging studies were reviewed with a focus on randomized placebo-controlled trials and cross-sectional studies controlling for progestin type. The prefrontal cortex, amygdala, salience network and hippocampus were identified as regions of interest for future preclinical studies. This review proposes a series of experiments to elucidate the cellular and molecular actions of contraceptive progestins in these areas and link these actions to behavioral markers of emotional and cognitive functioning. Emotional effects of contraceptive progestins appear to be related to 1) alterations in the serotonergic system, 2) direct/indirect modulations of inhibitory GABA-ergic signalling via effects on the allopregnanolone content of the brain, which differ between androgenic and anti-androgenic progestins. Cognitive effects of combined oral contraceptives appear to depend on the ethinylestradiol dose.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg Austria.
| | | | - Katharina Hillerer
- Department of Gynaecology & Obstetrics, Private Medical University, Salzburg, Austria
| |
Collapse
|
11
|
McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It's complicated. Front Immunol 2022; 13:1059833. [PMID: 36518769 PMCID: PMC9742606 DOI: 10.3389/fimmu.2022.1059833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be induced in many animal strains by inoculation with central nervous system antigens and adjuvant or by the passive transfer of lymphocytes reactive with these antigens and is widely used as an animal model for multiple sclerosis (MS). There are reports that female sex and pregnancy affect EAE. Here we review the effects of biological sex and the effects of pregnancy on the clinical features (including disease susceptibility) and pathophysiology of EAE. We also review reports of the possible mechanisms underlying these differences. These include sex-related differences in the immune system and in the central nervous system, the effects of hormones and the sex chromosomes and molecules unique to pregnancy. We also review sex differences in the response to factors that can modify the course of EAE. Our conclusion is that the effects of biological sex in EAE vary amongst animal models and should not be widely extrapolated. In EAE, it is therefore essential that studies looking at the effects of biological sex or pregnancy give full information about the model that is used (i.e. animal strain, sex, the inducing antigen, timing of EAE induction in relation to pregnancy, etc.). In addition, it would be preferable if more than one EAE model were used, to show if any observed effects are generalizable. This is clearly a field that requires further work. However, understanding of the mechanisms of sex differences could lead to greater understanding of EAE, and suggest possible therapies for MS.
Collapse
Affiliation(s)
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Nampoothiri S, Nogueiras R, Schwaninger M, Prevot V. Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat Metab 2022; 4:813-825. [PMID: 35879459 PMCID: PMC7613794 DOI: 10.1038/s42255-022-00610-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/15/2022] [Indexed: 01/03/2023]
Abstract
Communication between the periphery and the brain is key for maintaining energy homeostasis. To do so, peripheral signals from the circulation reach the brain via the circumventricular organs (CVOs), which are characterized by fenestrated vessels lacking the protective blood-brain barrier (BBB). Glial cells, by virtue of their plasticity and their ideal location at the interface of blood vessels and neurons, participate in the integration and transmission of peripheral information to neuronal networks in the brain for the neuroendocrine control of whole-body metabolism. Metabolic diseases, such as obesity and type 2 diabetes, can disrupt the brain-to-periphery communication mediated by glial cells, highlighting the relevance of these cell types in the pathophysiology of such complications. An improved understanding of how glial cells integrate and respond to metabolic and humoral signals has become a priority for the discovery of promising therapeutic strategies to treat metabolic disorders. This Review highlights the role of glial cells in the exchange of metabolic signals between the periphery and the brain that are relevant for the regulation of whole-body energy homeostasis.
Collapse
Affiliation(s)
- Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Ruben Nogueiras
- Universidade de Santiago de Compostela-Instituto de Investigation Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrition, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
13
|
Lewis JD, Acosta H, Tuulari JJ, Fonov VS, Collins DL, Scheinin NM, Lehtola SJ, Rosberg A, Lidauer K, Ukharova E, Saunavaara J, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H. Allometry in the corpus callosum in neonates: Sexual dimorphism. Hum Brain Mapp 2022; 43:4609-4619. [PMID: 35722945 PMCID: PMC9491283 DOI: 10.1002/hbm.25977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022] Open
Abstract
The corpus callosum (CC) is the largest fiber tract in the human brain, allowing interhemispheric communication by connecting homologous areas of the two cerebral hemispheres. In adults, CC size shows a robust allometric relationship with brain size, with larger brains having larger callosa, but smaller brains having larger callosa relative to brain size. Such an allometric relationship has been shown in both males and females, with no significant difference between the sexes. But there is some evidence that there are alterations in these allometric relationships during development. However, it is currently not known whether there is sexual dimorphism in these allometric relationships from birth, or if it only develops later. We study this in neonate data. Our results indicate that there are already sex differences in these allometric relationships in neonates: male neonates show the adult‐like allometric relationship between CC size and brain size; however female neonates show a significantly more positive allometry between CC size and brain size than either male neonates or female adults. The underlying cause of this sexual dimorphism is unclear; but the existence of this sexual dimorphism in neonates suggests that sex‐differences in lateralization have prenatal origins.
Collapse
Affiliation(s)
- John D Lewis
- Montreal Neurological Institute and Hospital, McGill University, Quebec, Canada
| | - Henriette Acosta
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany.,FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Turku Collegium for Science and Medicine and Technology, University of Turku, Turku, Finland.,Department of Future Technologies, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Vladimir S Fonov
- Montreal Neurological Institute and Hospital, McGill University, Quebec, Canada
| | - D Louis Collins
- Montreal Neurological Institute and Hospital, McGill University, Quebec, Canada
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Aylin Rosberg
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Kristian Lidauer
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Elena Ukharova
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Jani Saunavaara
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
14
|
Gibson JM, Chu T, Zeng W, Wethall AC, Kong M, Mellen N, Devlin Phinney LA, Cai J. Perinatal methadone exposure attenuates myelination and induces oligodendrocyte apoptosis in neonatal rat brain. Exp Biol Med (Maywood) 2022; 247:1067-1079. [PMID: 35475383 PMCID: PMC9265527 DOI: 10.1177/15353702221090457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/09/2022] [Indexed: 11/15/2022] Open
Abstract
Methadone (MTD) is a commonly prescribed treatment for opioid use disorder in pregnancy, despite limited information on the effects of passive exposure on fetal brain development. Animal studies suggest a link between perinatal MTD exposure and impaired white matter development. In this study, we characterized the effect of perinatal MTD exposure through the evaluation of oligodendrocyte development and glial cell activation in the neonatal rat brain. Six pregnant Sprague Dawley rat dams were randomized to MTD (0.2 mL/L) or untreated drinking water from embryonic day 7. Pups were terminated at postnatal day 7 and tissue sections were harvested from six randomly selected pups (one male and one female per litter) of each experimental group for immunohistochemistry in areas of corpus callosum (CC), lateral CC, external capsule (EC), and cerebellar white matter. In the MTD-exposed rat pups, myelination was significantly decreased in the CC, lateral CC, EC, and arbor vitae compared with the controls. The increased density and percentage of oligodendrocyte precursor cells (OPCs) were observed in the CC and cerebellar white matter. The highly active proliferation of OPCs as well as decreased density and percentage of differentiated oligodendrocytes were found in the cerebellum but no differences in the cerebrum. Apoptotic activities of both differentiated oligodendrocytes and myelinating oligodendrocytes were significantly increased in all regions of the cerebrum and cerebellum after MTD exposure. There was no quantitative difference in astrocyte, however, cell density and/or morphologic difference consistent with activation were observed in microglia throughout MTD-exposed CC and cerebellum. Taken together, perinatal MTD exposure reveals global attenuation of myelination, accelerated apoptosis of both differentiated and myelinating oligodendrocytes, and microglia activation, supporting an association between antenatal MTD exposure and impaired myelination in the developing brain.
Collapse
Affiliation(s)
- Jennifer M Gibson
- Division of Neonatology, Department of Pediatrics, School of Medicine, University of Louisville, Norton Children’s Hospital, Norton Healthcare, Louisville, KY 40202, USA
| | - Tianci Chu
- Pediatric Research Institute, Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Wenxin Zeng
- Pediatric Research Institute, Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Ashley C Wethall
- Division of Neonatology, Department of Pediatrics, School of Medicine, University of Louisville, Norton Children’s Hospital, Norton Healthcare, Louisville, KY 40202, USA
- Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, School of Public Health & Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Nicholas Mellen
- Department of Neurology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Lori A Devlin Phinney
- Division of Neonatology, Department of Pediatrics, School of Medicine, University of Louisville, Norton Children’s Hospital, Norton Healthcare, Louisville, KY 40202, USA
| | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
15
|
Wegener AJ, Neigh GN. Animal Models of Anxiety and Depression: Incorporating the Underlying Mechanisms of Sex Differences in Macroglia Biology. Front Behav Neurosci 2021; 15:780190. [PMID: 34955780 PMCID: PMC8695436 DOI: 10.3389/fnbeh.2021.780190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Animal models have been utilized to explore the mechanisms by which mood disorders develop. Ethologically based stress paradigms are used to induce behavioral responses consistent with those observed in humans suffering from anxiety and depression. While mood disorders are more often diagnosed in women, animal studies are more likely to be carried out in male rodents. However, understanding the mechanisms behind anxiety- and depressive-like behaviors in both sexes is necessary to increase the predictive and construct validity of the models and identify therapeutic targets. To understand sex differences following stress, we must consider how all cell types within the central nervous system are influenced by the neuroendocrine system. This review article discusses the effects of stress and sex steroids on the macroglia: astrocytes and oligodendrocytes. Glia are involved in shaping the synapse through the regulation of neurotransmitter levels and energy resources, making them essential contributors to neural dynamics following stress. As the role of glia in neuromodulation has become more apparent, studies exploring the mechanisms by which glia are altered by stress and steroids will provide insight into sex differences in animal models. These insights will facilitate the optimization of animal models of psychiatric disorders and development of future therapeutic targets.
Collapse
Affiliation(s)
- Amy J Wegener
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
16
|
Human-Induced Pluripotent Stem Cell-Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:57-88. [PMID: 34921676 DOI: 10.1007/5584_2021_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence of neurodegenerative diseases is steadily increasing worldwide, and epidemiological studies strongly suggest that many of the diseases are sex-biased. It has long been suggested that biological sex differences are crucial for neurodegenerative diseases; however, how biological sex affects disease initiation, progression, and severity is not well-understood. Sex is a critical biological variable that should be taken into account in basic research, and this review aims to highlight the utility of human-induced pluripotent stem cells (iPSC)-derived models for studying sex-specific differences in neurodegenerative diseases, with advantages and limitations. In vitro systems utilizing species-specific, renewable, and physiologically relevant cell sources can provide powerful platforms for mechanistic studies, toxicity testings, and drug discovery. Matched healthy, patient-derived, and gene-corrected human iPSCs, from both sexes, can be utilized to generate neuronal and glial cell types affected by specific neurodegenerative diseases to study sex-specific differences in two-dimensional (2D) and three-dimensional (3D) human culture systems. Such relatively simple and well-controlled systems can significantly contribute to the elucidation of molecular mechanisms underlying sex-specific differences, which can yield effective, and potentially sex-based strategies, against neurodegenerative diseases.
Collapse
|
17
|
Kumar M, Rainville JR, Williams K, Lile JA, Hodes GE, Vassoler FM, Turner JR. Sexually dimorphic neuroimmune response to chronic opioid treatment and withdrawal. Neuropharmacology 2021; 186:108469. [PMID: 33485944 PMCID: PMC7988821 DOI: 10.1016/j.neuropharm.2021.108469] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/30/2022]
Abstract
Opioid use disorder is a leading cause of morbidity and mortality in the United States. Increasing pre-clinical and clinical evidence demonstrates sex differences in opioid use and dependence. However, the underlying molecular mechanisms contributing to these effects, including neuroinflammation, are still obscure. Therefore, in this study, we investigated the effect of oxycodone exposure and withdrawal on sex- and region-specific neuroimmune response. Real-time PCR and multiplex cytokine array analysis demonstrated elevated neuroinflammation with increased pro-inflammatory cytokine levels, and aberrant oligodendroglial response in reward neurocircuitry, following withdrawal from chronic oxycodone treatment. Chronic oxycodone and withdrawal treated male mice had lower mRNA expression of TMEM119 along with elevated protein levels of pro-inflammatory cytokines/chemokines and growth factors (IL-1β, IL-2, IL-7, IL-9, IL-12, IL-15, IL17, M-CSF, VEGF) in the prefrontal cortex (PFC) as compared to their female counterparts. In contrast, reduced levels of pro-inflammatory cytokines/chemokines (IL-1β, IL-6, IL-9, IL-12, CCL11) was observed in the nucleus accumbens (NAc) of oxycodone and withdrawal-treated males as compared to female mice. No treatment specific effects were observed on the mRNA expression of putative microglial activation markers (Iba1, CD68), but an overall sex specific decrease in the mRNA expression of Iba1 and CD68 was found in the PFC and NAc of male mice as compared to females. Moreover, a sex and region-specific increase in the mRNA levels of oligodendrocyte lineage markers (NG2, Sox10) was also observed in oxycodone and withdrawal treated animals. These findings may open a new avenue for the development of sex-specific precision therapeutics for opioid dependence by targeting region-specific neuroimmune signaling.
Collapse
Affiliation(s)
- Mohit Kumar
- University of Kentucky, College of Pharmacy, KY, USA
| | - Jennifer R Rainville
- Virginia Polytechnic Institute and State University, School of Neuroscience, VA, USA
| | - Kori Williams
- University of Kentucky, College of Pharmacy, KY, USA
| | - Joshua A Lile
- University of Kentucky, College of Medicine, KY, USA
| | - Georgia E Hodes
- Virginia Polytechnic Institute and State University, School of Neuroscience, VA, USA
| | - Fair M Vassoler
- Tufts University, Cummings School of Veterinary Medicine, MA, USA
| | - Jill R Turner
- University of Kentucky, College of Pharmacy, KY, USA.
| |
Collapse
|
18
|
Long KLP, Breton JM, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan. Biomolecules 2021; 11:biom11020283. [PMID: 33672939 PMCID: PMC7918364 DOI: 10.3390/biom11020283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
The brain’s capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, the creation of new OLs, can be dramatically influenced during early development and in adulthood by internal and environmental conditions such as hormones. Here, we review the current literature describing hormonal regulation of oligodendrogenesis within physiological conditions, focusing on several classes of hormones: steroid, peptide, and thyroid hormones. We discuss hormonal regulation at each stage of oligodendrogenesis and describe mechanisms of action, where known. Overall, the majority of hormones enhance oligodendrogenesis, increasing OPC differentiation and inducing maturation and myelin production in OLs. The mechanisms underlying these processes vary for each hormone but may ultimately converge upon common signaling pathways, mediated by specific receptors expressed across the OL lineage. However, not all of the mechanisms have been fully elucidated, and here, we note the remaining gaps in the literature, including the complex interactions between hormonal systems and with the immune system. In the companion manuscript in this issue, we discuss the implications of hormonal regulation of oligodendrogenesis for neurological and psychiatric disorders characterized by white matter loss. Ultimately, a better understanding of the fundamental mechanisms of hormonal regulation of oligodendrogenesis across the entire lifespan, especially in vivo, will progress both basic and translational research.
Collapse
Affiliation(s)
- Kimberly L. P. Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Correspondence:
| | - Jocelyn M. Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
| | - Matthew K. Barraza
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA;
| | - Olga S. Perloff
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
19
|
Kim GS, Uddin M. Sex-specific and shared expression profiles of vulnerability and resilience to trauma in brain and blood. Biol Sex Differ 2020; 11:13. [PMID: 32228684 PMCID: PMC7106761 DOI: 10.1186/s13293-020-00288-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While post-traumatic stress disorder (PTSD) is defined by behavioral/cognitive symptoms most directly relevant to brain function, it can be considered a systemic disorder characterized by a distinct inability to reinstate homeostasis after trauma. METHODS In this study, we conducted a secondary analysis of gene expression profiles in key PTSD-relevant tissues, namely blood, amygdala, and hippocampus, from a rat model of PTSD, to identify sex-specific and shared processes associated with individual differences in response to recent trauma exposure. RESULTS Our findings suggest both shared and sex-specific mechanisms underlying individual differences associated with vulnerability and resilience to trauma in hippocampus, amygdala, and blood. By disentangling cell composition from transcriptional changes, we found higher proportions of hippocampal oligodendrocytes in the PTSD-like, extreme behavioral response (EBR) group for both sexes and also identified modules for transcriptional activity associated with group differences (i.e., response to trauma) in the hippocampus that appeared to be sex-specific. By contrast, we found prominent sex differences, but no group differences, in amygdalar cell composition, and both shared and sex-specific modules representing PTSD-relevant transcriptional activity in the amygdala. Across amygdala and hippocampus, both sex-specific and shared processes were relevant to an overarching framework for EBR implicating disrupted TNFα/NFκΒ signaling and excitatory/inhibitory imbalance in dysregulated synaptic/structural plasticity with important implications for fear learning and memory. Our main finding in peripheral blood was consistent with the human literature and identified wound healing processes and hemostasis to be upregulated in the resilient, minimal behavioral response (MBR) group across sexes, but disrupted in a sexually dimorphic manner in the EBR group. CONCLUSION In contrast to the varied characterization of the PTSD-like EBR group, characterization of MBR across blood, amygdala, and hippocampus suggests a common theme of upregulated wound healing and extracellular matrix (ECM) remodeling shared between sexes. In all, we identified differential oligodendrocyte proportions in hippocampus between PTSD-like EBR and resilient MBR, and identified processes and pathways that characterize the EBR and MBR-associated transcriptional changes across hippocampus, amygdala, and blood. The sex-specific mechanisms involved in EBR may contribute to the pronounced disparity in risk for PTSD, with women much more likely to develop PTSD.
Collapse
Affiliation(s)
- Grace S Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Medical Scholars Program, University of Illinois College of Medicine at Urbana-Champaign, Urbana, IL, USA
| | - Monica Uddin
- Genomics Program, Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Ste. 304, Tampa, FL, 33612, USA.
| |
Collapse
|
20
|
Mizrak D, Levitin HM, Delgado AC, Crotet V, Yuan J, Chaker Z, Silva-Vargas V, Sims PA, Doetsch F. Single-Cell Analysis of Regional Differences in Adult V-SVZ Neural Stem Cell Lineages. Cell Rep 2020; 26:394-406.e5. [PMID: 30625322 PMCID: PMC6368857 DOI: 10.1016/j.celrep.2018.12.044] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
The ventricular-subventricular zone (V-SVZ) harbors adult neural stem cells. V-SVZ neural stem cells exhibit features of astrocytes, have a regional identity, and depending on their location in the lateral or septal wall of the lateral ventricle, generate different types of neuronal and glial progeny. We performed large-scale single-cell RNA sequencing to provide a molecular atlas of cells from the lateral and septal adult V-SVZ of male and female mice. This revealed regional and sex differences among adult V-SVZ cells. We uncovered lineage potency bias at the single-cell level among lateral and septal wall astrocytes toward neurogenesis and oligodendrogenesis, respectively. Finally, we identified transcription factor co-expression modules marking key temporal steps in neurogenic and oligodendrocyte lineage progression. Our data suggest functionally important spatial diversity in neurogenesis and oligodendrogenesis in the adult brain and reveal molecular correlates of adult NSC dormancy and lineage specialization. Mizrak et al. performed large-scale, single-cell RNA sequencing of the adult ventricular-subventricular zone neural stem cell niche. They identify regional differences between the lateral wall and septal wall, as well as sex differences in cell types and signaling pathways.
Collapse
Affiliation(s)
- Dogukan Mizrak
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hanna Mendes Levitin
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ana C Delgado
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Valerie Crotet
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Jinzhou Yuan
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Zayna Chaker
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Peter A Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| | - Fiona Doetsch
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
21
|
Tromp DP, Fox AS, Oler JA, Alexander AL, Kalin NH. The Relationship Between the Uncinate Fasciculus and Anxious Temperament Is Evolutionarily Conserved and Sexually Dimorphic. Biol Psychiatry 2019; 86:890-898. [PMID: 31542153 PMCID: PMC6910082 DOI: 10.1016/j.biopsych.2019.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Anxious temperament (AT) is an early-life heritable trait that predisposes individuals to develop anxiety and depressive disorders. Our previous work in preadolescent children suggests alterations in the uncinate fasciculus (UF), the white matter tract that connects prefrontal with limbic regions, in boys with anxiety disorders. Here, using a nonhuman primate model of AT, we tested whether this sexually dimorphic finding is evolutionarily conserved and examined the extent to which heritable and environmental influences contribute to UF microstructure. METHODS Diffusion tensor images were collected in 581 young rhesus monkeys (1.89 ± 0.77 years old; 43.9% female). Using tract-based analyses, we assessed the relationship among AT, UF microstructure (as measured with fractional anisotropy), and sex. Heritability of tract microstructure was determined using oligogenic linkage analysis of this large multigenerational pedigree. RESULTS We predicted and found a negative relation between AT and UF fractional anisotropy in male but not female monkeys (AT × sex; p = .032, 1-tailed). Additionally, heritability analyses revealed that variation in UF fractional anisotropy was largely due to nonheritable factors (h2 = 0.185, p = .077). CONCLUSIONS These results demonstrate a cross-species, male-specific relation between UF microstructure and anxiety and provide a potential substrate for anxiety-related prefrontal-limbic dysregulation. The heritability analyses point to the importance of environmental influences on UF microstructure, which could be important in mediating the nonheritable components of pathological anxiety. These findings have the potential to guide new treatment strategies for childhood anxiety disorders and further support the use of nonhuman primates as a translational model to discover mechanisms underlying the development of anxiety.
Collapse
Affiliation(s)
- Do P.M. Tromp
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA,Neuroscience Training Program, University of Wisconsin, Madison, WI, USA,HealthEmotion Research Institute, University of Wisconsin, Madison, WI, USA
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA, USA,California National Primate Research Center, University of California, Davis, CA, USA
| | - Jonathan A. Oler
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA,HealthEmotion Research Institute, University of Wisconsin, Madison, WI, USA
| | - Andrew L. Alexander
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA,Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Ned H. Kalin
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA,Neuroscience Training Program, University of Wisconsin, Madison, WI, USA,HealthEmotion Research Institute, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
22
|
Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides. Neuropsychopharmacology 2019; 44:2099-2111. [PMID: 31374562 PMCID: PMC6897926 DOI: 10.1038/s41386-019-0471-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Glial dysfunction is a major pathophysiological feature of mood disorders. While altered astrocyte (AS) and oligodendrocyte-lineage (OL) functions have been associated with depression, the crosstalk between these glial cell types has never been assessed in that context. AS are potent regulators of myelination, in part through gap junction (GJ) channels formed by the heterotypic coupling of AS-specific (Cx30 and Cx43) and OL-specific (Cx32 and Cx47) connexins. This study therefore aimed at addressing the integrity of AS/OL coupling in the anterior cingulate cortex (ACC) of depressed suicides. Using immunofluorescence and confocal imaging, we characterized the distribution of Cx30 and mapped its expression onto OL somas, myelinated axons, and brain vasculature in postmortem brain samples from depressed suicides (N = 48) and matched controls (N = 23). Differential gene expression of key components of the GJ nexus was also screened through RNA-sequencing previously generated by our group, and validated by quantitative real-time PCR. We show that Cx30 expression localized onto OL cells and myelinated fibers is decreased in deep cortical layers of the ACC in male-depressed suicides. This effect was associated with decreased expression of OL-specific connexins, as well as the downregulation of major connexin-interacting proteins essential for the scaffolding, trafficking, and function of GJs. These results provide a first evidence of impaired AS/OL GJ-mediated communication in the ACC of individuals with mood disorders. These changes in glial coupling are likely to have significant impact on brain function, and may contribute to the altered OL function previously reported in this brain region.
Collapse
|
23
|
Chu T, Zhang YP, Tian Z, Ye C, Zhu M, Shields LBE, Kong M, Barnes GN, Shields CB, Cai J. Dynamic response of microglia/macrophage polarization following demyelination in mice. J Neuroinflammation 2019; 16:188. [PMID: 31623610 PMCID: PMC6798513 DOI: 10.1186/s12974-019-1586-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The glial response in multiple sclerosis (MS), especially for recruitment and differentiation of oligodendrocyte progenitor cells (OPCs), predicts the success of remyelination of MS plaques and return of function. As a central player in neuroinflammation, activation and polarization of microglia/macrophages (M/M) that modulate the inflammatory niche and cytokine components in demyelination lesions may impact the OPC response and progression of demyelination and remyelination. However, the dynamic behaviors of M/M and OPCs during demyelination and spontaneous remyelination are poorly understood, and the complex role of neuroinflammation in the demyelination-remyelination process is not well known. In this study, we utilized two focal demyelination models with different dynamic patterns of M/M to investigate the correlation between M/M polarization and the demyelination-remyelination process. METHODS The temporal and spatial features of M/M activation/polarization and OPC response in two focal demyelination models induced by lysolecithin (LPC) and lipopolysaccharide (LPS) were examined in mice. Detailed discrimination of morphology, sensorimotor function, diffusion tensor imaging (DTI), inflammation-relevant cytokines, and glial responses between these two models were analyzed at different phases. RESULTS The results show that LPC and LPS induced distinctive temporal and spatial lesion patterns. LPS produced diffuse demyelination lesions, with a delayed peak of demyelination and functional decline compared to LPC. Oligodendrocytes, astrocytes, and M/M were scattered throughout the LPS-induced demyelination lesions but were distributed in a layer-like pattern throughout the LPC-induced lesion. The specific M/M polarization was tightly correlated to the lesion pattern associated with balance beam function. CONCLUSIONS This study elaborated on the spatial and temporal features of neuroinflammation mediators and glial response during the demyelination-remyelination processes in two focal demyelination models. Specific M/M polarization is highly correlated to the demyelination-remyelination process probably via modulations of the inflammatory niche, cytokine components, and OPC response. These findings not only provide a basis for understanding the complex and dynamic glial phenotypes and behaviors but also reveal potential targets to promote/inhibit certain M/M phenotypes at the appropriate time for efficient remyelination.
Collapse
Affiliation(s)
- Tianci Chu
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA
| | - Zhisen Tian
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chuyuan Ye
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Mingming Zhu
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, 40202, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
24
|
Sex-Dependent Effects of Perinatal Inflammation on the Brain: Implication for Neuro-Psychiatric Disorders. Int J Mol Sci 2019; 20:ijms20092270. [PMID: 31071949 PMCID: PMC6539135 DOI: 10.3390/ijms20092270] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
Individuals born preterm have higher rates of neurodevelopmental disorders such as schizophrenia, autistic spectrum, and attention deficit/hyperactivity disorders. These conditions are often sexually dimorphic and with different developmental trajectories. The etiology is likely multifactorial, however, infections both during pregnancy and in childhood have emerged as important risk factors. The association between sex- and age-dependent vulnerability to neuropsychiatric disorders has been suggested to relate to immune activation in the brain, including complex interactions between sex hormones, brain transcriptome, activation of glia cells, and cytokine production. Here, we will review sex-dependent effects on brain development, including glia cells, both under normal physiological conditions and following perinatal inflammation. Emphasis will be given to sex-dependent effects on brain regions which play a role in neuropsychiatric disorders and inflammatory reactions that may underlie early-life programming of neurobehavioral disturbances later in life.
Collapse
|
25
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Tibullo D, Li Volti G, Barbagallo I, Vicario N, Musumeci G, Di Rosa M. Middle-aged healthy women and Alzheimer's disease patients present an overlapping of brain cell transcriptional profile. Neuroscience 2019; 406:333-344. [DOI: 10.1016/j.neuroscience.2019.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/30/2022]
|
26
|
Morgan CP, Bale TL. Sex differences in microRNA-mRNA networks: examination of novel epigenetic programming mechanisms in the sexually dimorphic neonatal hypothalamus. Biol Sex Differ 2017; 8:27. [PMID: 28810930 PMCID: PMC5558756 DOI: 10.1186/s13293-017-0149-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sexual differentiation of the male brain, and specifically the stress circuitry in the hypothalamus, is primarily driven by estrogen exposure during the perinatal period. Surprisingly, this single hormone promotes diverse programs of sex-specific development that vary widely between different cell types and across the developing male brain. The complexity of this phenomenon suggests that additional layers of gene regulation, including microRNAs (miRNAs), must act downstream of estrogen to mediate this specificity. METHODS To identify noncanonical mediators of estrogen-dependent sex-specific neural development, we assayed the miRNA complement of the mouse PN2 hypothalamus by microarray following an injection of vehicle or the aromatase inhibitor, formestane. Initially, multivariate analyses were used to test the influence of sex and experimental group on the miRNA environment as a whole. Then, we utilized traditional hypothesis testing to identify individual miRNA with significantly sex-biased expression. Finally, we performed a transcriptome-wide mapping of Argonaute footprints by high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (Ago HITS-CLIP) to empirically characterize targeting relationship between estrogen-responsive miRNAs and their messenger RNA (mRNA) targets. RESULTS In this study, we demonstrated that the neonatal hypothalamic miRNA environment has robust sex differences and is dynamically responsive to estrogen. Analyses identified 162 individual miRNAs with sex-biased expression, 92 of which were estrogen-responsive. Examining the genomic distribution of these miRNAs, we found three miRNA clusters encoded within a 175-kb region of chromosome 12 that appears to be co-regulated by estrogen, likely acting broadly to alter the epigenetic programming of this locus. Ago HITS-CLIP analysis uncovered novel miRNA-target interactions within prototypical mediators of estrogen-driven sexual differentiation of the brain, including Esr1 and Cyp19a1. Finally, using Gene Ontology annotations and empirically identified miRNA-mRNA connections, we identified a gene network regulated by estrogen-responsive miRNAs that converge on biological processes relevant to sexual differentiation of the brain. CONCLUSIONS Sexual differentiation of the perinatal brain, and that of stress circuitry in the hypothalamus specifically, seems to be particularly susceptible to environmental programming effects. Integrating miRNA into our conceptualization of factors, directing differentiation of this circuitry could be an informative next step in efforts to understand the complexities behind these processes.
Collapse
Affiliation(s)
- Christopher P Morgan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 380 South University Ave, 410F Hill Pavilion, Philadelphia, PA, 19104, USA
| | - Tracy L Bale
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 380 South University Ave, 410F Hill Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Bansal R, Singh R. Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: A literature review. Med Res Rev 2017; 38:1126-1158. [PMID: 28697282 DOI: 10.1002/med.21458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Neurodegeneration is a complex process, which leads to progressive brain damage due to loss of neurons. Despite exhaustive research, the cause of neuronal loss in various degenerative disorders is not entirely understood. Neuroprotective steroids constitute an important line of attack, which could play a major role against the common mechanisms associated with various neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Natural endogenous steroids induce the neuroprotection by protecting the nerve cells from neuronal injury through multiple mechanisms, therefore the structural modifications of the endogenous steroids could be helpful in the generation of new therapeutically useful neuroprotective agents. The review article will keep the readers apprised of the detailed description of natural as well as synthetic neuroprotective steroids from the medicinal chemistry point of view, which would be helpful in drug discovery efforts aimed toward neurodegenerative diseases.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
28
|
Hübner S, Sunny DE, Pöhlke C, Ruhnau J, Vogelgesang A, Reich B, Heckmann M. Protective Effects of Fetal Zone Steroids Are Comparable to Estradiol in Hyperoxia-Induced Cell Death of Immature Glia. Endocrinology 2017; 158:1419-1435. [PMID: 28323976 DOI: 10.1210/en.2016-1763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022]
Abstract
Impaired neurodevelopment in preterm infants is caused by prematurity itself; however, hypoxia/ischemia, inflammation, and hyperoxia contribute to the extent of impairment. Because preterm birth is accompanied by a dramatic decrease in 17β-estradiol (E2) and progesterone, preliminary clinical studies have been carried out to substitute these steroids in preterm infants; however, they failed to confirm significantly improved neurologic outcomes. We therefore hypothesized that the persistently high postnatal production of fetal zone steroids [mainly dehydroepiandrosterone (DHEA)] until term could interfere with E2-mediated protection. We investigated whether E2 could reduce hyperoxia-mediated apoptosis in three immature glial cell types and detected the involved receptors. Thereafter, we investigated protection by the fetal zone steroids DHEA, 16α-hydroxy-DHEA, and androstenediol. For DHEA, the involved receptors were evaluated. We examined aromatases, which convert fetal zone steroids into more estrogenic compounds. Finally, cotreatment was compared against single hormone treatment to investigate synergism. In all cell types, E2 and fetal zone steroids resulted in significant dose-dependent protection, whereas the mediating receptors differed. The neuroprotection by fetal zone steroids highly depended on the cell type-specific expression of aromatases, the receptor repertoire, and the potency of the fetal zone steroids toward these receptors. No synergism in fetal zone steroid and E2 cotreatment was detected in two of three cell types. Therefore, E2 supplementation may not be beneficial with respect to neuroprotection because fetal zone steroids circulate in persistently high concentrations until term in preterm infants. Hence, a refined experimental model for preterm infants is required to investigate potential treatments.
Collapse
Affiliation(s)
- Stephanie Hübner
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17457 Greifswald, Germany
| | - Donna E Sunny
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17457 Greifswald, Germany
| | - Christine Pöhlke
- Section of Neuroimmunology, Department of Neurology, University Medicine Greifswald, 17457 Greifswald, Germany
| | - Johanna Ruhnau
- Section of Neuroimmunology, Department of Neurology, University Medicine Greifswald, 17457 Greifswald, Germany
| | - Antje Vogelgesang
- Section of Neuroimmunology, Department of Neurology, University Medicine Greifswald, 17457 Greifswald, Germany
| | - Bettina Reich
- Pediatric Heart Center, Department of Pediatric Cardiology, Justus Liebig University, 35385 Giessen, Germany
| | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17457 Greifswald, Germany
| |
Collapse
|
29
|
Fields RD, Dutta DJ, Belgrad J, Robnett M. Cholinergic signaling in myelination. Glia 2017; 65:687-698. [PMID: 28101995 DOI: 10.1002/glia.23101] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 11/08/2022]
Abstract
There is a long history of research on acetylcholine (ACh) function in myelinating glia, but a resurgence of interest recently as a result of the therapeutic potential of manipulating ACh signaling to promote remyelination, and the broader interest in neurotransmitter signaling in activity-dependent myelination. Myelinating glia express all the major types of muscarinic and nicotinic ACh receptors at different stages of development, and acetylcholinesterase and butyrylcholinesterase are highly expressed in white matter. This review traces the history of research on ACh signaling in Schwann cells, oligodendrocytes, and in the myelin sheath, and summarizes current knowledge on the intracellular signaling and functional consequences of ACh signaling in myelinating glia. Implications of ACh in diseases, such as Alzheimer's disease, multiple sclerosis, and white matter toxicity caused by pesticides are considered, together with an outline of major questions for future research. GLIA 2017;65:687-698.
Collapse
Affiliation(s)
- R Douglas Fields
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland
| | - Dipankar J Dutta
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Jillian Belgrad
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland
| | - Maya Robnett
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland
| |
Collapse
|
30
|
17 β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7891202. [PMID: 27872858 PMCID: PMC5107215 DOI: 10.1155/2016/7891202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation.
Collapse
|
31
|
Development of a high throughput drug screening assay to identify compounds that protect oligodendrocyte viability and differentiation under inflammatory conditions. BMC Res Notes 2016; 9:444. [PMID: 27629829 PMCID: PMC5024459 DOI: 10.1186/s13104-016-2219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022] Open
Abstract
Background Newly proliferated oligodendrocyte precursor cells (OPCs) migrate and surround lesions of patients with multiple sclerosis (MS) and other demyelinating diseases, but fail to differentiate into oligodendrocytes (OLs) and remyelinate remaining viable axons. The abundance of secreted inflammatory factors within and surrounding these lesions likely plays a major inhibitory role, promoting cell death and preventing OL differentiation and axon remyelination. To identify clinical candidate compounds that may protect existing and differentiating OLs in patients, we have developed a high throughput screening (HTS) assay that utilizes purified rat OPCs. Results Using a fluorescent indicator of cell viability coupled with image quantification, we developed an assay to allow the identification of compounds that promote OL viability and differentiation in the presence of the synergistic inflammatory cytokines, tumor necrosis factor α and interferon-γ. We have utilized this assay to screen the NIH clinical collection library and identify compounds that protect OLs and promote OL differentiation in the presence of these inflammatory cytokines. Conclusion This primary OL-based cytokine protection assay is adaptable for HTS and may be easily modified for profiling of compounds in the presence of other potentially inhibitory molecules found in MS lesions. This assay should be of use to those interested in identifying drugs for the treatment of MS and other demyelinating diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2219-8) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
33
|
Expression of nestin in superior cervical ganglia of rats is influenced by gender and gonadectomy. J Chem Neuroanat 2015; 63:6-12. [DOI: 10.1016/j.jchemneu.2014.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 01/27/2023]
|
34
|
Appikatla S, Bessert D, Lee I, Hüttemann M, Mullins C, Somayajulu-Nitu M, Yao F, Skoff RP. Insertion of proteolipid protein into oligodendrocyte mitochondria regulates extracellular pH and adenosine triphosphate. Glia 2013; 62:356-73. [PMID: 24382809 DOI: 10.1002/glia.22591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 11/08/2022]
Abstract
Proteolipid protein (PLP) and DM20, the most abundant myelin proteins, are coded by the human PLP1 and non-human Plp1 PLP gene. Mutations in the PLP1 gene cause Pelizaeus-Merzbacher disease (PMD) with duplications of the native PLP1 gene accounting for 70% of PLP1 mutations. Humans with PLP1 duplications and mice with extra Plp1 copies have extensive neuronal degeneration. The mechanism that causes neuronal degeneration is unknown. We show that native PLP traffics to mitochondria when the gene is duplicated in mice and in humans. This report is the first demonstration of a specific cellular defect in brains of PMD patients; it validates rodent models as ideal models to study PMD. Insertion of nuclear-encoded mitochondrial proteins requires specific import pathways; we show that specific cysteine motifs, part of the Mia40/Erv1 mitochondrial import pathway, are present in PLP and are required for its insertion into mitochondria. Insertion of native PLP into mitochondria of transfected cells acidifies media, partially due to increased lactate; it also increases adenosine triphosphate (ATP) in the media. The same abnormalities are found in the extracellular space of mouse brains with extra copies of Plp1. These physiological abnormalities are preventable by mutations in PLP cysteine motifs, a hallmark of the Mia40/Erv1 pathway. Increased extracellular ATP and acidosis lead to neuronal degeneration. Our findings may be the mechanism by which microglia are activated and proinflammatory molecules are upregulated in Plp1 transgenic mice (Tatar et al. (2010) ASN Neuro 2:art:e00043). Manipulation of this metabolic pathway may restore normal metabolism and provide therapy for PMD patients.
Collapse
Affiliation(s)
- Sunita Appikatla
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tatar C, Bessert D, Tse H, Skoff RP. Determinants of central nervous system adult neurogenesis are sex, hormones, mouse strain, age, and brain region. Glia 2012; 61:192-209. [PMID: 23027402 DOI: 10.1002/glia.22426] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/30/2012] [Indexed: 11/11/2022]
Abstract
Multiple sclerosis is a sexually dimorphic (SD) disease that causes oligodendrocyte death, but SD of glial cells is poorly studied. Here, we analyze SD of neural progenitors in 6-8 weeks and 6-8 months normal C57BL/6, SJL/J, and BALB/c mice in the subventricular zone (SVZ), dorsolateral horn (DLC), corpus callosum (CC), and parenchyma. With a short 2-h bromodeoxyuridine (BrdU) pulse, no gender and strain differences are present at 6-8 weeks. At 6-8 months, the number of BrdU(+) cells decreases twofold in each sex, strain, and region, indicating that a common aging mechanism regulates BrdU incorporation. Strikingly, 2× more BrdU(+) cells are found in all brain regions in 6-8 months C57BL/6 females versus males, no gender differences in 6-8 months SJL/J, and fewer BrdU(+) cells in females versus males in BALB/cs. The number of BrdU(+) cells modestly fluctuates throughout the estrous cycle in C57BL/6 and SJLs. Castration causes a dramatic increase in BrdU(+) cells in SVZ and DLC. These findings indicate that testosterone is a major regulator of adult neural proliferation. At 6-8 months, the ratio of PDGFRα(+) cells in the CC to BrdU(+) cells in the DLC of both strains, sexes, estrous cycle, and castrated mice was essentially the same, suggesting that BrdU(+) cells in the DLC differentiate into CC oligodendrocytes. The ratio of TUNEL(+) to BrdU(+) cells does not match proliferation, indicating that these events are differentially regulated. Differential regulation of these two processes leads to the variation in glial numbers between gender and strain. Explanations of neural proliferation based upon data from one sex or strain may be very misleading.
Collapse
Affiliation(s)
- Carrie Tatar
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
36
|
Palliser HK, Yates DM, Hirst JJ. Progesterone receptor isoform expression in response to in utero growth restriction in the fetal guinea pig brain. Neuroendocrinology 2012; 96:60-7. [PMID: 22508316 DOI: 10.1159/000335138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 11/11/2011] [Indexed: 11/19/2022]
Abstract
Intra-uterine growth restriction (IUGR) is a significant in utero complication that can have profound effects on brain development including reduced myelination and deficits that can continue into adulthood. Progesterone increases oligodendrocyte proliferation and myelin expression, an action that may depend on the expression of progesterone receptor (PR) isoforms A (PRA) and B (PRB). The objective of this study was to determine the effect of IUGR on PR isoform expression in the brain of male and female fetuses and whether effects were associated with a reduction in myelination. We used a guinea pig model that involves selective reduction in maternal perfusion to the placenta at midgestation (35 days, term 70 days). This resulted in a significant reduction in body weight with marked sparing of brain weight. PRA, PRB and myelin basic protein (MBP) expression were measured in the brains of male and female growth-restricted and control fetuses at late gestation. MBP, as a measure of myelination, was found to decrease in association with IUGR in the CA1 hippocampal region with no change observed in the cortical white matter. There was a marked increase in PRA, PRB and total PR expression in the IUGR fetal brain. Control female fetuses demonstrated significantly higher PRA:PRB ratios than males; however, this sex difference was abolished with IUGR. These data suggest the central nervous system effects of clinical use of progesterone augmentation therapy in late pregnancy should be carefully evaluated. The overall upregulation of PR isoforms in association with IUGR suggests increased progesterone action and a possible neuroprotective mechanism.
Collapse
Affiliation(s)
- H K Palliser
- Mothers and Babies Research Centre and School of Biomedical Sciences, University of Newcastle, Newcastle, N.S.W., Australia. hannah.palliser @ newcastle.edu.au
| | | | | |
Collapse
|
37
|
Melcangi RC, Garcia-Segura LM. Sex differences in the injured brain. Horm Mol Biol Clin Investig 2011; 7:385-91. [DOI: 10.1515/hmbci.2011.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 08/15/2011] [Indexed: 11/15/2022]
Abstract
AbstractObservations obtained in human and in experimental models clearly demonstrate sex differences in degenerative events occurring in the central nervous system. The present review focuses on potential factors that may contribute to these sex-dimorphic features; in particular, morphological organization of the central nervous system and functional influence by neuroactive steroids, genes, and immune system are considered.
Collapse
|
38
|
Waldron J, McCourty A, Lecanu L. Aging differentially affects male and female neural stem cell neurogenic properties. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2010; 3:119-27. [PMID: 24198517 PMCID: PMC3781736 DOI: 10.2147/sccaa.s13035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose Neural stem cell transplantation as a brain repair strategy is a very promising technology. However, despite many attempts, the clinical success remains very deceiving. Despite clear evidence that sexual dimorphism rules many aspects of human biology, the occurrence of a sex difference in neural stem cell biology is largely understudied. Herein, we propose to determine whether gender is a dimension that drives the fate of neural stem cells through aging. Should it occur, we believe that neural stem cell sexual dimorphism and its variation during aging should be taken into account to refine clinical approaches of brain repair strategies. Methods Neural stem cells were isolated from the subventricular zone of three- and 20-month-old male and female Long-Evans rats. Expression of the estrogen receptors, ERα and ERβ, progesterone receptor, androgen receptor, and glucocorticoid receptor was analyzed and quantified by Western blotting on undifferentiated neural stem cells. A second set of neural stem cells was treated with retinoic acid to trigger differentiation, and the expression of neuronal, astroglial, and oligodendroglial markers was determined using Western blotting. Conclusion We provided in vitro evidence that the fate of neural stem cells is affected by sex and aging. Indeed, young male neural stem cells mainly expressed markers of neuronal and oligodendroglial fate, whereas young female neural stem cells underwent differentiation towards an astroglial phenotype. Aging resulted in a lessened capacity to express neuron and astrocyte markers. Undifferentiated neural stem cells displayed sexual dimorphism in the expression of steroid receptors, in particular ERα and ERβ, and the expression level of several steroid receptors increased during aging. Such sexual dimorphism might explain, at least in part, the sex difference in neural fate we observed in young and old neural stem cells. These results suggest that sex and aging are two factors to be taken into consideration for future neural stem cell transplantation protocols in brain repair strategies.
Collapse
Affiliation(s)
- Jay Waldron
- The Research Institute of the McGill University Health Centre, Montreal, Canada
| | | | | |
Collapse
|
39
|
Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 2010; 62:155-98. [PMID: 20392807 PMCID: PMC2879914 DOI: 10.1124/pr.109.002071] [Citation(s) in RCA: 480] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.
Collapse
Affiliation(s)
- Glenda E Gillies
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College Faculty of Medicine, DuCane Road, London W12ONN, UK.
| | | |
Collapse
|
40
|
Abstract
The myelin sheath wraps large axons in both the CNS and the PNS, and is a key determinant of efficient axonal function and health. Myelin is targeted in a series of diseases, notably multiple sclerosis (MS). In MS, demyelination is associated with progressive axonal damage, which determines the level of patient disability. The few treatments that are available for combating myelin damage in MS and related disorders, which largely comprise anti-inflammatory drugs, only show limited efficacy in subsets of patients. More-effective treatment of myelin disorders will probably be accomplished by early intervention with combinatorial therapies that target inflammation and other processes-for example, signaling pathways that promote remyelination. Indeed, evidence suggests that such pathways might be impaired in pathology and, hence, contribute to the failure of remyelination in such diseases. In this article, we review the molecular basis of signaling pathways that regulate myelination in the CNS and PNS, with a focus on signals that affect differentiation of myelinating glia. We also discuss factors such as extracellular molecules that act as modulators of these pathways. Finally, we consider the few preclinical and clinical trials of agents that augment this signaling.
Collapse
|
41
|
Cosimo Melcangi R, Garcia-Segura LM. Sex-specific therapeutic strategies based on neuroactive steroids: In search for innovative tools for neuroprotection. Horm Behav 2010; 57:2-11. [PMID: 19524584 DOI: 10.1016/j.yhbeh.2009.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 02/07/2023]
Abstract
Different pathologies of the central and peripheral nervous system show sex differences in their incidence, symptomatology and/or neurodegenerative outcome. These include Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple sclerosis, traumatic brain injury, stroke, autism, schizophrenia, depression, anxiety disorders, eating disorders and peripheral neuropathy. These sex differences reveal the need for sex-specific neuroprotective strategies. This review article and other manuscripts published in this issue of Hormones and Behavior analyze possible sex-specific therapeutic strategies based on neuroactive steroids. In particular in our introductory article, the possibility that sex differences in the levels or in the action of neuroactive steroids may represent causative factors for sex differences in the incidence or manifestation of pathologies of the nervous system is considered.
Collapse
Affiliation(s)
- Roberto Cosimo Melcangi
- Department of Endocrinology, Pathophysiology and Applied Biology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milano, Italy.
| | | |
Collapse
|
42
|
Cerghet M, Skoff RP, Swamydas M, Bessert D. Sexual dimorphism in the white matter of rodents. J Neurol Sci 2009; 286:76-80. [PMID: 19625027 DOI: 10.1016/j.jns.2009.06.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 06/10/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
Sexual dimorphism of astrocytes and neurons is well documented in many brain and spinal cord structures. Sexual dimorphism of oligodendrocytes (Olgs) and myelin has received less attention. We recently showed that density of Olgs in corpus callosum, fornix, and spinal cord of wild-type male rodents is more densely packed than in females; myelin proteins and myelin gene expression are likewise greater in males than in female rodents. However, glial cell proliferation and cell death were two times greater in female corpus callosum. Endogenous sex hormones, specifically lack of androgens, produce an Olg female phenotype in castrated male mouse. In vitro studies using Olgs culture also showed differences between males and females Olg survival and signaling pathways in response to sexual hormones. Sexual dimorphism of white matter tracts and glia in rodents indicates the necessity for controlling gender in the experimental studies of neurodegenerative disorders. Most importantly, our studies suggest that hormones may contribute to sexual dimorphism observed in certain human diseases including multiple sclerosis.
Collapse
Affiliation(s)
- Mirela Cerghet
- Henry Ford Health System, Detroit, MI 48202, United States.
| | | | | | | |
Collapse
|
43
|
Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. J Neurosci 2009; 29:6367-78. [PMID: 19439614 DOI: 10.1523/jneurosci.0234-09.2009] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although both extrinsic and intrinsic factors have been identified that orchestrate the differentiation and maturation of oligodendrocytes, less is known about the intracellular signaling pathways that control the overall commitment to differentiate. Here, we provide evidence that activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. Specifically, mTOR regulates oligodendrocyte differentiation at the late progenitor to immature oligodendrocyte transition as assessed by the expression of stage specific antigens and myelin proteins including MBP and PLP. Furthermore, phosphorylation of mTOR on Ser 2448 correlates with myelination in the subcortical white matter of the developing brain. We demonstrate that mTOR exerts its effects on oligodendrocyte differentiation through two distinct signaling complexes, mTORC1 and mTORC2, defined by the presence of the adaptor proteins raptor and rictor, respectively. Disrupting mTOR complex formation via siRNA mediated knockdown of raptor or rictor significantly reduced myelin protein expression in vitro. However, mTORC2 alone controlled myelin gene expression at the mRNA level, whereas mTORC1 influenced MBP expression via an alternative mechanism. In addition, investigation of mTORC1 and mTORC2 targets revealed differential phosphorylation during oligodendrocyte differentiation. In OPC-DRG cocultures, inhibiting mTOR potently abrogated oligodendrocyte differentiation and reduced numbers of myelin segments. These data support the hypothesis that mTOR regulates commitment to oligodendrocyte differentiation before myelination.
Collapse
|