1
|
Žužek MC. Advances in Cholinesterase Inhibitor Research-An Overview of Preclinical Studies of Selected Organoruthenium(II) Complexes. Int J Mol Sci 2024; 25:9049. [PMID: 39201735 PMCID: PMC11354293 DOI: 10.3390/ijms25169049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Cholinesterase (ChE) inhibitors are crucial therapeutic agents for the symptomatic treatment of certain chronic neurodegenerative diseases linked to functional disorders of the cholinergic system. Significant research efforts have been made to develop novel derivatives of classical ChE inhibitors and ChE inhibitors with novel scaffolds. Over the past decade, ruthenium complexes have emerged as promising novel therapeutic alternatives for the treatment of neurodegenerative diseases. Our research group has investigated a number of newly synthesized organoruthenium(II) complexes for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Three complexes (C1a, C1-C, and C1) inhibit ChE in a pharmacologically relevant range. C1a reversibly inhibits AChE and BChE without undesirable peripheral effects, making it a promising candidate for the treatment of Alzheimer's disease. C1-Cl complex reversibly and competitively inhibits ChEs, particularly AChE. It inhibits nerve-evoked skeletal muscle twitch and tetanic contraction in a concentration-dependent manner with no effect on directly elicited twitch and tetanic contraction and is promising for further preclinical studies as a competitive neuromuscular blocking agent. C1 is a selective, competitive, and reversible inhibitor of BChE that inhibits horse serum BChE (hsBChE) without significant effect on the peripheral neuromuscular system and is a highly species-specific inhibitor of hsBChE that could serve as a species-specific drug target. This research contributes to the expanding knowledge of ChE inhibitors based on ruthenium complexes and highlights their potential as promising therapeutic candidates for chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Monika C Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Maruyama T, Mano A, Ishii T, Kakinuma Y, Kaneda M. P2X 2 receptors supply extracellular choline as a substrate for acetylcholine synthesis. FEBS Open Bio 2021; 12:250-257. [PMID: 34787962 PMCID: PMC8727932 DOI: 10.1002/2211-5463.13332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
Acetylcholine (ACh), an excitatory neurotransmitter, is biosynthesized from choline in cholinergic neurons. Import from the extracellular space to the intracellular environment through the high-affinity choline transporter is currently regarded to be the only source of choline for ACh synthesis. We recently demonstrated that the P2X2 receptor, through which large cations permeate, functions as an alternative pathway for choline transport in the mouse retina. In the present study, we investigated whether choline entering cells through P2X2 receptors is used for ACh synthesis using a recombinant system. When P2X2 receptors expressed on HEK293 cell lines were stimulated with ATP, intracellular ACh concentrations increased. These results suggest that P2X2 receptors function in a novel pathway that supplies choline for ACh synthesis.
Collapse
Affiliation(s)
- Takuma Maruyama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Asuka Mano
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
3
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Sabariego M, Donaire R, Morón I, Torres C, Martínez-Conejero JA, Tobeña A, Esteban FJ, Fernández-Teruel A. Gene expression in hippocampus as a function of differential trait anxiety levels in genetically heterogeneous NIH-HS rats. Behav Brain Res 2013; 257:129-39. [PMID: 24095878 DOI: 10.1016/j.bbr.2013.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 02/07/2023]
Abstract
To identify genes involved in the development/expression of anxiety/fear, we analyzed the gene expression profile in the hippocampus of genetically heterogeneous NIH-HS rats. The NIH-HS rat stock is a unique genetic resource for the fine mapping of quantitative trait loci (QTLs) to very small genomic regions, due to the high amount of genetic recombinants accumulated along more than 50 breeding generations, and for the same reason it can be expected that those genetically heterogeneous rats should be especially useful for studying differential gene expression as a function of anxiety, fearfulness or other complex traits. We selected high- and low-anxious NIH-HS rats according to the number of avoidance responses they performed in a single 50-trial session of the two-way active avoidance task. Rats were also tested in unconditioned anxiety/fearfulness tests, i.e. the elevated zero-maze and a "novel-cage activity" test. Three weeks after behavioral testing, the hippocampus was dissected and prepared for the microarray study. There appeared 29 down-regulated and 37 up-regulated SNC-related genes (fold-change>|2.19|, FDR<0.05) in the "Low-anxious" vs. the "High-anxious" group. Regression analyses (stepwise) revealed that differential expression of some genes could be predictive of anxiety/fear responses. Among those genes for which the present results suggest a link with individual differences in trait anxiety, nine relevant genes (Avpr1b, Accn3, Cd74, Ltb, Nrg2, Oprdl1, Slc10a4, Slc5a7 and RT1-EC12), tested for validation through qRT-PCR, have either neuroendocrinological or neuroinmunological/inflammation-related functions, or have been related with the hippocampal cholinergic system, while some of them have also been involved in the modulation of anxiety or stress-related (neurobiological and behavioral) responses (i.e. Avpr1b, Oprdl1). The present work confirms the usefulness of NIH-HS rats as a good animal model for research on the neurogenetic basis or mechanisms involved in anxiety and/or fear, and suggest that some MHC-(neuroinmunological/inflammation)-related pathways, as well as the cholinergic system within the hippocampus, may play a role in shaping individual differences in trait anxiety.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lee SI, Lee JH, Park SY, Park JW. Do bupivacaine, clindamycin, and gentamicin at their clinical concentrations enhance rocuronium-induced neuromuscular block? Korean J Anesthesiol 2013; 64:346-52. [PMID: 23646245 PMCID: PMC3640168 DOI: 10.4097/kjae.2013.64.4.346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 02/08/2013] [Accepted: 02/15/2013] [Indexed: 11/16/2022] Open
Abstract
Background Bupivacaine, clindamycin, and gentamicin inhibit neuromuscular (NM) conduction. When they are combined, they may synergistically reduce the effective concentration of each to the therapeutic concentration in augmenting rocuronium-induced NM block. Thus, the aim of this study was to investigate whether combinations of the three drugs, at around their therapeutic concentrations, potentiate rocuronium-induced NM block. Methods Fifty-seven left-phrenic nerve hemidiaphragms (Male S-D rats, 150-250 g) were hung in a 20-ml organ bath filled with Krebs solution. Three consecutive single-twitch tensions (0.1 Hz) and one tetanic tension (50 Hz for 1.9 s) were obtained. A Krebs solution was premixed with concentration sets of bupivacaine and clindamycin, bupivacaine and gentamicin, or bupivacaine, clindamycin and gentamicin. Then, the concentration of rocuronium was cumulatively increased in the Krebs solution (1, 3, 5, 7, 9, 12, 14, 16, 18, and 20 µM) until an 80% to 90% reduction in single twitch was attained. The effective concentrations for each experiment were determined with the probit model. Results The combinations of bupivacaine, clindamycin, and gentamicin enhanced rocuronium-induced NM block. When the three drugs were applied simultaneously, their concentrations were reduced to near-therapeutic levels in potentiating the action of rocuronium. Conclusions Bupivacaine, clindamycin, and gentamicin blocked NM conduction, and when all three drugs were applied together, they augmented rocuronium-induced NM block at their near-therapeutic concentrations. Clinicians should be aware of the cooperability in NM block between drugs that interrupt NM conduction.
Collapse
Affiliation(s)
- Soo-Il Lee
- Department of Anesthesiology and Pain Medicine, Dong-A University Medical College, Busan, Korea
| | | | | | | |
Collapse
|
5
|
Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev 2012; 248:188-204. [PMID: 22725962 DOI: 10.1111/j.1600-065x.2012.01138.x] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural reflex circuits regulate cytokine release to prevent potentially damaging inflammation and maintain homeostasis. In the inflammatory reflex, sensory input elicited by infection or injury travels through the afferent vagus nerve to integrative regions in the brainstem, and efferent nerves carry outbound signals that terminate in the spleen and other tissues. Neurotransmitters from peripheral autonomic nerves subsequently promote acetylcholine-release from a subset of CD4(+) T cells that relay the neural signal to other immune cells, e.g. through activation of α7 nicotinic acetylcholine receptors on macrophages. Here, we review recent progress in the understanding of the inflammatory reflex and discuss potential therapeutic implications of current findings in this evolving field.
Collapse
Affiliation(s)
- Peder S Olofsson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | |
Collapse
|
6
|
Localization of acetylcholine-related molecules in the retina: implication of the communication from photoreceptor to retinal pigment epithelium. PLoS One 2012; 7:e42841. [PMID: 22880119 PMCID: PMC3411837 DOI: 10.1371/journal.pone.0042841] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/11/2012] [Indexed: 01/08/2023] Open
Abstract
It has been long speculated that specific signals are transmitted from photoreceptors to the retinal pigment epithelium (RPE). However, such signals have not been identified. In this study, we examined the retinal expression and localization of acetylcholine-related molecules as putative candidates for these signals. Previous reports revealed that α7 nicotinic acetylcholine receptors (nAChRs) are present in the microvilli of RPE cells that envelope the tips of photoreceptor outer segments (OS). Secreted mammalian leukocyte antigen 6/urokinase-type plasminogen activator receptor-related protein-1 (SLURP-1) is a positive allosteric modulator of the α7 nAChR. Therefore, we first focused on the expression of SLURP-1. SLURP-1 mRNA was expressed in the outer nuclear layer, which is comprised of photoreceptor cell bodies. SLURP-1 immunoreactivity co-localized with rhodopsin and S-opsin in photoreceptor OS, while choline acetyltransferase (ChAT) and high affinity choline transporter (CHT-1) were also expressed in photoreceptor OS. Immunoelectron microscopy identified that the majority of SLURP-1 was localized to the plasma membranes of photoreceptor OS. These results provide evidence that SLURP-1 is synthesized in photoreceptor cell bodies and transported to photoreceptor OS, where SLURP-1 may also be secreted. Our findings suggest that photoreceptor OS communicate via neurotransmitters such as ACh and SLURP-1, while RPE cells might receive these signals through α7 nAChRs in their microvilli.
Collapse
|
7
|
Lee JH, Lee SI, Lee SC, Choi SR, Rhee WJ. At therapeutic concentration bupivacaine causes neuromuscular blockade and enhances rocuronium-induced blockade. Korean J Anesthesiol 2012; 62:468-73. [PMID: 22679545 PMCID: PMC3366315 DOI: 10.4097/kjae.2012.62.5.468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Partially paralyzed patients may be placed in the risk of pharyngeal dysfunction. Bupivacaine acts as acetylcholine receptor ion channel blocker and may synergistically interact with rocuronium to augment NM blockade. Thus, this study aims to elucidate whether or not, at a therapeutic concentration, bupivacaine by itself may cause NM blockade and reduce an effective concentration of rocuronium. METHODS Twenty-two left phrenic nerve-hemidiaphragms (Male SD rats, 150-250 g) were hung in Krebs solution. Three consecutive ST, 0.1 Hz and one TT, 50 Hz for 1.9 s were obtained before drug application and at each new drug concentration. A concentration of bupivacaine in Krebs solution (n = 5) was cumulatively increased by way of 0.01, 0.1, 1, (1, 2, 3, 4, 5, 6, 7) × 10 µM. In a Krebs solution, pre-treated with bupivacaine 0 (n = 5), 0.1 (n = 5), 1.0 (n = 5), 10 (n = 2) µM, and then concentrations of rocuronium were cumulatively increased by way of 1, 3, 5, 7, 9, 12, 14, 16, 18, 20 µM. EC for each experiment were determined by a probit. The EC(50)'s of rocuronium were compared using a Student's t-test with Bonferroni's correction. Differences were considered significant when P < 0.05. RESULTS The potency of bupivacaine for normalized TF was 11.4 (± 1.1) µM. Below 30 µM of bupivacaine, the single twitch potentiation sustained despite the development of tetanic fade and partial inhibition of PTT. Bupivacaine significantly facilitated the NM blockade induced by rocuronium. CONCLUSIONS Clinicians should be aware that bupivacaine by itself at its therapeutic concentration inhibit NM conduction and enhances rocuronium-induced muscle relaxation.
Collapse
Affiliation(s)
- Ji Hyeon Lee
- Department of Anesthesiology and Pain Medicine, Dong-A University College of Medicine, Busan, Korea
| | | | | | | | | |
Collapse
|
8
|
Regulatory mechanisms of acetylcholine synthesis and release by T cells. Life Sci 2012; 91:981-5. [PMID: 22569292 DOI: 10.1016/j.lfs.2012.04.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/13/2012] [Accepted: 04/13/2012] [Indexed: 11/24/2022]
Abstract
AIMS Muscarinic and nicotinic acetylcholine (ACh) receptors are expressed in immune cells. ACh synthesized by choline acetyltransferase (ChAT) and released in T cells binds to these receptors. Furthermore, we have recently demonstrated the involvement of mediatophore, a homooligomer of a 16-kDa proteolipid subunit of vacuolar H(+)-ATPase, in ACh release from T cells. In this study, we investigated the effects of phorbol 12-myristate 13-acetate (PMA), dibutyryl cAMP (dbcAMP) and FK506, an immunosuppressant calcineurin inhibitor, on lymphocytic cholinergic activity in T cells. MAIN METHODS We determined the content and release of ACh in human leukemic T cell line MOLT-3 cells using a sensitive and specific radioimmunoassay for ACh. In addition, expression of ChAT mRNA and ChAT activity were investigated using reverse-transcription-polymerase chain reaction and Fonnum method, respectively. KEY FINDINGS Phytohemagglutinin (PHA), a T-cell activator, up-regulated ChAT mRNA expression, synthesis and release of ACh. PMA, a protein kinase C (PKC) activator, and dbcAMP, a protein kinase A (PKA) activator, also increased ChAT activity and ACh synthesis by up-regulating ChAT gene expression. FK506 inhibited PHA-induced up-regulation of ChAT mRNA expression, suggesting the involvement of calcineurin-mediated pathways in ChAT gene transcription. SIGNIFICANCE Activation of PKC and PKA up-regulates ACh synthesis in T cells, and immunological activation triggers ChAT gene transcription through calcineurin-mediated pathways.
Collapse
|
9
|
Mediatophore regulates acetylcholine release from T cells. J Neuroimmunol 2012; 244:16-22. [DOI: 10.1016/j.jneuroim.2011.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/21/2011] [Accepted: 12/15/2011] [Indexed: 11/23/2022]
|
10
|
Duffy AM, Fitzgerald ML, Chan J, Robinson DC, Milner TA, Mackie K, Pickel VM. Acetylcholine α7 nicotinic and dopamine D2 receptors are targeted to many of the same postsynaptic dendrites and astrocytes in the rodent prefrontal cortex. Synapse 2011; 65:1350-67. [PMID: 21858872 PMCID: PMC3356922 DOI: 10.1002/syn.20977] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The alpha-7 nicotinic acetylcholine receptor (α7nAChR) and the dopamine D(2) receptor (D(2) R) are both implicated in attentional processes and cognition, mediated in part through the prefrontal cortex (PFC). We examined the dual electron microscopic immunolabeling of α7nAChR and either D(2) R or the vesicular acetylcholine transporter (VAChT) in rodent PFC to assess convergent functional activation sites. Immunoreactivity (ir) for α7nAChR and/or D(2) R was seen in the same as well as separate neuronal and glial profiles. At least half of the dually labeled profiles were somata and dendrites, while most labeled axon terminals expressed only D(2) R-ir. The D(2) R-labeled terminals were without synaptic specializations or formed inhibitory or excitatory-type synapses with somatodendritic profiles, some of which expressed the α7nAChR and/or D(2) R. Astrocytic glial processes comprised the majority of nonsomatodendritic α7nAChR or α7nAChR and D(2) R-labeled profiles. Glial processes containing α7nAChR-ir were frequently located near VAChT-labeled terminals and also showed perisynaptic and perivascular associations. We conclude that in rodent PFC α7nACh and D(2) R activation can dually modulate (1) postsynaptic dendritic responses within the same or separate but synaptically linked neurons in which the D(2) R has the predominately presynaptic distribution, and (2) astrocytic signaling that may be crucial for synaptic transmission and functional hyperemia.
Collapse
Affiliation(s)
- Aine M. Duffy
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - Megan L. Fitzgerald
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - June Chan
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - Danielle C. Robinson
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - Teresa A. Milner
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065
| | - Kenneth Mackie
- Department of Psychological and Brain Sciences and the Gill Center, Indiana University, Bloomington, Indiana 47405
| | - Virginia M. Pickel
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
11
|
Lidocaine treatment during synapse reformation periods permanently inhibits NGF-induced excitation in an identified reconstructed synapse of Lymnaea stagnalis. J Anesth 2011; 26:45-53. [DOI: 10.1007/s00540-011-1257-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 09/22/2011] [Indexed: 10/15/2022]
|
12
|
Gimenez MS, Oliveros LB, Gomez NN. Nutritional deficiencies and phospholipid metabolism. Int J Mol Sci 2011; 12:2408-33. [PMID: 21731449 PMCID: PMC3127125 DOI: 10.3390/ijms12042408] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/11/2011] [Accepted: 03/14/2011] [Indexed: 12/12/2022] Open
Abstract
Phospholipids are important components of the cell membranes of all living species. They contribute to the physicochemical properties of the membrane and thus influence the conformation and function of membrane-bound proteins, such as receptors, ion channels, and transporters and also influence cell function by serving as precursors for prostaglandins and other signaling molecules and modulating gene expression through the transcription activation. The components of the diet are determinant for cell functionality. In this review, the effects of macro and micronutrients deficiency on the quality, quantity and metabolism of different phospholipids and their distribution in cells of different organs is presented. Alterations in the amount of both saturated and polyunsaturated fatty acids, vitamins A, E and folate, and other micronutrients, such as zinc and magnesium, are discussed. In all cases we observe alterations in the pattern of phospholipids, the more affected ones being phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. The deficiency of certain nutrients, such as essential fatty acids, fat-soluble vitamins and some metals may contribute to a variety of diseases that can be irreversible even after replacement with normal amount of the nutrients. Usually, the sequelae are more important when the deficiency is present at an early age.
Collapse
Affiliation(s)
- María S. Gimenez
- Authors to whom correspondence should be addressed; E-Mails: (M.S.G.); (L.B.O.); Tel.: 54-2652-423789; Fax: 54-2652-431301
| | - Liliana B. Oliveros
- Authors to whom correspondence should be addressed; E-Mails: (M.S.G.); (L.B.O.); Tel.: 54-2652-423789; Fax: 54-2652-431301
| | | |
Collapse
|
13
|
Muscarinic acetylcholine receptors present in human osteoblast and bone tissue. Eur J Pharmacol 2010; 650:34-40. [PMID: 20888332 DOI: 10.1016/j.ejphar.2010.09.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 07/29/2010] [Accepted: 09/14/2010] [Indexed: 01/27/2023]
Abstract
Acetylcholine is the predominant neurotransmitter in the neuromuscular junction, and a role in bone has been postulated. The expression of nicotinic receptors has been reported in osteoblasts, but the expression and function of muscarinic receptor in bone remain obscure. In this study, we investigated the expression and functional activities of muscarinic receptor subtypes in human osteoblast cell lines and animal and human bone tissue. The mRNA levels of muscarinic receptor subtypes were detected by reverse-transcription polymerase chain reaction. We found that muscarinic subtypes m1, m2, m3, m4, and m5 were expressed at different levels in human osteosarcoma HOS cells, rat femur, and human rib bone tissue; m1, m4, m5 were in cultured mouse femur bone cells and cultured mouse calvarial bone cells; m2, m3, m4 were in bovine bone. The mRNA of neuronal markers, light-, medium- and heavy-neurofilament, was not found in human bone tissues to exclude the possible contamination from neuronal tissue. Methacholine induced an elevation in cytosolic calcium concentration and proliferation in HOS cells. Both effects were blocked by atropine. We conclude that muscarinic receptor is present in bone tissue to evoke calcium signaling and modulate cell proliferation. Different muscarinic receptor subtypes are distributed in various parts of the animal skeletal system including the different species and bone portions. Bone remodeling involving osteoblast proliferation leads the possibilities that muscarinic receptor may play roles in bone remodeling.
Collapse
|
14
|
3-D-QSAR and docking studies on the neuronal choline transporter. Bioorg Med Chem Lett 2010; 20:4870-7. [DOI: 10.1016/j.bmcl.2010.06.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 11/21/2022]
|
15
|
Horiguchi K, Horiguchi S, Yamashita N, Irie K, Masuda J, Takano-Ohmuro H, Himi T, Miyazawa M, Moriwaki Y, Okuda T, Misawa H, Ozaki H, Kawashima K. Expression of SLURP-1, an endogenous α7 nicotinic acetylcholine receptor allosteric ligand, in murine bronchial epithelial cells. J Neurosci Res 2009; 87:2740-7. [DOI: 10.1002/jnr.22102] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|