1
|
Coaccioli S, Sarzi-Puttini P, Fornasari DMM, Schweiger V, Zis P, Viswanath O, Varrassi G. Immune Competence and Pain: A Narrative Review. Curr Pain Headache Rep 2024; 28:1145-1154. [PMID: 38935243 DOI: 10.1007/s11916-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW This review aims to summarize current knowledge on the pathophysiology of pain and the role of neuro-immune crosstalk in the development of acute and chronic pain (CP). Specifically, the review focuses on the role of immune cells involved in the innate and acquired immune response, emphasizing their bidirectional interactions with the nervous systems and discussing the implications of this crosstalk on acute and CP management. RECENT FINDINGS In the last two decades, multiple studies have uncovered the important role of the immune system in initiating, maintaining, and resolving pain stimuli. Furthermore, researchers discovered that the immune system interacts tightly with the nervous system, creating a bidirectional crosstalk in which immune cells influence the response of peripheral and central nerve fibers while neurotransmitters and neuropeptides released by nociceptors directly and indirectly modulate the immune response. The neuro-immune crosstalk in acute and CP is a complex and not fully understood process that comprise the interactions of multiple diverse molecules, bidirectional interferences, and numerous redundant processes. Despite the complexity, important steps have been taken in recent years toward explaining the specific roles of each immune cell type and molecule in the initiation, maintenance and resolution of pain. These findings may set the basis for innovative therapeutic options that target the immune system, overcoming the limitations of current treatments in providing pain relief and the disadvantages associated with opioid therapy.
Collapse
Affiliation(s)
| | | | - Diego M M Fornasari
- Dept. of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Vittorio Schweiger
- Dept. of Anesthesia, Intensive Care and Pain Therapy, Verona University Hospital, Verona, Italy
| | - Panagiotis Zis
- Medical School University of Cyprus, Nicosia, Cyprus
- 2nd Dept. of Neurology, Attikon University Hospital, University of Athens, Athens, Greece
| | - Omar Viswanath
- Clinical Professor of Anesthesiology, Creighton University School of Medicine, Phoenix, AZ, USA
| | | |
Collapse
|
2
|
Teliti M, Fanfulla F, Croce L, Coperchini F, Rotondi M. The interplay between subclinical hypothyroidism and poor sleep quality: A systematic review. Eur J Intern Med 2024; 126:49-55. [PMID: 38548514 DOI: 10.1016/j.ejim.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The relationship between subclinical hypothyroidism (SHYPO) and sleep disturbances is still poorly investigated. This systematic review aims to critically appraise the existing literature to provide more insights in understanding whether SHYPO favors sleep disturbances or it is the sleep disturbance per se that affects the hypothalamus-pituitary-thyroid axis regulation. METHODS Original studies on sleep quality and duration in patients with SHYPO were searched in the PubMed/MEDLINE, Embase, Web of Science and Scopus databases. Two reviewers independently screened articles for inclusion, extracted data, and assessed the quality of included studies. RESULTS Eight studies, including 2916 patients with SHYPO and 18,574 healthy controls, were retrieved. An overall agreement (7 out of 8 studies), about a positive correlation between decreased sleep quality and/or duration and SHYPO was observed. Five studies investigated sleep quality through self-reported surveys; only two studies explored both subjective and objective assessment of sleep quality with actigraphy (n = 1) or polysomnography (n = 1); finally, one study assessed subjective evaluation of sleep quality through a single question regarding the number of sleeping hours. A high level of heterogeneity among studies was manifest due to differences in population source, sleep measure assessment and criteria for diagnosing SHYPO. DISCUSSION Overall, the existing literature data suggest a link between SHYPO and sleep disturbances, but further studies on larger populations of patients with homogeneous study designs and outcomes are warranted.
Collapse
Affiliation(s)
- Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, Pavia 27100, Italy
| | - Francesco Fanfulla
- Unit of Respiratory Function and Sleep Medicine, Istituti Clinici Scientifici Maugeri IRCCS, Pavia 27100, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, Pavia 27100, Italy
| | - Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, Pavia 27100, Italy.
| |
Collapse
|
3
|
Mao J, Gomez GGF, Wang M, Xu H, Thyvalikakath TP. Prediction of Sjögren's disease diagnosis using matched electronic dental-health record data. BMC Med Inform Decis Mak 2024; 24:43. [PMID: 38336735 PMCID: PMC10854092 DOI: 10.1186/s12911-024-02448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Sjögren's disease (SD) is an autoimmune disease that is difficult to diagnose early due to its wide spectrum of clinical symptoms and overlap with other autoimmune diseases. SD potentially presents through early oral manifestations prior to showing symptoms of clinically significant dry eyes or dry mouth. We examined the feasibility of utilizing a linked electronic dental record (EDR) and electronic health record (EHR) dataset to identify factors that could be used to improve early diagnosis prediction of SD in a matched case-control study population. METHODS EHR data, including demographics, medical diagnoses, medication history, serological test history, and clinical notes, were retrieved from the Indiana Network for Patient Care database and dental procedure data were retrieved from the Indiana University School of Dentistry EDR. We examined EHR and EDR history in the three years prior to SD diagnosis for SD cases and the corresponding period in matched non-SD controls. Two conditional logistic regression (CLR) models were built using Least Absolute Shrinkage and Selection Operator regression. One used only EHR data and the other used both EHR and EDR data. The ability of these models to predict SD diagnosis was assessed using a concordance index designed for CLR. RESULTS We identified a sample population of 129 cases and 371 controls with linked EDR-EHR data. EHR factors associated with an increased risk of SD diagnosis were the usage of lubricating throat drugs with an odds ratio (OR) of 14.97 (2.70-83.06), dry mouth (OR = 6.19, 2.14-17.89), pain in joints (OR = 2.54, 1.34-4.76), tear film insufficiency (OR = 27.04, 5.37-136.), and rheumatoid factor testing (OR = 6.97, 1.94-25.12). The addition of EDR data slightly improved model concordance compared to the EHR only model (0.834 versus 0.811). Surgical dental procedures (OR = 2.33, 1.14-4.78) were found to be associated with an increased risk of SD diagnosis while dental diagnostic procedures (OR = 0.45, 0.20-1.01) were associated with decreased risk. CONCLUSION Utilizing EDR data alongside EHR data has the potential to improve prediction models for SD. This could improve the early diagnosis of SD, which is beneficial to slowing or preventing complications of SD.
Collapse
Affiliation(s)
- Jason Mao
- Department of Biostatistics and Health Data Science, Indiana University Richard M. Fairbanks School of Public Health, 410 W. 10th Street, Indianapolis, IN, 46202, USA
- Department of Dental Public Health and Dental Informatics, Indiana University School of Dentistry, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA
- Center for Biomedical Informatics, Regenstrief Institute, 1101 West 10th Street, Indianapolis, IN, 46202, USA
| | - Grace Gomez Felix Gomez
- Department of Dental Public Health and Dental Informatics, Indiana University School of Dentistry, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA
- Center for Biomedical Informatics, Regenstrief Institute, 1101 West 10th Street, Indianapolis, IN, 46202, USA
| | - Mei Wang
- Department of Dental Public Health and Dental Informatics, Indiana University School of Dentistry, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA
| | - Huiping Xu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, 410 W. 10th Street, Indianapolis, IN, 46202, USA
| | - Thankam P Thyvalikakath
- Department of Dental Public Health and Dental Informatics, Indiana University School of Dentistry, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA.
- Center for Biomedical Informatics, Regenstrief Institute, 1101 West 10th Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|
4
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Torres Costa KC, Santana Vieira Santos V, Rezende Vaz E, Natalie Cirilo Gimenes S, Ian Veloso Correia L, Brito de Souza J, de Almeida Araújo Santos F, de Melo Rodrigues V, Ricardo Goulart L, Alonso Goulart V. A novel peptide able to reduce PLA 2 activity and modulate inflammatory cytokine production. Toxicon 2023; 231:107207. [PMID: 37364619 DOI: 10.1016/j.toxicon.2023.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Phospholipases A2 (PLA2s) are associated with inflammatory response, performing a complex process involving, specially, cytokines. The excess of pro-inflammatory cytokines induces a chronic inflammatory response and can cause several disorders in the body. Therefore, the inhibition or regulation of cytokines' signaling pathways is a target for new treatment development strategies. Thus, this study aimed to select PLA2 inhibitor mimetic peptides through phage display technology with anti-inflammatory activity. Specific mimetic peptides were selected using BpPLA2-TXI, a PLA2 isolated from Bothrops pauloensis, as a target, and γCdcPL, a PLA2 inhibitor isolated from Crotalus durissus collilineatus, which was used as a competitor during the elution step. We selected the peptide C2PD, which seems to play a pivotal role in the modulation of IL-6, IL-1β, and IL-10 cytokines in inflammatory cells. The C2PD showed a significant reduction in PLA2 activity. Furthermore, the synthetic peptide was tested in PBMC and showed a significant down-modulation of IL-6 and IL-1β release, whereas IL-10 responses were up-regulated. Our findings suggest that this novel peptide may be a potential therapeutic candidate for the treatment of inflammatory diseases, mainly due to its anti-inflammatory properties and absence of cytotoxicity.
Collapse
Affiliation(s)
- Kellen Cristina Torres Costa
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil.
| | - Vanessa Santana Vieira Santos
- Laboratory of Environmental Health, Department of Environmental Health, Institute of Biotechnology, Federal University of Uberlandia, Santa Monica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlandia, Minas Gerais, Brazil
| | - Emília Rezende Vaz
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | | | - Lucas Ian Veloso Correia
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Jessica Brito de Souza
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Fabiana de Almeida Araújo Santos
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil; Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Vivian Alonso Goulart
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| |
Collapse
|
6
|
Liu F, Zhang L, Su S, Fang Y, Yin X, Cui H, Sun J, Xie Y, Ma C. Neuronal C-Reactive Protein/FcγRI Positive Feedback Proinflammatory Signaling Contributes to Nerve Injury Induced Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205397. [PMID: 36727833 PMCID: PMC10074098 DOI: 10.1002/advs.202205397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is difficult to treat in clinical practice, and the underlying mechanisms are insufficiently elucidated. Previous studies have demonstrated that the neuronal Fc-gamma-receptor type I (FcγRI) of the dorsal root ganglion (DRG) mediates antigen-specific pain. However, the mechanisms of neuronal FcγRI in neuropathic pain remain to be explored. Here, it is found that the activation of FcγRI-related signals in primary neurons induces neuropathic pain in a rat model. This work first reveals that sciatic nerve injury persistently activates neuronal FcγRI-related signaling in the DRG, and conditional knockout (CKO) of the FcγRI-encoding gene Fcgr1 in rat DRG neurons significantly alleviates neuropathic pain after nerve injury. C-reactive protein (CRP) is increased in the DRG after nerve injury, and CRP protein of the DRG evokes pain by activating neuronal FcγRI-related signals. Furthermore, microinjection of naive IgG into the DRG alleviates neuropathic pain by suppressing the activation of neuronal FcγRI. These results indicate that the activation of neuronal CRP/FcγRI-related signaling plays an important role in the development of neuropathic pain in chronic constriction injury (CCI) rats. The findings may provide novel insights into the neuroimmune responses after peripheral nerve injury and suggest potential therapeutic targets for neuropathic pain.
Collapse
Affiliation(s)
- Fan Liu
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Li Zhang
- Department of AnesthesiologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Si Su
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Yehong Fang
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Xiang‐sha Yin
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Huan Cui
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Jianru Sun
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Yikuan Xie
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Chao Ma
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
- Chinese Institute for Brain ResearchBeijing102206P. R. China
| |
Collapse
|
7
|
Crespi BJ, Evans SF. Prenatal Origins of Endometriosis Pathology and Pain: Reviewing the Evidence of a Role for Low Testosterone. J Pain Res 2023; 16:307-316. [PMID: 36762368 PMCID: PMC9904225 DOI: 10.2147/jpr.s389166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Endometriosis is a polygenic, estrogen-dependent, inflammatory disorder of uncertain aetiology associated with pain, infertility and reduced quality of life. While the positive association between endometriosis and estrogen is established, a suite of recent studies has demonstrated an inverse association between the presence of endometriosis lesions and levels of testosterone both prenatally and postnatally. The following narrative review provides new insights into the roles of testosterone in the aetiology, diagnosis, and management of endometriosis and associated symptoms, especially pain. A relatively short anogenital distance (AGD) is indicative of lower levels of testosterone during fetal development. A shorter AGD has recently been correlated with both a higher risk of developing endometriosis in adult life, and with known correlates of endometriosis including earlier onset of reproductive cycling, lower ovarian follicle number, lower postnatal testosterone, and premature ovarian insufficiency. During adult life, lower levels of testosterone are positively associated with key comorbidities of endometriosis, including days per month of pelvic pain and increased pain sensitivity. Biochemically, lower levels of testosterone are associated with higher levels of pro-inflammatory IL-1β and lower levels of β-endorphin. In rodents, prenatal administration of testosterone to females reduces their pain sensitivity in adulthood. The emerging convergent links of endometriosis with low prenatal and postnatal testosterone provide evidence of a centrally mediated effect beginning in early prenatal development, and persisting through adult life, with notable effects on pain sensitivity. They generate a novel conceptual framework for understanding, studying and treating this disorder, whereby endometriosis is mediated by a combination of high estrogen in endometrial tissue with low systemic and ovarian testosterone.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada,Correspondence: Bernard J Crespi, Email
| | - Susan F Evans
- Adelaide Medical School, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Grochowalska K, Ziętkiewicz M, Więsik-Szewczyk E, Matyja-Bednarczyk A, Napiórkowska-Baran K, Nowicka-Sauer K, Hajduk A, Sołdacki D, Zdrojewski Z. Subjective sleep quality and fatigue assessment in Polish adult patients with primary immunodeficiencies: A pilot study. Front Immunol 2023; 13:1028890. [PMID: 36713442 PMCID: PMC9880253 DOI: 10.3389/fimmu.2022.1028890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Primary immunodeficiencies (PIDs) are clinically heterogeneous disorders caused by abnormalities in the immune system. However, PIDs are genetically determined and may occur at any age from early childhood to elderly age. Due to chronic patterns, the risk of malignancy and organ damage in patients with PIDs may affect any aspect of life, including sleep patterns. To our knowledge, the prevalence of insomnia and subjective sleep quality have not been investigated in patients with PIDs. Therefore, this pilot study was conducted to investigate sleep quality, the prevalence of sleep disturbances, and fatigue in adult patients with PIDs in Poland. Methods All participants were surveyed using the Athens Insomnia Scale, Pittsburgh Sleep Quality Index, Fatigue Severity Scale, and a questionnaire concerning general health and demographic data. We included 92 participants: 48 women (52.2%) and 44 men (47.8%). Results Participants' mean age was 41.9 ± 13.9 years. The mean sleep duration was 7.0 ± 1.5 hours, and the mean sleep latency was 41.2 ± 53.1 minutes. Additionally, 44.6% of patients (n=41) had symptoms of insomnia and 44.6% (n=42) had poor sleep quality. Less than one-fourth (n=22; 23.9%) of the patients reported the use of sleeping pills; moreover, clinically significant fatigue was reported in 52.2% (n=48). Discussion Our investigation provides insight into the problem of sleep disturbances in patients with PIDs. Data have demonstrated that sleeping disorders with concomitant fatigue are common in patients with PID. Further studies are needed to determine the determinants of poor sleep quality in this specific group of patients.
Collapse
Affiliation(s)
- Kinga Grochowalska
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland,*Correspondence: Kinga Grochowalska,
| | - Marcin Ziętkiewicz
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Więsik-Szewczyk
- Department of Internal Medicine, Pneumonology, Allergology and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Aleksandra Matyja-Bednarczyk
- Outpatient Clinic for the Immunological Hypercoagulable Diseases, The University Hospital in Krakow, Kraków, Poland
| | - Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | | | - Adam Hajduk
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Dariusz Sołdacki
- Department of Internal Medicine, Pneumonology, Allergology and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Zbigniew Zdrojewski
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Sochal M, Ditmer M, Gabryelska A, Białasiewicz P. The Role of Brain-Derived Neurotrophic Factor in Immune-Related Diseases: A Narrative Review. J Clin Med 2022; 11:6023. [PMID: 36294343 PMCID: PMC9604720 DOI: 10.3390/jcm11206023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 07/26/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin regulating synaptic plasticity, neuronal excitability, and nociception. It seems to be one of the key molecules in interactions between the central nervous system and immune-related diseases, i.e., diseases with an inflammatory background of unknown etiology, such as inflammatory bowel diseases or rheumatoid arthritis. Studies show that BDNF levels might change in the tissues and serum of patients during the course of these conditions, e.g., affecting cell survival and modulating pain severity and signaling pathways involving different neurotransmitters. Immune-related conditions often feature psychiatric comorbidities, such as sleep disorders (e.g., insomnia) and symptoms of depression/anxiety; BDNF may be related as well to them as it seems to exert an influence on sleep structure; studies also show that patients with psychiatric disorders have decreased BDNF levels, which increase after treatment. BDNF also has a vital role in nociception, particularly in chronic pain, hyperalgesia, and allodynia, participating in the formation of central hypersensitization. In this review, we summarize the current knowledge on BDNF's function in immune-related diseases, sleep, and pain. We also discuss how BDNF is affected by treatment and what consequences these changes might have beyond the nervous system.
Collapse
|
10
|
Lee HJ, Remacle AG, Hullugundi SK, Dolkas J, Leung JB, Chernov AV, Yaksh TL, Strongin AY, Shubayev VI. Sex-Specific B Cell and Anti-Myelin Autoantibody Response After Peripheral Nerve Injury. Front Cell Neurosci 2022; 16:835800. [PMID: 35496906 PMCID: PMC9050049 DOI: 10.3389/fncel.2022.835800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy holds promise as a non-addictive treatment of refractory chronic pain states. Increasingly, sex is recognized to impact immune regulation of pain states, including mechanical allodynia (pain from non-painful stimulation) that follows peripheral nerve trauma. This study aims to assess the role of B cells in sex-specific responses to peripheral nerve trauma. Using a rat model of sciatic nerve chronic constriction injury (CCI), we analyzed sex differences in (i) the release of the immunodominant neural epitopes of myelin basic protein (MBP); (ii) the levels of serum immunoglobulin M (IgM)/immunoglobulin G (IgG) autoantibodies against the MBP epitopes; (iii) endoneurial B cell/CD20 levels; and (iv) mechanical sensitivity behavior after B cell/CD20 targeting with intravenous (IV) Rituximab (RTX) and control, IV immunoglobulin (IVIG), therapy. The persistent MBP epitope release in CCI nerves of both sexes was accompanied by the serum anti-MBP IgM autoantibody in female CCI rats alone. IV RTX therapy during CD20-reactive cell infiltration of nerves of both sexes reduced mechanical allodynia in females but not in males. IVIG and vehicle treatments had no effect in either sex. These findings provide strong evidence for sexual dimorphism in B-cell function after peripheral nervous system (PNS) trauma and autoimmune pathogenesis of neuropathic pain, potentially amenable to immunotherapeutic intervention, particularly in females. A myelin-targeted serum autoantibody may serve as a biomarker of such painful states. This insight into the biological basis of sex-specific response to neuraxial injury will help personalize regenerative and analgesic therapies.
Collapse
Affiliation(s)
- Hee Jong Lee
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
- Department of Anesthesiology & Pain Medicine, Hanyang University, Seoul, South Korea
| | - Albert G. Remacle
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Swathi K. Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Jake B. Leung
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Andrei V. Chernov
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Alex Y. Strongin
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
- *Correspondence: Veronica I. Shubayev,
| |
Collapse
|
11
|
Martin SJ, McAnally HB, Okediji P, Rogosnitzky M. Low-dose naltrexone, an opioid-receptor antagonist, is a broad-spectrum analgesic: a retrospective cohort study. Pain Manag 2022; 12:699-709. [DOI: 10.2217/pmt-2021-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the use of low-dose naltrexone (LDN) as a broad-spectrum analgesic. Methods: Retrospective cohort study from a single pain management practice using data from 2014 to 2020. Thirty-six patients using LDN for ≥2 months were matched to 42 controls. Pain scores were assessed at initial visit and at most recent/final documented visit using a 10-point scale. Results: Cases reported significantly greater pain reduction (-37.8%) than controls (-4.3%; p < 0.001). Whole sample multivariate modeling predicts 33% pain reduction with LDN, with number needed to treat (for 50% pain reduction) of 3.2. Patients with neuropathic pain appeared to benefit even more than those with ‘nociceptive’/inflammatory pain. Conclusion: LDN is effective in a variety of chronic pain states, likely mediated by TLR-4 antagonism.
Collapse
Affiliation(s)
- Samuel J Martin
- Northern Anesthesia & Pain Medicine, 10928 Eagle River Rd. #240, Eagle River, AK 99577, USA
- Loma Linda University School of Medicine, 11175 Campus St., Loma Linda, CA 92350, USA
| | - Heath B McAnally
- Northern Anesthesia & Pain Medicine, 10928 Eagle River Rd. #240, Eagle River, AK 99577, USA
- Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Paul Okediji
- MedInsight Research Institute, Pekeris 4, Weizmann Science Park, Rehovot, 7670204, Israel
| | - Moshe Rogosnitzky
- MedInsight Research Institute, Pekeris 4, Weizmann Science Park, Rehovot, 7670204, Israel
| |
Collapse
|
12
|
Dworsky-Fried Z, Chadwick CI, Kerr BJ, Taylor AMW. Multiple Sclerosis and the Endogenous Opioid System. Front Neurosci 2021; 15:741503. [PMID: 34602975 PMCID: PMC8484329 DOI: 10.3389/fnins.2021.741503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation, neuronal degeneration and demyelinating lesions within the central nervous system. The mechanisms that underlie the pathogenesis and progression of MS are not fully known and current therapies have limited efficacy. Preclinical investigations using the murine experimental autoimmune encephalomyelitis (EAE) model of MS, as well as clinical observations in patients with MS, provide converging lines of evidence implicating the endogenous opioid system in the pathogenesis of this disease. In recent years, it has become increasingly clear that endogenous opioid peptides, binding μ- (MOR), κ- (KOR) and δ-opioid receptors (DOR), function as immunomodulatory molecules within both the immune and nervous systems. The endogenous opioid system is also well known to play a role in the development of chronic pain and negative affect, both of which are common comorbidities in MS. As such, dysregulation of the opioid system may be a mechanism that contributes to the pathogenesis of MS and associated symptoms. Here, we review the evidence for a connection between the endogenous opioid system and MS. We further explore the mechanisms by which opioidergic signaling might contribute to the pathophysiology and symptomatology of MS.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Caylin I. Chadwick
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bradley J. Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M. W. Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Boakye PA, Tang SJ, Smith PA. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. FRONTIERS IN PAIN RESEARCH 2021; 2:698157. [PMID: 35295524 PMCID: PMC8915739 DOI: 10.3389/fpain.2021.698157] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Intractable neuropathic pain is a frequent consequence of nerve injury or disease. When peripheral nerves are injured, damaged axons undergo Wallerian degeneration. Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated leading to the generation of an "inflammatory soup" containing cytokines, chemokines and growth factors. These primary mediators sensitize sensory nerve endings, attract macrophages, neutrophils and lymphocytes, alter gene expression, promote post-translational modification of proteins, and alter ion channel function in primary afferent neurons. This leads to increased excitability and spontaneous activity and the generation of secondary mediators including colony stimulating factor 1 (CSF-1), chemokine C-C motif ligand 21 (CCL-21), Wnt3a, and Wnt5a. Release of these mediators from primary afferent neurons alters the properties of spinal microglial cells causing them to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and other Wnt ligands facilitate the generation and transmission of nociceptive information by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and glycinergic transmission in the spinal dorsal horn. This review focusses on activation of microglia by secondary mediators, release of tertiary mediators from microglia and a description of their actions in the spinal dorsal horn. Attention is drawn to the substantial differences in the precise roles of various mediators in males compared to females. At least 25 different mediators have been identified but the similarity of their actions at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means there is considerable redundancy in the available mechanisms. Despite this, behavioral studies show that interruption of the actions of any single mediator can relieve signs of pain in experimental animals. We draw attention this paradox. It is difficult to explain how inactivation of one mediator can relieve pain when so many parallel pathways are available.
Collapse
Affiliation(s)
- Paul A. Boakye
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
He X, Wang R, Wang T. The role of immune cells in the course of Parkinson's disease. IBRAIN 2021; 7:146-151. [PMID: 37786903 PMCID: PMC10529156 DOI: 10.1002/j.2769-2795.2021.tb00077.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in the central nervous system. The pathological manifestations mainly consist of α-synuclein accumulation, degeneration and death of dopaminergic neurons, and insufficient dopamine secretion. There are many pathophysiological mechanisms leading to these pathological changes. The role of autoimmunity in Parkinson's disease is one of the academic hotspots in recent years. Many types of immune cells actively participate in the pathogenesis of Parkinson's disease, such as dendritic cells, microglia, T lymphocytes, B lymphocytes and natural killer (NK) cells, which lead to abnormal immune response in Parkinson's disease patients. Therefore, this paper focuses on reviewing the research progress of immune cells in Parkinson's disease.
Collapse
Affiliation(s)
- Xiu‐Ying He
- Institute of Neurological DiseaseDepartment of AnesthesiologyTranslational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ru‐Rong Wang
- Institute of Neurological DiseaseDepartment of AnesthesiologyTranslational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ting‐Hua Wang
- Institute of Neurological DiseaseDepartment of AnesthesiologyTranslational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of NeuroscienceLaboratory Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
15
|
Lacagnina MJ, Heijnen CJ, Watkins LR, Grace PM. Autoimmune regulation of chronic pain. Pain Rep 2021; 6:e905. [PMID: 33981931 PMCID: PMC8108590 DOI: 10.1097/pr9.0000000000000905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic pain is an unpleasant and debilitating condition that is often poorly managed by existing therapeutics. Reciprocal interactions between the nervous system and the immune system have been recognized as playing an essential role in the initiation and maintenance of pain. In this review, we discuss how neuroimmune signaling can contribute to peripheral and central sensitization and promote chronic pain through various autoimmune mechanisms. These pathogenic autoimmune mechanisms involve the production and release of autoreactive antibodies from B cells. Autoantibodies-ie, antibodies that recognize self-antigens-have been identified as potential molecules that can modulate the function of nociceptive neurons and thereby induce persistent pain. Autoantibodies can influence neuronal excitability by activating the complement pathway; by directly signaling at sensory neurons expressing Fc gamma receptors, the receptors for the Fc fragment of immunoglobulin G immune complexes; or by binding and disrupting ion channels expressed by nociceptors. Using examples primarily from rheumatoid arthritis, complex regional pain syndrome, and channelopathies from potassium channel complex autoimmunity, we suggest that autoantibody signaling at the central nervous system has therapeutic implications for designing novel disease-modifying treatments for chronic pain.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Mailhot B, Christin M, Tessandier N, Sotoudeh C, Bretheau F, Turmel R, Pellerin È, Wang F, Bories C, Joly-Beauparlant C, De Koninck Y, Droit A, Cicchetti F, Scherrer G, Boilard E, Sharif-Naeini R, Lacroix S. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. J Exp Med 2021; 217:151879. [PMID: 32573694 PMCID: PMC7478735 DOI: 10.1084/jem.20191430] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is a major comorbidity of chronic inflammatory diseases. Here, we report that the cytokine IL-1β, which is abundantly produced during multiple sclerosis (MS), arthritis (RA), and osteoarthritis (OA) both in humans and in animal models, drives pain associated with these diseases. We found that the type 1 IL-1 receptor (IL-1R1) is highly expressed in the mouse and human by a subpopulation of TRPV1+ dorsal root ganglion neurons specialized in detecting painful stimuli, termed nociceptors. Strikingly, deletion of the Il1r1 gene specifically in TRPV1+ nociceptors prevented the development of mechanical allodynia without affecting clinical signs and disease progression in mice with experimental autoimmune encephalomyelitis and K/BxN serum transfer–induced RA. Conditional restoration of IL-1R1 expression in nociceptors of IL-1R1–knockout mice induced pain behavior but did not affect joint damage in monosodium iodoacetate–induced OA. Collectively, these data reveal that neuronal IL-1R1 signaling mediates pain, uncovering the potential benefit of anti–IL-1 therapies for pain management in patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Benoit Mailhot
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Marine Christin
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Canada
| | - Nicolas Tessandier
- Axe Maladies infectieuses et immunitaires du Centre de recherche du CHU de Québec-Université Laval et Département de microbiologie-infectiologie et d'immunologie de l'Université Laval, Québec, Canada
| | - Chaudy Sotoudeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Roxanne Turmel
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Ève Pellerin
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Feng Wang
- Centre de recherche CERVO, Québec, Canada
| | | | - Charles Joly-Beauparlant
- Axe Endocrinologie-néphrologie du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | | | - Arnaud Droit
- Axe Endocrinologie-néphrologie du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Francesca Cicchetti
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de psychiatrie et de neurosciences de l'Université Laval, Québec, Canada
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, University of North Carolina Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC.,New York Stem Cell Foundation - Robertson Investigator, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Eric Boilard
- Axe Maladies infectieuses et immunitaires du Centre de recherche du CHU de Québec-Université Laval et Département de microbiologie-infectiologie et d'immunologie de l'Université Laval, Québec, Canada
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| |
Collapse
|
17
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
18
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Asseyer S, Cooper G, Paul F. Pain in NMOSD and MOGAD: A Systematic Literature Review of Pathophysiology, Symptoms, and Current Treatment Strategies. Front Neurol 2020; 11:778. [PMID: 33473247 PMCID: PMC7812141 DOI: 10.3389/fneur.2020.00778] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSDs) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) are autoimmune inflammatory disorders of the central nervous system (CNS). Pain is highly prevalent and debilitating in NMOSD and MOGAD with a severe impact on quality of life, and there is a critical need for further studies to successfully treat and manage pain in these rare disorders. In NMOSD, pain has a prevalence of over 80%, and pain syndromes include neuropathic, nociceptive, and mixed pain, which can emerge in acute relapse or become chronic during the disease course. The impact of pain in MOGAD has only recently received increased attention, with an estimated prevalence of over 70%. These patients typically experience not only severe headache, retrobulbar pain, and/or pain on eye movement in optic neuritis but also neuropathic and nociceptive pain. Given the high relevance of pain in MOGAD and NMOSD, this article provides a systematic review of the current literature pertaining to pain in both disorders, focusing on the etiology of their respective pain syndromes and their pathophysiological background. Acknowledging the challenge and complexity of diagnosing pain, we also provide a mechanism-based classification of NMOSD- and MOGAD-related pain syndromes and summarize current treatment strategies.
Collapse
Affiliation(s)
- Susanna Asseyer
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
| | - Graham Cooper
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Zielinski MR, Systrom DM, Rose NR. Fatigue, Sleep, and Autoimmune and Related Disorders. Front Immunol 2019; 10:1827. [PMID: 31447842 PMCID: PMC6691096 DOI: 10.3389/fimmu.2019.01827] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis. Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases. In general, fatigue is defined by debilitating periods of exhaustion that interfere with normal activities. The severity and duration of fatigue episodes vary, but fatigue can cause difficulty for even simple tasks like climbing stairs or crossing the room. The exact mechanisms of fatigue are not well-understood, perhaps due to its broad definition. Nevertheless, physiological processes known to play a role in fatigue include oxygen/nutrient supply, metabolism, mood, motivation, and sleepiness-all which are affected by inflammation. Additionally, an important contributing element to fatigue is the central nervous system-a region impacted either directly or indirectly in numerous autoimmune and related disorders. This review describes how inflammation and the central nervous system contribute to fatigue and suggests potential mechanisms involved in fatigue that are likely exhibited in autoimmune and related diseases.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David M Systrom
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Lisitsyna TA, Abramkin AA, Veltishchev DY, Seravina OF, Kovalevskaya OB, Zeltyn AE, Glukhova SI, Nasonov EL, Krasnov VN. [Chronic pain and depression in patients with rheumatoid arthritis: results of five - year follow - up]. TERAPEVT ARKH 2019; 91:8-18. [PMID: 32598671 DOI: 10.26442/00403660.2019.05.000207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
The aim of the study was to analyze the factors affecting chronic pain in patients with rheumatoid arthritis (RA). MATERIALS AND METHODS 128 patients with reliable diagnosis of RA [111 (86.7%) women and 17 (13.3%) men] were examined. The mean age of patients was 47.4±11.3 years, the median duration of the disease was 96 [48; 228] months. When included in the study in most patients, the activity of RA in DAS28 was moderate (n=56; 43.7%) or high (n=48; 37.5%). BPI (Brief Pain Inventory) scale was used to determine the severity of pain and its impact on various aspects of life. The anxiety - depressive spectrum disorders (ADDs) were diagnosed by psychiatrist during a semistructured interview according to ICD-10 criteria in 123 (96.1%) patients. The severity of depression was determined by the Montgomery-Asberg depression rating scale, anxiety - by Hamilton anxiety scale. For the diagnosis of cognitive impairment used clinical and psychological techniques. Psychopharmacotherapy (PPhT) by antidepressants or anxiolytics is offered to all patients with ADDs, 52 of them agreed to treatment, 71 patients refused. The next groups selected depending on the therapy: 1st - with conventional disease - modifying antirheumatic drugs (cDMARDs; n=39), 2nd - with cDMARDs+PPhT (n=43), 3d - with cDMARDs + biologic (b) DMARDs (n=32), 4th - with cDMARD+bDMARDs+PPhT (n=9). The dynamics of ADDs and outcomes of RA in 5 years were evaluated in 83 (67.5%) patients. RESULTS When included in the study, 94 (75.2%) patients with RA had moderate and severe pain. According to the regression analysis, the maximum intensity pain in BPImax after 5 years of follow - up associated not the only factors connected with RA - high DAS28, the serum level of C-reactive protein, the degree of radiological stage and functional insufficiency, duration of RA and a lesser duration of glucocorticoids intake, but also with continuing depressive episodes in the framework of recurrent depression and the initial presence of cognitive impairment. The severity of pain after 5 years of follow - up was higher in RA patients receiving only сDMARDs, without the use of bDMARDs and in the absence of PPhT associated with ADDs. CONCLUSION Depressive episode within recurrent major depression is a significant factor in the chronicity of pain in patients with RA. Timely effective PPhT of depression, selected taking into account depression structure and personal characteristics of the patient, leads to a steady decrease in the severity of pain in patients with RA.
Collapse
Affiliation(s)
- T A Lisitsyna
- V.A. Nasonova Scientific and Research Institute of Rheumatology
| | - A A Abramkin
- V.A. Nasonova Scientific and Research Institute of Rheumatology
| | - D Y Veltishchev
- Moscow Research Institute of Psychiatry - Branch National Medical Research Center of Psychiatry and Narcology, Ministry of Health of Russia.,Pirogov Russian National Research Medical University, Ministry of Health of Russia, department of psychiatry
| | - O F Seravina
- Moscow Research Institute of Psychiatry - Branch National Medical Research Center of Psychiatry and Narcology, Ministry of Health of Russia
| | - O B Kovalevskaya
- Moscow Research Institute of Psychiatry - Branch National Medical Research Center of Psychiatry and Narcology, Ministry of Health of Russia
| | - A E Zeltyn
- Moscow Research Institute of Psychiatry - Branch National Medical Research Center of Psychiatry and Narcology, Ministry of Health of Russia
| | - S I Glukhova
- V.A. Nasonova Scientific and Research Institute of Rheumatology
| | - E L Nasonov
- V.A. Nasonova Scientific and Research Institute of Rheumatology.,I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
| | - V N Krasnov
- Moscow Research Institute of Psychiatry - Branch National Medical Research Center of Psychiatry and Narcology, Ministry of Health of Russia.,Pirogov Russian National Research Medical University, Ministry of Health of Russia, department of psychiatry
| |
Collapse
|
22
|
|
23
|
Shubayev VI, Strongin AY, Yaksh TL. Structural homology of myelin basic protein and muscarinic acetylcholine receptor: Significance in the pathogenesis of complex regional pain syndrome. Mol Pain 2018; 14:1744806918815005. [PMID: 30392459 PMCID: PMC6287297 DOI: 10.1177/1744806918815005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complex regional pain syndrome is an extremely painful condition that develops after trauma to a limb. Complex regional pain syndrome exhibits autoimmune features in part mediated by autoantibodies against muscarinic‐2 acetylcholine (M2) receptor. The mechanisms underlying the M2 receptor involvement in complex regional pain syndrome remain obscure. Based on our recent work demonstrating that limb nerve trauma releases a potent proalgesic, immunodominant myelin basic protein fragment, our present sequence database analyses reveal an unexpected and previously undescribed structural homology of the proalgesic myelin basic protein fragment with the M2 receptor. As both complex regional pain syndrome and the proalgesic myelin basic protein activity are prevalent in females, this myelin basic protein/M2 homology presents an inviting hypothesis explaining the mechanisms of autoimmune pathogenesis and sexual dimorphism that underlies vulnerability toward developing complex regional pain syndrome and other pain states with neuropathic features. This hypothesis may aid in the development of novel diagnostic and therapeutic strategies to chronic pain.
Collapse
Affiliation(s)
- Veronica I Shubayev
- 1 Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA.,2 VA San Diego Healthcare System, La Jolla, CA, USA
| | - Alex Y Strongin
- 3 Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tony L Yaksh
- 1 Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Beazley-Long N, Moss CE, Ashby WR, Bestall SM, Almahasneh F, Durrant AM, Benest AV, Blackley Z, Ballmer-Hofer K, Hirashima M, Hulse RP, Bates DO, Donaldson LF. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun 2018; 74:49-67. [PMID: 29548992 PMCID: PMC6302073 DOI: 10.1016/j.bbi.2018.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 02/01/2023] Open
Abstract
Chronic pain can develop in response to conditions such as inflammatory arthritis. The central mechanisms underlying the development and maintenance of chronic pain in humans are not well elucidated although there is evidence for a role of microglia and astrocytes. However in pre-clinical models of pain, including models of inflammatory arthritis, there is a wealth of evidence indicating roles for pathological glial reactivity within the CNS. In the spinal dorsal horn of rats with painful inflammatory arthritis we found both a significant increase in CD11b+ microglia-like cells and GFAP+ astrocytes associated with blood vessels, and the number of activated blood vessels expressing the adhesion molecule ICAM-1, indicating potential glio-vascular activation. Using pharmacological interventions targeting VEGFR2 in arthritic rats, to inhibit endothelial cell activation, the number of dorsal horn ICAM-1+ blood vessels, CD11b+ microglia and the development of secondary mechanical allodynia, an indicator of central sensitization, were all prevented. Targeting endothelial VEGFR2 by inducible Tie2-specific VEGFR2 knock-out also prevented secondary allodynia in mice and glio-vascular activation in the dorsal horn in response to inflammatory arthritis. Inhibition of VEGFR2 in vitro significantly blocked ICAM-1-dependent monocyte adhesion to brain microvascular endothelial cells, when stimulated with inflammatory mediators TNF-α and VEGF-A165a. Taken together our findings suggest that a novel VEGFR2-mediated spinal cord glio-vascular mechanism may promote peripheral CD11b+ circulating cell transmigration into the CNS parenchyma and contribute to the development of chronic pain in inflammatory arthritis. We hypothesise that preventing this glio-vascular activation and circulating cell translocation into the spinal cord could be a new therapeutic strategy for pain caused by rheumatoid arthritis.
Collapse
Affiliation(s)
- Nicholas Beazley-Long
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Catherine Elizabeth Moss
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - William Robert Ashby
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Samuel Marcus Bestall
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Fatimah Almahasneh
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexandra Margaret Durrant
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Andrew Vaughan Benest
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Zoe Blackley
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Masanori Hirashima
- Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Japan
| | - Richard Phillip Hulse
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - David Owen Bates
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK,COMPARE University of Birmingham and University of Nottingham Midlands, UK
| | - Lucy Frances Donaldson
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
25
|
Raoof R, Willemen HLDM, Eijkelkamp N. Divergent roles of immune cells and their mediators in pain. Rheumatology (Oxford) 2018; 57:429-440. [PMID: 28968842 PMCID: PMC5850827 DOI: 10.1093/rheumatology/kex308] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is a major debilitating condition that is difficult to treat. Although chronic pain may appear to be a disorder of the nervous system, crucial roles for immune cells and their mediators have been identified as important contributors in various types of pain. This review focuses on how the immune system regulates pain and discusses the emerging roles of immune cells in the initiation or maintenance of chronic pain. We highlight which immune cells infiltrate damaged nerves, the dorsal root ganglia, spinal cord and tissues around free nerve endings and discuss through which mechanisms they control pain. Finally we discuss emerging roles of the immune system in resolving pain and how the immune system contributes to the transition from acute to chronic pain. We propose that targeting some of these immune processes may provide novel therapeutic opportunities for the treatment of chronic pain.
Collapse
Affiliation(s)
- Ramin Raoof
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanneke L D M Willemen
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Remacle AG, Dolkas J, Angert M, Hullugundi SK, Chernov AV, Jones RCW, Shubayev VI, Strongin AY. A sensitive and selective ELISA methodology quantifies a demyelination marker in experimental and clinical samples. J Immunol Methods 2018; 455:80-87. [PMID: 29428829 PMCID: PMC5886741 DOI: 10.1016/j.jim.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/05/2018] [Indexed: 12/29/2022]
Abstract
Sciatic nerve chronic constriction injury (CCI) in rodents produces nerve demyelination via proteolysis of myelin basic protein (MBP), the major component of myelin sheath. Proteolysis releases the cryptic MBP epitope, a demyelination marker, which is hidden in the native MBP fold. It has never been established if the proteolytic release of this cryptic MBP autoantigen stimulates the post-injury increase in the respective circulating autoantibodies. To measure these autoantibodies, we developed the ELISA that employed the cryptic 84-104 MBP sequence (MBP84-104) as bait. This allowed us, for the first time, to quantify the circulating anti-MBP84-104 autoantibodies in rat serum post-CCI. The circulating IgM (but not IgG) autoantibodies were detectable as soon as day 7 post-CCI. The IgM autoantibody level continually increased between days 7 and 28 post-injury. Using the rat serum samples, we established that the ELISA intra-assay (precision) and inter-assay (repeatability) variability parameters were 2.87% and 4.58%, respectively. We also demonstrated the ELISA specificity by recording the autoantibodies to the liberated MBP84-104 epitope alone, but not to intact MBP in which the 84-104 region is hidden. Because the 84-104 sequence is conserved among mammals, we tested if the ELISA was applicable to detect demyelination and quantify the respective autoantibodies in humans. Our limited pilot study that involved 16 female multiple sclerosis and fibromyalgia syndrome patients demonstrated that the ELISA was efficient in measuring both the circulating IgG- and IgM-type autoantibodies in patients exhibiting demyelination. We believe that the ELISA measurements of the circulating autoantibodies against the pathogenic MBP84-104 peptide may facilitate the identification of demyelination in both experimental and clinical settings. In clinic, these measurements may assist neurologists to recognize patients with painful neuropathy and demyelinating diseases, and as a result, to personalize their treatment regimens.
Collapse
Affiliation(s)
- Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Swathi K Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Andrei V Chernov
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - R Carter W Jones
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; Center for Pain Medicine, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA.
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
|
28
|
Pharmacological inhibition of the NLRP3 inflammasome as a potential target for multiple sclerosis induced central neuropathic pain. Inflammopharmacology 2017; 26:77-86. [DOI: 10.1007/s10787-017-0401-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/15/2017] [Indexed: 01/06/2023]
|
29
|
Yang L, Guo C, Zhu J, Feng Y, Chen W, Feng Z, Wang D, Sun S, Lin W, Wang Y. Increased Levels of Pro-Inflammatory and Anti-Inflammatory Cellular Responses in Parkinson's Disease Patients: Search for a Disease Indicator. Med Sci Monit 2017. [PMID: 28624842 PMCID: PMC5484607 DOI: 10.12659/msm.904240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder and it arises when most of the dopaminergic neurons of substantia nigra region die. Several mechanisms have been postulated as the causative event in PD pathology, and neuroinflammation is most crucial among them. MATERIAL AND METHODS We analyzed T-helper 17 (Th17) cells and myeloid-derived suppressor cells (MDSCs) from 80 PD patients to assess inflammatory processes and to find a cost-effective means to evaluate PD prognosis. RESULTS We found significantly increased numbers of Th17 cells and MDSCs count in peripheral circulation in PD patients compared with controls (p<0.001). A positive correlation was found between Th17 cells and MDSCs in PD patients (r=0.421, p<0.05). CONCLUSIONS Our results show the effector role of Th17 cells and MDSCs in PD pathology and shows their utility as effective biomarkers for PD diagnosis.
Collapse
Affiliation(s)
- Likun Yang
- Department of Neurosurgery, No. 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Changfeng Guo
- Department of Emergency Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Jie Zhu
- Department of Neurosurgery, No. 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Yi Feng
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Weiliang Chen
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Zhizhong Feng
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Dan Wang
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Shibai Sun
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Wei Lin
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Yuhai Wang
- Department of Neurosurgery, No. 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
30
|
Dias RG, Sampaio SC, Sant'Anna MB, Cunha FQ, Gutiérrez JM, Lomonte B, Cury Y, Picolo G. Articular inflammation induced by an enzymatically-inactive Lys49 phospholipase A 2: activation of endogenous phospholipases contributes to the pronociceptive effect. J Venom Anim Toxins Incl Trop Dis 2017; 23:18. [PMID: 28344594 PMCID: PMC5364601 DOI: 10.1186/s40409-017-0104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Arthritis is a set of inflammatory conditions that induce aching, stiffness, swelling, pain and may cause functional disability with severe consequences to the patient's lives. These are multi-mediated pathologies that cannot be effectively protected and/or treated. Therefore, the aim of this study was to establish a new model of acute arthritis, using a Lys49-PLA2 (Bothrops asper myotoxin II; MT-II) to induce articular inflammation. METHODS The articular inflammation was induced by MT-II (10 μg/joint) injection into the left tibio-tarsal or femoral-tibial-patellar joints. Cellular influx was evaluated counting total and differential cells that migrated to the joint. The plasma extravasation was determined using Evans blue dye. The edematogenic response was evaluated measuring the joint thickness using a caliper. The articular hypernociception was determined by a dorsal flexion of the tibio-tarsal joint using an electronic pressure-meter test. The mediators involved in the articular hypernociception were evaluated using receptor antagonists and enzymatic inhibitors. RESULTS Plasma extravasation in the knee joints was observed 5 and 15 min after MT-II (10 μg/joint) injection. MT-II also induced a polymorphonuclear cell influx into the femoral-tibial-patellar joints observed 8 h after its injection, a period that coincided with the peak of the hyperalgesic effect. Hyperalgesia was inhibited by the pretreatment of the animals with cyclooxygenase inhibitor indomethacin, with type-2 cyclooxygenase inhibitor celecoxib, with AACOCF3 and PACOCF3, inhibitors of cytosolic and Ca2+-independent PLA2s, respectively, with bradykinin B2 receptor antagonist HOE 140, with antibodies against TNFα, IL-1β, IL-6 and CINC-1 and with selective ET-A (BQ-123) and ET-B (BQ-788) endothelin receptors antagonists. The MT-II-induced hyperalgesia was not altered by the lipoxygenase inhibitor zileuton, by the bradykinin B1 receptor antagonist Lys-(Des-Arg9,Leu8)-bradykinin, by the histamine and serotonin antagonists promethazine and methysergide, respectively, by the nitric oxide inhibitor LNMMA and by the inhibitor of matrix 1-, 2-, 3-, 8- and 9- metalloproteinases GM6001 (Ilomastat). CONCLUSION These results demonstrated the multi-mediated characteristic of the articular inflammation induced by MT-II, which demonstrates its relevance as a model for arthritis mechanisms and treatment evaluation.
Collapse
Affiliation(s)
- Renata Gonçalves Dias
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil.,Healthy Sciences Institute, Paulista University (UNIP), São Paulo, SP Brazil
| | - Sandra Coccuzzo Sampaio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP Brazil.,Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Morena Brazil Sant'Anna
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José María Gutiérrez
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yara Cury
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Gisele Picolo
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
31
|
Kwok CH, Trang T. Pain: From genes and proteins to cells in the living organism. J Neurosci Res 2017; 95:1239-1241. [DOI: 10.1002/jnr.24046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Charlie H.T. Kwok
- Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| | - Tuan Trang
- Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| |
Collapse
|