1
|
Amini A, Esmaeili F, Golpich M. Possible role of lncRNAs in amelioration of Parkinson's disease symptoms by transplantation of dopaminergic cells. NPJ Parkinsons Dis 2024; 10:56. [PMID: 38472261 PMCID: PMC10933336 DOI: 10.1038/s41531-024-00661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are biomarkers for diagnosis and treatment of Parkinson's disease (PD). Since dopaminergic cell transplantation is a clinical method to treat PD, this study investigated the effects of dopaminergic cell therapy on the expression of some lncRNAs and genes related to PD. In this study, Twenty-eight rats were randomly assigned to four experimental groups. The control group (Sal group) received saline injections. The Par group was a PD rat model with 6-hydroxydopamine (6-OHDA) injection in right striatum (ST). PD animals were transplanted by undifferentiated P19 stem cells (Par-E group), and P19-derived dopaminergic cells (Par-N group). Cell transplant effects were evaluated using behavioral tests (cylinder, open field, and rotarod tests), and histological methods (H&E and Nissl staining, and immunohistochemistry). Moreover, the expression of lncRNAs MALAT1, MEG3, and SNHG1, alongside specific neuronal (synaptophysin) and dopaminergic (tyrosine hydroxylase) markers was evaluated by qRT-PCR. Behavioral and histopathological examinations revealed that cell transplantation partially compensated dopaminergic cell degeneration in ST and substantia nigra (SN) of PD rats. The expression of MALAT1, SNHG1, and MEG3 was decreased in the ST of the Par group, while MEG3 and SNHG1 gene expression was increased in PBMC relative to the Sal group. In PBMC of the Par-N group, all three lncRNAs showed a reduction in their expression. Conversely, MALAT1 and SNHG1 expression was increased in ST tissue, while MEG3 gene expression was decreased compared to the Sal group. In conclusion, dopaminergic cell transplantation could change the lncRNAs expression. Furthermore, it partially improves symptoms in PD rats.
Collapse
Affiliation(s)
- A Amini
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - F Esmaeili
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - M Golpich
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Essawy Essawy A, Abou-ElNaga OA, Mehanna RA, Badae NM, Elsawy ES, Soffar AA. Comparing the effect of intravenous versus intracranial grafting of mesenchymal stem cells against parkinsonism in a rat model: Behavioral, biochemical, pathological and immunohistochemical studies. PLoS One 2024; 19:e0296297. [PMID: 38349932 PMCID: PMC10863851 DOI: 10.1371/journal.pone.0296297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/10/2023] [Indexed: 02/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases worldwide. Currently applied therapeutic protocols are limited to improve the motor functions of patients. Therefore, seeking alternative regimes with better therapeutic impact is crucial. This study aims to validate the therapeutic impact of mesenchymal stem cell injection using two delivery methods, intracranial administration and intravenous administration, on rotenone (ROT)-induced PD model in rats. Our work included behavioral, biochemical, histological, and molecular investigations. Open field test (OFT) and rotarod tests were applied. Important oxidative stress, antioxidant and proinflammatory markers were monitored. Substantia Nigra and Striatum tissues were examined histologically and the molecular expression of DOPA decarboxylase, Tyrosine hydroxylase, and α-synuclein in neurons in these tissues were investigated. Our results showed that MSC grafting improved motor and memory impairments and oxidative stress status that were observed after ROT administration. Additionally, BM-MSCs application restored SOD and CAT activities and the levels of DA, L-Dopa, IL6, IL1β, and TNFα. Moreover, MSC grafting overwhelmed the pathological changes induced by ROT and normalized the expression of Tyrosine hydroxylase, DOPA decarboxylase, and α-synuclein towards the control values in the Nigral and Striatal tissues of male rats. Conclusively, both administration routes improved motor function, protection of the nigrostriatal system, and improved striatal dopamine release. The observed beneficial effect of applying MSCs suggests potential benefits in clinical applications. No significant differences in the outcomes of the treatment would favor a certain way of MSC application over the other. However, the intravenous delivery method seems to be safer and more feasible compared to the intrastriatal method.
Collapse
Affiliation(s)
- Amina Essawy Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Radwa Ali Mehanna
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mohammed Badae
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Sheta Elsawy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
3
|
Zhou J, Gao T, Tang W, Qian T, Wang Z, Xu P, Wang L. Progress in the treatment of neonatal hypoxic-ischemic encephalopathy with umbilical cord blood mononuclear cells. Brain Dev 2023; 45:533-546. [PMID: 37806836 DOI: 10.1016/j.braindev.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease among newborns, which is a leading cause of neonatal death and permanent neurological sequelae. Therapeutic hypothermia (TH) is the only method for the treatment of HIE that has been recognized effective clinically at home and abroad, but the efficacy is limited. Recent research suggests that the cord blood-derived mononuclear cells (CB-MNCs), which the refer to blood cells containing one nucleus in the cord blood, exert anti-oxidative, anti-inflammatory, anti-apoptotic effects and play a neuroprotective role in HIE. This review focuses on safety and efficacy, the route of administration, dose, timing and combination treatment of CB-MNCs in HIE.
Collapse
Affiliation(s)
- Jiayu Zhou
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ziming Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Pu Xu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China.
| |
Collapse
|
4
|
Maldonado VV, Patel NH, Smith EE, Barnes CL, Gustafson MP, Rao RR, Samsonraj RM. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy. J Biol Eng 2023; 17:44. [PMID: 37434264 DOI: 10.1186/s13036-023-00361-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been carefully examined to have tremendous potential in regenerative medicine. With their immunomodulatory and regenerative properties, MSCs have numerous applications within the clinical sector. MSCs have the properties of multilineage differentiation, paracrine signaling, and can be isolated from various tissues, which makes them a key candidate for applications in numerous organ systems. To accentuate the importance of MSC therapy for a range of clinical indications, this review highlights MSC-specific studies on the musculoskeletal, nervous, cardiovascular, and immune systems where most trials are reported. Furthermore, an updated list of the different types of MSCs used in clinical trials, as well as the key characteristics of each type of MSCs are included. Many of the studies mentioned revolve around the properties of MSC, such as exosome usage and MSC co-cultures with other cell types. It is worth noting that MSC clinical usage is not limited to these four systems, and MSCs continue to be tested to repair, regenerate, or modulate other diseased or injured organ systems. This review provides an updated compilation of MSCs in clinical trials that paves the way for improvement in the field of MSC therapy.
Collapse
Affiliation(s)
- Vitali V Maldonado
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - Neel H Patel
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - Emma E Smith
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - C Lowry Barnes
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Raj R Rao
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Rebekah M Samsonraj
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA.
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
5
|
Hay AJD, Latham AS, Mumford G, Hines AD, Risen S, Gordon E, Siebenaler C, Gilberto VS, Zabel MD, Moreno JA. Intranasally delivered mesenchymal stromal cells decrease glial inflammation early in prion disease. Front Neurosci 2023; 17:1158408. [PMID: 37250395 PMCID: PMC10213210 DOI: 10.3389/fnins.2023.1158408] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are an intriguing avenue for the treatment of neurological disorders due to their ability to migrate to sites of neuroinflammation and respond to paracrine signaling in those sites by secreting cytokines, growth factors, and other neuromodulators. We potentiated this ability by stimulating MSCs with inflammatory molecules, improving their migratory and secretory properties. We investigated the use of intranasally delivered adipose-derived MSCs (AdMSCs) in combating prion disease in a mouse model. Prion disease is a rare, lethal neurodegenerative disease that results from the misfolding and aggregation of the prion protein. Early signs of this disease include neuroinflammation, activation of microglia, and development of reactive astrocytes. Later stages of disease include development of vacuoles, neuronal loss, abundant aggregated prions, and astrogliosis. We demonstrate the ability of AdMSCs to upregulate anti-inflammatory genes and growth factors when stimulated with tumor necrosis factor alpha (TNFα) or prion-infected brain homogenates. We stimulated AdMSCs with TNFα and performed biweekly intranasal deliveries of AdMSCs on mice that had been intracranially inoculated with mouse-adapted prions. At early stages in disease, animals treated with AdMSCs showed decreased vacuolization throughout the brain. Expression of genes associated with Nuclear Factor-kappa B (NF-κB) and Nod-Like Receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling were decreased in the hippocampus. AdMSC treatment promoted a quiescent state in hippocampal microglia by inducing changes in both number and morphology. Animals that received AdMSCs showed a decrease in both overall and reactive astrocyte number, and morphological changes indicative of homeostatic astrocytes. Although this treatment did not prolong survival or rescue neurons, it demonstrates the benefits of MSCs in combatting neuroinflammation and astrogliosis.
Collapse
Affiliation(s)
- Arielle J. D. Hay
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Amanda S. Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Genova Mumford
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Amelia D. Hines
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sydney Risen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth Gordon
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Connor Siebenaler
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Vincenzo S. Gilberto
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mark D. Zabel
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Center for Healthy Aging, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Julie A. Moreno
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Center for Healthy Aging, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
6
|
Ghasemi M, Roshandel E, Mohammadian M, Farhadihosseinabadi B, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials. Stem Cell Res Ther 2023; 14:122. [PMID: 37143147 PMCID: PMC10161443 DOI: 10.1186/s13287-023-03264-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. MAIN BODY Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. CONCLUSION The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Tabriz University of Medical Science, Tabriz, Iran.
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Yang C, Du XY, Luo W. Clinical application prospects and transformation value of dental follicle stem cells in oral and neurological diseases. World J Stem Cells 2023; 15:136-149. [PMID: 37181000 PMCID: PMC10173814 DOI: 10.4252/wjsc.v15.i4.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Since dental pulp stem cells (DPSCs) were first reported, six types of dental SCs (DSCs) have been isolated and identified. DSCs originating from the craniofacial neural crest exhibit dental-like tissue differentiation potential and neuro-ectodermal features. As a member of DSCs, dental follicle SCs (DFSCs) are the only cell type obtained at the early developing stage of the tooth prior to eruption. Dental follicle tissue has the distinct advantage of large tissue volume compared with other dental tissues, which is a prerequisite for obtaining a sufficient number of cells to meet the needs of clinical applications. Furthermore, DFSCs exhibit a significantly higher cell proliferation rate, higher colony-formation capacity, and more primitive and better anti-inflammatory effects than other DSCs. In this respect, DFSCs have the potential to be of great clinical significance and translational value in oral and neurological diseases, with natural advantages based on their origin. Lastly, cryopreservation preserves the biological properties of DFSCs and enables them to be used as off-shelf products for clinical applications. This review summarizes and comments on the properties, application potential, and clinical transformation value of DFSCs, thereby inspiring novel perspectives in the future treatment of oral and neurological diseases.
Collapse
Affiliation(s)
- Chao Yang
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen 518051, Guangdong Province, China
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Xin-Ya Du
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
8
|
Rodríguez-Pallares J, Labandeira-García J, García-Garrote M, Parga J. Combined cell-based therapy strategies for the treatment of Parkinson’s disease: focus on mesenchymal stromal cells. Neural Regen Res 2023; 18:478-484. [DOI: 10.4103/1673-5374.350193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Hay AJD, Murphy TJ, Popichak KA, Zabel MD, Moreno JA. Adipose-derived mesenchymal stromal cells decrease prion-induced glial inflammation in vitro. Sci Rep 2022; 12:22567. [PMID: 36581683 PMCID: PMC9800558 DOI: 10.1038/s41598-022-26628-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are characterized by the cellular prion protein, PrPC, misfolding and aggregating into the infectious prion protein, PrPSc, which leads to neurodegeneration and death. An early sign of disease is inflammation in the brain and the shift of resting glial cells to reactive astrocytes and activated microglia. Few therapeutics target this stage of disease. Mesenchymal stromal cells produce anti-inflammatory molecules when exposed to inflammatory signals and damaged tissue. Here, we show that adipose-derived mesenchymal stromal cells (AdMSCs) migrate toward prion-infected brain homogenate and produce the anti-inflammatory molecules transforming growth factor β (TGFβ) and tumor necrosis factor-stimulated gene 6 (TSG-6). In an in vitro model of prion exposure of both primary mixed glia and BV2 microglial cell line, co-culturing with AdMSCs led to a significant decrease in inflammatory cytokine mRNA and markers of reactive astrocytes and activated microglia. This protection against in vitro prion-associated inflammatory responses is independent of PrPSc replication. These data support a role for AdMSCs as a beneficial therapeutic for decreasing the early onset of glial inflammation and reprogramming glial cells to a protective phenotype.
Collapse
Affiliation(s)
- Arielle J. D. Hay
- grid.47894.360000 0004 1936 8083Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA ,grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Tanner J. Murphy
- grid.47894.360000 0004 1936 8083Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA ,grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA ,grid.47894.360000 0004 1936 8083Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Katriana A. Popichak
- grid.47894.360000 0004 1936 8083Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA ,grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA ,grid.47894.360000 0004 1936 8083Present Address: Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523 USA
| | - Mark D. Zabel
- grid.47894.360000 0004 1936 8083Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA ,grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA ,grid.47894.360000 0004 1936 8083Present Address: Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523 USA
| | - Julie A. Moreno
- grid.47894.360000 0004 1936 8083Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA ,grid.47894.360000 0004 1936 8083Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA ,grid.47894.360000 0004 1936 8083Present Address: Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
10
|
Rahbaran M, Zekiy AO, Bahramali M, Jahangir M, Mardasi M, Sakhaei D, Thangavelu L, Shomali N, Zamani M, Mohammadi A, Rahnama N. Therapeutic utility of mesenchymal stromal cell (MSC)-based approaches in chronic neurodegeneration: a glimpse into underlying mechanisms, current status, and prospects. Cell Mol Biol Lett 2022; 27:56. [PMID: 35842587 PMCID: PMC9287902 DOI: 10.1186/s11658-022-00359-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Recently, mesenchymal stromal cell (MSC)-based therapy has become an appreciated therapeutic approach in the context of neurodegenerative disease therapy. Accordingly, a myriad of studies in animal models and also some clinical trials have evinced the safety, feasibility, and efficacy of MSC transplantation in neurodegenerative conditions, most importantly in Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). The MSC-mediated desired effect is mainly a result of secretion of immunomodulatory factors in association with release of various neurotrophic factors (NTFs), such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Thanks to the secretion of protein-degrading molecules, MSC therapy mainly brings about the degradation of pathogenic protein aggregates, which is a typical appearance of chronic neurodegenerative disease. Such molecules, in turn, diminish neuroinflammation and simultaneously enable neuroprotection, thereby alleviating disease pathological symptoms and leading to cognitive and functional recovery. Also, MSC differentiation into neural-like cells in vivo has partially been evidenced. Herein, we focus on the therapeutic merits of MSCs and also their derivative exosome as an innovative cell-free approach in AD, HD, PD, and ALS conditions. Also, we give a brief glimpse into novel approaches to potentiate MSC-induced therapeutic merits in such disorders, most importantly, administration of preconditioned MSCs.
Collapse
Affiliation(s)
- Mohaddeseh Rahbaran
- Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mahta Bahramali
- Biotechnology Department, University of Tehran, Tehran, Iran
| | | | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Delaram Sakhaei
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Mohammadi
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran.
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
11
|
Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int J Mol Sci 2022; 23:ijms23137273. [PMID: 35806275 PMCID: PMC9266760 DOI: 10.3390/ijms23137273] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Ageing and chronic degenerative pathologies demonstrate the shared characteristics of high bioavailability of reactive oxygen species (ROS) and oxidative stress, chronic/persistent inflammation, glycation, and mitochondrial abnormalities. Excessive ROS production results in nucleic acid and protein destruction, thereby altering the cellular structure and functional outcome. To stabilise increased ROS production and modulate oxidative stress, the human body produces antioxidants, “free radical scavengers”, that inhibit or delay cell damage. Reinforcing the antioxidant defence system and/or counteracting the deleterious repercussions of immoderate reactive oxygen and nitrogen species (RONS) is critical and may curb the progression of ageing and chronic degenerative syndromes. Various therapeutic methods for ROS and oxidative stress reduction have been developed. However, scientific investigations are required to assess their efficacy. In this review, we summarise the interconnected mechanism of oxidative stress and chronic inflammation that contributes to ageing and chronic degenerative pathologies, including neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), cardiovascular diseases CVD, diabetes mellitus (DM), and chronic kidney disease (CKD). We also highlight potential counteractive measures to combat ageing and chronic degenerative diseases.
Collapse
|
12
|
Cai Y, Zhang MM, Wang M, Jiang ZH, Tan ZG. Bone Marrow-Derived Mesenchymal Stem Cell-Derived Exosomes Containing Gli1 Alleviate Microglial Activation and Neuronal Apoptosis In Vitro and in a Mouse Parkinson Disease Model by Direct Inhibition of Sp1 Signaling. J Neuropathol Exp Neurol 2022; 81:522-534. [PMID: 35609560 DOI: 10.1093/jnen/nlac037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study investigated possible therapeutic effect mechanisms of exosomes from bone marrow-derived mesenchymal stem cells (BMSC) in neuronal and microglial cells and in a Parkinson disease (PD) model. Neuronal SH-SY5Y cells and microglial HMC3 cells were subjected to 1-methyl-4-phenylpyridinium (MPP+) or LPS, respectively. The mRNA and protein expression was assessed using qRT-PCR, Western blotting, and enzyme-linked immunosorbent assay. Cell viability and apoptosis of SH-SY5Y cells were examined using the MTT assay and flow cytometry. Chromatin immunoprecipitation assays were performed to assess the binding relationship between glioma-associated oncogene homolog 1 (Gli1) and the Sp1 transcription factor promoter. BMSC-derived exosomes promoted cell proliferation and inhibited apoptosis in MPP+-treated SH-SY5Y cells and suppressed inflammatory markers in LPS-treated HMC3 cells. Sp1 knockdown decreased SH-SY5Y cell damage and HMC3 immune activation. Gli1 carried by BMSC exosomes directly bound with Sp1 to inhibit Sp1-mediated LRRK2 activation whereas exosomes secreted by Gli1-knockdown in BMSC did not. In a PD mouse model induced with MPTP, BMSC exosomes decreased neuron loss injury and the inflammatory response by inhibiting Sp1 signaling. Thus, BMSC-derived exosomal Gli1 alleviates inflammatory damage and neuronal apoptosis by inhibiting Sp1 in vitro and in vivo. These findings provide the basis for the potential clinical use of BMSC-derived exosomes in PD.
Collapse
Affiliation(s)
- Yang Cai
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province 410011, P.R. China
| | - Ming-Ming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province 410011, P.R. China
| | - Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province 410011, P.R. China
| | - Zhuo-Hang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province 410011, P.R. China
| | - Zhi-Gang Tan
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province 410011, P.R. China
| |
Collapse
|
13
|
Guo Y, Guan Y, Zhu H, Sun T, Wang Y, Huang Y, Ma C, Emery R, Guan W, Wang C, Liu C. Therapeutic function of iPSCs-derived primitive neuroepithelial cells in a rat model of Parkinson's disease. Neurochem Int 2022; 155:105324. [PMID: 35247479 DOI: 10.1016/j.neuint.2022.105324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are a promising unlimited source for cell replacement therapy of neurodegenerative disorders, including Parkinson's disease (PD). In the present study, rat iPSCs-derived primitive neuroepithelial cells (RiPSCs-iNECs) were successfully induced from rat iPSCs (RiPSCs) following two major developmental stages, and could generate neurospheres and differentiated into both neurons and astrocytes in vitro. Then, the RiPSCs-iNECs-GFP+ were unilaterally transplanted into the right substantia nigra (SN) of 6-hydroxydopamine-lesioned rat models of PD. The results demonstrated that the grafted RiPSCs-iNECs could survive in parkinsonian rat brain for at least 150 days, and many of them differentiated into tyrosine hydroxylase (TH)-positive cells. Furthermore, the PD model rats grafted with RiPSCs-iNECs exhibited a significant functional recovery from their parkinsonian behavioral defects. Histological studies showed that RiPSCs-iNECs could differentiate into multiple types of neurons including dopaminergic neurons, GFAP, Pax6, FoxA2 and DAT-positive cells, and induced dopaminergic neurons extended dense neurites into the host striatum. Thus, iPSCs derived primitive neuroepithelial cells could be an attractive candidate as a source of donor material for the treatment of PD, but the molecular mechanism needs further clarification.
Collapse
Affiliation(s)
- Yu Guo
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yuhan Guan
- University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Huan Zhu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yuanyuan Wang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yuqi Huang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Caiyun Ma
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China; Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Rik Emery
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Weijun Guan
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Chunjing Wang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Changqing Liu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China; Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
14
|
Forouzandeh M, Bigdeli MR, Mostafavi H, Nadri S, Eskandari M. Therapeutic potentials of human microfluidic encapsulated conjunctival mesenchymal stem cells on the rat model of Parkinson's disease. Exp Mol Pathol 2021; 123:104703. [PMID: 34619140 DOI: 10.1016/j.yexmp.2021.104703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the destruction of the dopaminergic neurons in the nigrostriatal pathway, leading to motor-behavioral complications. Cell therapy has been proposed as a promising approach for PD treatment using various cellular sources. Despite a few disadvantages mesenchymal stem cells (MSCs) represent, they have more auspicious effects for PD cell therapy. The present study aimed to evaluate a new source of MSCs isolated from human Conjunctiva (CJ-MSCs) impact on PD complications for the first time. MATERIALS AND METHODS Parkinson's was induced by stereotactic injection of 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle (MFB). An apomorphine-induced rotation test was used to confirm the model establishment. After PD model confirmation, green fluorescent protein (GFP) labeled CJ-MSCs and induced CJ-MSCs (microfluidic encapsulated and non-capsulated) were transplanted into the rats' right striatum. Then Rotation, Rotarod, and Open-field tests were performed to evaluate the behavioral assessment. Additionally, the immunohistochemistry technique was used for identifying tyrosine hydroxylase (TH). RESULTS According to the obtained data, the cell transplantation caused a reduction in the rats' rotation number and improved locomotion compared to the control group. The previous results were also more pronounced in induced and microfluidic encapsulated cells compared to other cells. Rats recipient CJ-MSCs also have represented more TH-expressed GFP-labeled cell numbers in the striatum than the control group. CONCLUSION It can be concluded that CJ-MSCs therapy can have protective effects against PD complications and nerve induction of cells due to their ability to express dopamine. On the other hand, CJ-MSCs microencapsulating leads to enhance even more protective effect of CJ-MSCs. However, confirmation of this hypothesis requires further studies and investigation of these cells' possible mechanisms of action.
Collapse
Affiliation(s)
| | - Mohammad Reza Bigdeli
- Faculty of Life Sciences, Shahid-Beheshti University, Tehran, Iran; Inistitute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran.
| | - Hossein Mostafavi
- Department of Physiology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran..
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Eskandari
- Department of Physiology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
15
|
A Two-Stage Process for Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Neuronal-like Cells. Stem Cells Int 2021; 2021:6631651. [PMID: 34135973 PMCID: PMC8177978 DOI: 10.1155/2021/6631651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 05/15/2021] [Indexed: 11/29/2022] Open
Abstract
With no permanent cure for neurodegenerative diseases, the symptoms reappear shortly after the withdrawal of medicines. A better treatment outcome can be expected if the damaged neurons are partly replaced by functional neurons and/or they are repaired using trophic factors. In this regard, safe cell therapy has been considered as a potential alternative to conventional treatment. Here, we have described a two-stage culture process to differentiate Wharton Jelly mesenchymal stem cells (WJ-MSCs) into neuronal-like cells in the presence of various cues involved in neurogenesis. The fate of cells at the end of each stage was analyzed at the morphometric, transcriptional, and translational levels. In the first stage of priming, constitutively, wingless-activated WJ-MSCs crossed the lineage boundary in favor of neuroectodermal lineage, identified by the loss of mesenchymal genes with concomitant expression of neuron-specific markers, like SOX1, PAX6, NTRK1, and NEUROD2. Neuronal-like cells formed in the second stage expressed many mature neuronal proteins like Map2, neurofilament, and Tuj1 and possessed axon hillock-like structures. In conclusion, the differentiation of a large number of neuronal-like cells from nontumorigenic and trophic factors secreting WJ-MSCs promises the development of a therapeutic strategy to treat neurodegenerative diseases.
Collapse
|
16
|
Ahamad N, Singh BB. Calcium channels and their role in regenerative medicine. World J Stem Cells 2021; 13:260-280. [PMID: 33959218 PMCID: PMC8080543 DOI: 10.4252/wjsc.v13.i4.260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cells hold indefinite self-renewable capability that can be differentiated into all desired cell types. Based on their plasticity potential, they are divided into totipotent (morula stage cells), pluripotent (embryonic stem cells), multipotent (hematopoietic stem cells, multipotent adult progenitor stem cells, and mesenchymal stem cells [MSCs]), and unipotent (progenitor cells that differentiate into a single lineage) cells. Though bone marrow is the primary source of multipotent stem cells in adults, other tissues such as adipose tissues, placenta, amniotic fluid, umbilical cord blood, periodontal ligament, and dental pulp also harbor stem cells that can be used for regenerative therapy. In addition, induced pluripotent stem cells also exhibit fundamental properties of self-renewal and differentiation into specialized cells, and thus could be another source for regenerative medicine. Several diseases including neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, virus infection (also coronavirus disease 2019) have limited success with conventional medicine, and stem cell transplantation is assumed to be the best therapy to treat these disorders. Importantly, MSCs, are by far the best for regenerative medicine due to their limited immune modulation and adequate tissue repair. Moreover, MSCs have the potential to migrate towards the damaged area, which is regulated by various factors and signaling processes. Recent studies have shown that extracellular calcium (Ca2+) promotes the proliferation of MSCs, and thus can assist in transplantation therapy. Ca2+ signaling is a highly adaptable intracellular signal that contains several components such as cell-surface receptors, Ca2+ channels/pumps/exchangers, Ca2+ buffers, and Ca2+ sensors, which together are essential for the appropriate functioning of stem cells and thus modulate their proliferative and regenerative capacity, which will be discussed in this review.
Collapse
Affiliation(s)
- Nassem Ahamad
- School of Dentistry, UT Health Science Center San Antonio, San Antonio, TX 78257, United States
| | - Brij B Singh
- School of Dentistry, UT Health Science Center San Antonio, San Antonio, TX 78257, United States
| |
Collapse
|
17
|
Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal Stem Cells for Neurological Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002944. [PMID: 33854883 PMCID: PMC8024997 DOI: 10.1002/advs.202002944] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/23/2020] [Indexed: 05/13/2023]
Abstract
Neurological disorders are becoming a growing burden as society ages, and there is a compelling need to address this spiraling problem. Stem cell-based regenerative medicine is becoming an increasingly attractive approach to designing therapies for such disorders. The unique characteristics of mesenchymal stem cells (MSCs) make them among the most sought after cell sources. Researchers have extensively studied the modulatory properties of MSCs and their engineering, labeling, and delivery methods to the brain. The first part of this review provides an overview of studies on the application of MSCs to various neurological diseases, including stroke, traumatic brain injury, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's disease, and other less frequently studied clinical entities. In the second part, stem cell delivery to the brain is focused. This fundamental but still understudied problem needs to be overcome to apply stem cells to brain diseases successfully. Here the value of cell engineering is also emphasized to facilitate MSC diapedesis, migration, and homing to brain areas affected by the disease to implement precision medicine paradigms into stem cell-based therapies.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Sylwia Dabrowska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Barbara Lukomska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Miroslaw Janowski
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
- Center for Advanced Imaging ResearchDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
- Tumor Immunology and Immunotherapy ProgramUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
| |
Collapse
|
18
|
Saft M, Koga M, Borlongan CV. Bone marrow-derived NCS-01 cells for ischemic stroke. Brain Circ 2021; 7:44-47. [PMID: 34084978 PMCID: PMC8057097 DOI: 10.4103/bc.bc_23_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Stroke stands as one of the most common causes of death among adults worldwide. Currently, tissue plasminogen activator serves as the only approved drug by the Food and Drug Administration for the treatment of acute ischemic stroke. Stem cell therapy serves as a viable treatment option and has been deemed as a safe and effective treatment for stroke patients. Adult human bone marrow-derived NCS-01 cells serve as a potential treatment for stroke given their ability to reduce stroke-induced pathological deficits by increasing cell viability and mitochondrial activity. Recently, we demonstrated the use of adult bone marrow-derived NCS-01 cells both on both in vitro and in vivo models. Using NCS-01 cells in rat stroke models subjected to middle cerebral artery occlusion, an effective dosage of 7.5 × 106 cells/ml, administered through the intracarotid artery within 3 days poststroke, was shown to display significant improvements in motor and neurological behaviors, reductions in infarct area, and peri-infarct cell loss. NCS-01 cells, in comparison with other lines of stem cells (Li cells), are shown to produce greater therapeutic effects, most likely due to the observed filopodia formation that allows the stem cells to extend and target the ischemic cells. Given these findings, NCS-01 stem cells serve as a potential treatment for stroke through the demonstration of profound efficacy and further research that favors their filopodia-mediated mechanism of action.
Collapse
Affiliation(s)
- Madeline Saft
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | | | - Cesario V Borlongan
- Department of BIology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
19
|
Kuang W, Liu T, He F, Yu L, Wang Q, Yu C. Icariside II promotes the differentiation of human amniotic mesenchymal stem cells into dopaminergic neuron-like cells. In Vitro Cell Dev Biol Anim 2021; 57:457-467. [PMID: 33721206 DOI: 10.1007/s11626-021-00556-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study is to observe the effect of icariside II (ICS II) on the differentiation of human amniotic mesenchymal stem cells (hAMSCs) into dopaminergic neuron-like cells, the involvement of PI3K signaling pathway inhibitors. After identifying hAMSCs by flow cytometry, hAMSCs were induced and treated with ICS II at 10 μmol/L, 3 μmol/L, 1 μmol/L, and 0 μmol/L. hAMSCs in the LY294002+3μM ICS II group were pretreated with 20 μmol/L LY294002, a PI3K-specific inhibitor, for 1 h, and then hAMSCs were induced with 3 μmol/L ICS II. On the 21st day of induction, immunofluorescence was used to detect expression of the neuronal nuclei (NeuN), neuron-specific enolase (NSE), microtubule-associated protein-2 (MAP-2), glial fibrillary acidic protein (GFAP), and tyrosine hydroxylase (TH) antigens in each induced cell group. Western blotting was used to detect the relative protein expression of NSE, MAP-2, GFAP, and TH. ELISA was used to detect the dopamine concentration in the induction medium supernatant of each group. After 21 d of ICS II induction, immunofluorescence showed that GFAP expression was not obvious in any hAMSC group. The NeuN, NSE, MAP-2, and TH fluorescent proteins were expressed in each group. NeuN was expressed in the nucleus and cytoplasm, while NSE, MAP-2, and TH were mainly expressed in the cytoplasm. The positive cell rates of NeuN, NSE, MAP-2, and TH in the 10 μmol/L, 3 μmol/L, and 1 μmol/L ICS II groups were higher than those in the LY294002+3μM ICS II and control groups. After 21 d of induction, the Western blot results showed that the protein expression levels of NSE, MAP-2, and TH in the 10 μmol/L, 3 μmol/L, and 1 μmol/L ICS II groups were significantly higher than those in the LY294002+3μM ICS II and control groups. The MAP-2 protein expression levels in the 10 μmol/L and 3 μmol/L groups were higher than that in the 1 μmol/L group. After 21 d of induction, the dopamine concentrations in the culture supernatants of the 10 μmol/L, 3 μmol/L, and 1 μmol/L ICS II groups were higher than those in the LY294002+3μM ICS II and control groups. In our experiment, ICS II induced hAMSCs to differentiate into dopaminergic neuron-like cells, and the optimal concentration range of ICS II was 3-10 μmol/L. Moreover, the PI3K signaling pathway is involved in the above differentiation process.
Collapse
Affiliation(s)
- Wei Kuang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Liu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang He
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Wang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Changyin Yu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
20
|
Sharma Y, Shobha K, Sundeep M, Pinnelli VB, Parveen S, Dhanushkodi A. Neural Basis of Dental Pulp Stem Cells and its Potential Application in Parkinson's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:62-76. [PMID: 33719979 DOI: 10.2174/1871527320666210311122921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Though significant insights into the molecular-biochemical-cellular-behavioral basis of PD have been understood, there is no appreciable treatment available till date. Current therapies provide symptomatic relief without any influence on the progression of the disease. Stem cell therapy has been vigorously explored to treat PD. In this comprehensive review, we analyze various stem cell candidates for treating PD and discuss the possible mechanisms. We advocate the advantage of using neural crest originated dental pulp stem cells (DPSC) due to their predisposition towards neural differentiation and their potential to regenerate neurons far better than commonly used bone marrow derived mesenchymal stem cells (BM-MSCs). Eventually, we highlight the current challenges in the field and the strategies which may be used for overcoming the impediments.
Collapse
Affiliation(s)
- Yogita Sharma
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka. India
| | - Shobha K
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka. India
| | - Mata Sundeep
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka. India
| | | | - Shagufta Parveen
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka. India
| | - Anandh Dhanushkodi
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka. India
| |
Collapse
|
21
|
Ebrahimi T, Abasi M, Seifar F, Eyvazi S, Hejazi MS, Tarhriz V, Montazersaheb S. Transplantation of Stem Cells as a Potential Therapeutic Strategy in Neurodegenerative Disorders. Curr Stem Cell Res Ther 2021; 16:133-144. [PMID: 32598273 DOI: 10.2174/1574888x15666200628141314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
Abstract
Stem cells are considered to have significant capacity to differentiate into various cell types in humans and animals. Unlike specialized cells, these cells can proliferate several times to produce millions of cells. Nowadays, pluripotent stem cells are important candidates to provide a renewable source for the replacement of cells in tissues of interest. The damage to neurons and glial cells in the brain or spinal cord is present in neurological disorders such as Amyotrophic lateral sclerosis, stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, Huntington's disease, spinal cord injury, lysosomal storage disorder, epilepsy, and glioblastoma. Therefore, stem cell transplantation can be used as a novel therapeutic approach in cases of brain and spinal cord damage. Recently, researchers have generated neuron-like cells and glial-like cells from embryonic stem cells, mesenchymal stem cells, and neural stem cells. In addition, several experimental studies have been performed for developing stem cell transplantation in brain tissue. Herein, we focus on stem cell therapy to regenerate injured tissue resulting from neurological diseases and then discuss possible differentiation pathways of stem cells to the renewal of neurons.
Collapse
Affiliation(s)
- Tahereh Ebrahimi
- Department of Biotechnology research center, Pasteur institute of Iran, Tehran, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Seifar
- Stem Cell Research Center, Aging Research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammas Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Tsai MJ, Hung SC, Weng CF, Fan SF, Liou DY, Huang WC, Liu KD, Cheng H. Stem cell transplantation and/or adenoviral glial cell line-derived neurotrophic factor promote functional recovery in hemiparkinsonian rats. World J Stem Cells 2021; 13:78-90. [PMID: 33584981 PMCID: PMC7859988 DOI: 10.4252/wjsc.v13.i1.78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson’s disease (PD) is a neurological disorder characterized by the progressive loss of midbrain dopamine (DA) neurons. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into multiple cell types including neurons and glia. Transplantation of BMSCs is regarded as a potential approach for promoting neural regeneration. Glial cell line-derived neurotrophic factor (GDNF) can induce BMSC differentiation into neuron-like cells. This work evaluated the efficacy of nigral grafts of human BMSCs (hMSCs) and/or adenoviral (Ad) GDNF gene transfer in 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats.
AIM To evaluate the efficacy of nigral grafts of hMSCs and/or Ad-GDNF gene transfer in 6-OHDA-lesioned hemiparkinsonian rats.
METHODS We used immortalized hMSCs, which retain their potential for neuronal differentiation. hMSCs, preinduced hMSCs, or Ad-GDNF effectively enhanced neuronal connections in cultured neurons. In vivo, preinduced hMSCs and/or Ad-GDNF were injected into the substantia nigra (SN) after induction of a unilateral 6-OHDA lesion in the nigrostriatal pathway.
RESULTS Hemiparkinsonian rats that received preinduced hMSC graft and/or Ad-GDNF showed significant recovery of apomorphine-induced rotational behavior and the number of nigral DA neurons. However, DA levels in the striatum were not restored by these therapeutic treatments. Grafted hMSCs might reconstitute a niche to support tissue repair rather than contribute to the generation of new neurons in the injured SN.
CONCLUSION The results suggest that preinduced hMSC grafts exert a regenerative effect and may have the potential to improve clinical outcome.
Collapse
Affiliation(s)
- May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Neurological Institute, Taipei 11217, Taiwan
| | - Shih-Chieh Hung
- Department of Medical Research, National Yang Ming University, Institute of Clinical Medicine, Taipei 112, Taiwan
- Integrative Stem Cell Center, Department of Orthopaedics, China Medical University Hospital, Taichung 404, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- China Medical University, Graduate Institute of Clinical Medical Sciences, Taichung 404, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Stem Cell Laboratory, Taipei 112, Taiwan
| | - Ching-Feng Weng
- Department of Life Science, Institute of Biotechnology, Haulien 97401, Taiwan
| | - Su-Fen Fan
- Department of Neurosurgery, Neurological Institute, Taipei 112, Taiwan
| | - Dann-Ying Liou
- Department of Neurosurgery, Neurological Institute, Taipei 112, Taiwan
| | - Wen-Cheng Huang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Kang-Du Liu
- Department of neurosurgery, Neurological Institute, Taipei 112, Taiwan
| | - Henrich Cheng
- Department of Neurosurgery, Taipei Veterans General Hospital, Center for Neural Regeneration, Neurological Institute, Taipei 112, Taiwan
| |
Collapse
|
23
|
Boika A, Aleinikava N, Chyzhyk V, Zafranskaya M, Nizheharodava D, Ponomarev V. Mesenchymal stem cells in Parkinson's disease: Motor and nonmotor symptoms in the early posttransplant period. Surg Neurol Int 2020; 11:380. [PMID: 33408914 PMCID: PMC7771400 DOI: 10.25259/sni_233_2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Treatment of patients with Parkinson disease (PD) using autologous mesenchymal stem cells (MSCs) is a promising method to influence the pathogenesis of the disease. The aim of this study was to assess the immediate results of the introduction of MSCs on the effectiveness of motor and nonmotor symptoms in patients with PD. METHODS MSCs were transplanted to 12 patients with PD through intravenous and tandem (intranasal + intravenous) injections. Effectiveness of the therapy was evaluated 1 and 3 months posttransplantation. Neurological examination of the intensity of motor symptoms was carried out in the morning after a 12 or 24 h break in taking antiparkinsonian drugs, then 1 h after they were taken. The intensity of motor symptoms was assessed with the help of Section III of the Unified PD Rating Scale of the International Society for Movement Disorders (UPDRS). The intensity of nonmotor symptoms was assessed with the help of the following scales: Hamilton Depression Rating Scale, the Pittsburgh Sleep Quality Index, the Epworth Sleepiness Scale, Nonmotor Symptoms Scale, and the 39-item Parkinson's Disease Questionnaire. RESULTS We found a statistically significant decrease in the severity of motor and nonmotor symptoms in the study group in the posttransplant period. CONCLUSION Positive results allow us to consider MSCs transplantation as a disease-modifying therapeutic strategy in PD. However, this method of PD treatment is not a fully understood process, which requires additional studies and a longer follow-up period to monitor the patients' condition posttransplantation.
Collapse
Affiliation(s)
- Aliaksandr Boika
- Department of Neurology and Neurosurgery, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - Natallia Aleinikava
- Department of Neurology and Neurosurgery, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - Veranika Chyzhyk
- Department of Neurology and Neurosurgery, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - Marina Zafranskaya
- Department of Immunology and Biomedical Technology, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - Darya Nizheharodava
- Department of Immunology and Biomedical Technology, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - Vladimir Ponomarev
- Department of Neurology and Neurosurgery, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| |
Collapse
|
24
|
Shariati A, Nemati R, Sadeghipour Y, Yaghoubi Y, Baghbani R, Javidi K, Zamani M, Hassanzadeh A. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier. Eur J Cell Biol 2020; 99:151097. [PMID: 32800276 DOI: 10.1016/j.ejcb.2020.151097] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are a variety of diseases including Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) along with some other less common diseases generally described by the advanced deterioration of central or peripheral nervous system, structurally or functionally. In the last two decades, mesenchymal stromal cells (MSCs) due to their unique assets encompassing self-renewal, multipotency and accessibility in association with low ethical concern open new frontiers in the context of neurodegenerative diseases therapy. Interestingly, MSCs can be differentiated into endodermal and ectodermal lineages (e.g., neurons, oligodendrocyte, and astrocyte), and thus could be employed to advance cell-based therapeutic strategy. Additionally, as inflammation ordinarily ensues as a local response provoked by microglia in the neurodegenerative diseases, MSCs therapy because of their pronounced immunomodulatory properties is noticed as a rational approach for their treatment. Recently, varied types of studies have been mostly carried out in vitro and rodent models using MSCs upon their procurement from various sources and expansion. The promising results of the studies in rodent models have motivated researchers to design and perform several clinical trials, with a speedily rising number. In the current review, we aim to deliver a brief overview of MSCs sources, expansion strategies, and their immunosuppressive characteristics and discuss credible functional mechanisms exerted by MSCs to treat neurodegenerative disorders, covering AD, PD, ALS, MS, and HD.
Collapse
Affiliation(s)
- Ali Shariati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Nemati
- Department of Medical Emergencies, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Yasin Sadeghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Baghbani
- Department of Medical Emergencies, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Kamran Javidi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Peng B, Yang Q, B Joshi R, Liu Y, Akbar M, Song BJ, Zhou S, Wang X. Role of Alcohol Drinking in Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21072316. [PMID: 32230811 PMCID: PMC7177420 DOI: 10.3390/ijms21072316] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), increase as the population ages around the world. Environmental factors also play an important role in most cases. Alcohol consumption exists extensively and it acts as one of the environmental factors that promotes these neurodegenerative diseases. The brain is a major target for the actions of alcohol, and heavy alcohol consumption has long been associated with brain damage. Chronic alcohol intake leads to elevated glutamate-induced excitotoxicity, oxidative stress and permanent neuronal damage associated with malnutrition. The relationship and contributing mechanisms of alcohol with these three diseases are different. Epidemiological studies have reported a reduction in the prevalence of Alzheimer’s disease in individuals who drink low amounts of alcohol; low or moderate concentrations of ethanol protect against β-amyloid (Aβ) toxicity in hippocampal neurons; and excessive amounts of ethanol increase accumulation of Aβ and Tau phosphorylation. Alcohol has been suggested to be either protective of, or not associated with, PD. However, experimental animal studies indicate that chronic heavy alcohol consumption may have dopamine neurotoxic effects through the induction of Cytochrome P450 2E1 (CYP2E1) and an increase in the amount of α-Synuclein (αSYN) relevant to PD. The findings on the association between alcohol consumption and ALS are inconsistent; a recent population-based study suggests that alcohol drinking seems to not influence the risk of developing ALS. Additional research is needed to clarify the potential etiological involvement of alcohol intake in causing or resulting in major neurodegenerative diseases, which will eventually lead to potential therapeutics against these alcoholic neurodegenerative diseases.
Collapse
Affiliation(s)
- Bin Peng
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye 435100, China
| | - Rachna B Joshi
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Internal Medicine, Stafford Medical, PA. 1364 NJ-72, Manahawkin, NJ 08050, USA
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye 435100, China
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (S.Z.); (X.W.); Tel.: 1-617-732-5398 (S.Z.); 1-617-732-4186 (X.W.)
| | - Xin Wang
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (S.Z.); (X.W.); Tel.: 1-617-732-5398 (S.Z.); 1-617-732-4186 (X.W.)
| |
Collapse
|
26
|
Moayeri A, Darvishi M, Amraei M. Homing of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) Labeled Adipose-Derived Stem Cells by Magnetic Attraction in a Rat Model of Parkinson's Disease. Int J Nanomedicine 2020; 15:1297-1308. [PMID: 32161459 PMCID: PMC7049746 DOI: 10.2147/ijn.s238266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Stem cell therapies for neurodegenerative diseases such as Parkinson’s disease (PD) are intended to replace lost dopaminergic neurons. The basis of this treatment is to guide the migration of transplanted cells into the target tissue or injury site. The aim of this study is an evaluation of the homing of superparamagnetic iron oxide nanoparticles (SPIONs) labeled adipose-derived stem cells (ADSC) by an external magnetic field in a rat model of PD. Methods ADSCs were obtained from perinephric regions of male adult rats and cultured in a DMEM medium. ADSC markers were assessed by immunostaining with CD90, CD105, CD49d, and CD45. The SPION was coated using poly-L-lysine hydrobromide and transfection was determined in rat ADSC using the GFP reporter gene. For this in vivo study, rats with PD were divided into five groups: a positive control group, a control group with PD (lesion with 6-HD injection), and three treatment groups: the PD/ADSC group (PD transplant with ADSCs transfected by BrdU), PD/ADSC/SPION group (PD transplant with ADSCs labeled with SPION and transfected by GFP), and the PD/ADSC/SPION/EM group (PD transplant with ADSCs labeled with SPION and transfected by GFP induced with external magnet). Results ADSCs were immunoreactive to fat markers CD90 (90.73±1.7), CD105 (87.4±2.9) and CD49d (79.6±2.6), with negative immunostaining at the hematopoietic stem cell marker (CD45: 1.4±0.4). The efficiency of cells with SPION/PLL was about 96% of ADSC. The highest number of GFP-positive cells was in the ADSC/SPION/EM group (54.5±1.3), which was significantly different from that in ADSC/SPION group (30.83±3 and P<0.01). Conclusion Transfection of ADSC by SPION/PLL is an appropriate protocol for cell therapy. External magnets can be used for the delivery and homing of transplanted stem cells in the target tissue.
Collapse
Affiliation(s)
- Ardeshir Moayeri
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Marzieh Darvishi
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mansour Amraei
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
27
|
Clinical potential and current progress of mesenchymal stem cells for Parkinson's disease: a systematic review. Neurol Sci 2020; 41:1051-1061. [PMID: 31919699 DOI: 10.1007/s10072-020-04240-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease characterized by severe dyskinesia due to a progressive loss of dopaminergic neurons along the nigro-striatal pathway. The current focus of treatment is to relieve symptoms through administration of levodopa, such as L-3,4-dihydroxy phenylalanine replacement therapy, dopaminergic agonist administration, functional neurosurgery, and gene therapy, rather than preventing dopaminergic neuronal damage. Hence, the application and development of neuroprotective/disease modification strategies is absolutely necessary. Currently, stem cell therapy has been considered for PD treatment. As for the stem cells, mesenchymal stem cells (MSCs) seem to be the most promising. In this review, we analyze the mechanisms of action of MSCs in Parkinson's disease, including growth factor secretion, exocytosis, and attenuation of neuroinflammation. To determine efficacy and protect patients from possible adverse effects, ongoing rigorous and controlled studies of MSC treatment will be critical.
Collapse
|
28
|
Santisteban-Espejo A, Campos F, Chato-Astrain J, Durand-Herrera D, García-García O, Campos A, Martin-Piedra MA, Moral-Munoz JA. Identification of Cognitive and Social Framework of Tissue Engineering by Science Mapping Analysis. Tissue Eng Part C Methods 2019; 25:37-48. [PMID: 30526420 DOI: 10.1089/ten.tec.2018.0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
IMPACT STATEMENT This study evaluates the cognitive structure and social behavior of tissue engineering (TE) based on a science mapping analysis. Understanding the terms and topics that play a key role in the development of TE can help administrative authorities to better plan funding. Moreover, a better knowledge of collaborative networks in TE and the identification of potential new opportunities for collaboration may enhance synergies in scientific activities to implement future approaches to therapy.
Collapse
Affiliation(s)
| | - Fernando Campos
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,3 Research Institute ibs.GRANADA, Granada, Spain
| | - Jesus Chato-Astrain
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain
| | - Daniel Durand-Herrera
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain
| | - Oscar García-García
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain
| | - Antonio Campos
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,3 Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Angel Martin-Piedra
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,3 Research Institute ibs.GRANADA, Granada, Spain
| | - Jose Antonio Moral-Munoz
- 4 Department of Nursing and Physiotherapy, University of Cadiz, Cadiz, Spain.,5 Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), University of Cadiz, Cadiz, Spain
| |
Collapse
|
29
|
Bodart-Santos V, de Carvalho LRP, de Godoy MA, Batista AF, Saraiva LM, Lima LG, Abreu CA, De Felice FG, Galina A, Mendez-Otero R, Ferreira ST. Extracellular vesicles derived from human Wharton's jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. Stem Cell Res Ther 2019; 10:332. [PMID: 31747944 PMCID: PMC6864996 DOI: 10.1186/s13287-019-1432-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/26/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been explored as promising tools for treatment of several neurological and neurodegenerative diseases. MSCs release abundant extracellular vesicles (EVs) containing a variety of biomolecules, including mRNAs, miRNAs, and proteins. We hypothesized that EVs derived from human Wharton’s jelly would act as mediators of the communication between hMSCs and neurons and could protect hippocampal neurons from damage induced by Alzheimer’s disease-linked amyloid beta oligomers (AβOs). Methods We isolated and characterized EVs released by human Wharton’s jelly mesenchymal stem cells (hMSC-EVs). The neuroprotective action of hMSC-EVs was investigated in primary hippocampal cultures exposed to AβOs. Results hMSC-EVs were internalized by hippocampal cells in culture, and this was enhanced in the presence of AβOs in the medium. hMSC-EVs protected hippocampal neurons from oxidative stress and synapse damage induced by AβOs. Neuroprotection by hMSC-EVs was mediated by catalase and was abolished in the presence of the catalase inhibitor, aminotriazole. Conclusions hMSC-EVs protected hippocampal neurons from damage induced by AβOs, and this was related to the transfer of enzymatically active catalase contained in EVs. Results suggest that hMSC-EVs should be further explored as a cell-free therapeutic approach to prevent neuronal damage in Alzheimer’s disease.
Collapse
Affiliation(s)
- Victor Bodart-Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luiza R P de Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mariana A de Godoy
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - André F Batista
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Leonardo M Saraiva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luize G Lima
- National Cancer Institute, Rio de Janeiro, RJ, 20230-240, Brazil
| | - Carla Andreia Abreu
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Centre for Neuroscience Studies and Department of Psychiatry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Antonio Galina
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rosalia Mendez-Otero
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, 21941-590, Brazil.
| | - Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
30
|
Kaneko Y, Lee JY, Tajiri N, Tuazon JP, Lippert T, Russo E, Yu SJ, Bonsack B, Corey S, Coats AB, Kingsbury C, Chase TN, Koga M, Borlongan CV. Translating intracarotid artery transplantation of bone marrow-derived NCS-01 cells for ischemic stroke: Behavioral and histological readouts and mechanistic insights into stem cell therapy. Stem Cells Transl Med 2019; 9:203-220. [PMID: 31738023 PMCID: PMC6988762 DOI: 10.1002/sctm.19-0229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
The present study used in vitro and in vivo stroke models to demonstrate the safety, efficacy, and mechanism of action of adult human bone marrow‐derived NCS‐01 cells. Coculture with NCS‐01 cells protected primary rat cortical cells or human neural progenitor cells from oxygen glucose deprivation. Adult rats that were subjected to middle cerebral artery occlusion, transiently or permanently, and subsequently received intracarotid artery or intravenous transplants of NCS‐01 cells displayed dose‐dependent improvements in motor and neurological behaviors, and reductions in infarct area and peri‐infarct cell loss, much better than intravenous administration. The optimal dose was 7.5 × 106 cells/mL when delivered via the intracarotid artery within 3 days poststroke, although therapeutic effects persisted even when administered at 1 week after stroke. Compared with other mesenchymal stem cells, NCS‐01 cells ameliorated both the structural and functional deficits after stroke through a broad therapeutic window. NCS‐01 cells secreted therapeutic molecules, such as basic fibroblast growth factor and interleukin‐6, but equally importantly we observed for the first time the formation of filopodia by NCS‐01 cells under stroke conditions, characterized by cadherin‐positive processes extending from the stem cells toward the ischemic cells. Collectively, the present efficacy readouts and the novel filopodia‐mediated mechanism of action provide solid lab‐to‐clinic evidence supporting the use of NCS‐01 cells for treatment of stroke in the clinical setting.
Collapse
Affiliation(s)
- Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Trenton Lippert
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Eleonora Russo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Seong-Jin Yu
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Sydney Corey
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Alexandreya B Coats
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Chase Kingsbury
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Thomas N Chase
- KM Pharmaceutical Consulting LLC, Washington, District of Columbia
| | - Minako Koga
- KM Pharmaceutical Consulting LLC, Washington, District of Columbia
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| |
Collapse
|
31
|
Edwards Iii G, Gamez N, Armijo E, Kramm C, Morales R, Taylor-Presse K, Schulz PE, Soto C, Moreno-Gonzalez I. Peripheral Delivery of Neural Precursor Cells Ameliorates Parkinson's Disease-Associated Pathology. Cells 2019; 8:cells8111359. [PMID: 31671704 PMCID: PMC6912680 DOI: 10.3390/cells8111359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by loss of motor control due to a wide loss of dopaminergic neurons along the nigro-striatal pathway. Some of the mechanisms that contribute to this cell death are inflammation, oxidative stress, and misfolded alpha-synuclein-induced toxicity. Current treatments are effective at managing the early motor symptoms of the disease, but they become ineffective over time and lead to adverse effects. Previous research using intracerebral stem cell therapy for treatment of PD has provided promising results; however, this method is very invasive and is often associated with unacceptable side effects. In this study, we used an MPTP-injected mouse model of PD and intravenously administered neural precursors (NPs) obtained from mouse embryonic and mesenchymal stem cells. Clinical signs and neuropathology were assessed. Female mice treated with NPs had improved motor function and reduction in the neuroinflammatory response. In terms of safety, there were no tumorigenic formations or any detectable adverse effect after treatment. Our results suggest that peripheral administration of stem cell-derived NPs may be a promising and safe therapy for the recovery of impaired motor function and amelioration of brain pathology in PD.
Collapse
Affiliation(s)
- George Edwards Iii
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA.
| | - Nazaret Gamez
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA.
- Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29010 Malaga, Spain.
| | - Enrique Armijo
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA.
| | - Carlos Kramm
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA.
| | - Rodrigo Morales
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA.
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago 8370993, Chile.
| | - Kathleen Taylor-Presse
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA.
| | - Paul E Schulz
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA.
| | - Claudio Soto
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA.
| | - Ines Moreno-Gonzalez
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA.
- Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29010 Malaga, Spain.
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago 8370993, Chile.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 29010 Malaga, Spain.
| |
Collapse
|
32
|
Dynamics of host and graft after cell sheet transplantation: Basic study for the application of amyotrophic lateral sclerosis. Brain Res 2019; 1724:146444. [PMID: 31518575 DOI: 10.1016/j.brainres.2019.146444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Stem cells offer great hope for the therapy of neurological disorders. Using a human artificial chromosome (HAC), we generated modified mesenchymal stem cells (MSCs), termed HAC-MSC that express 3 growth factors and 2 marker proteins including luciferase, and previously demonstrated that intrathecal administration of HAC-MSCs extended the lifespan in a mouse model of amyotrophic lateral sclerosis (ALS). However, donor cells disappeared rapidly after transplantation. To overcome this poor survival, we transplanted the HAC-MSCs as a sheet structure which retained the extracellular matrix. We investigated, here, whether cell sheet showed a longer survival than intrathecal administration. Also, the therapeutic effects on ALS model mice were examined. In vivo imaging showed that luciferase signals increased immediately after transplantation up to 7 days, and these signals were sustained for up to 14 days. In contrast, following intrathecal administration, signals were drastically decreased by day 3. Moreover, cell sheet transplantation successfully prolonged the survival of donor HAC-MSCs. Cell sheet transplantation increased the level of p-Akt at the graft area. Pathologically, none of the donor cells differentiated into neurons, astrocytes or microglial cells. When the cell sheet was transplanted into ALS model mice, there was an encouraging trend in the delayed onset of symptoms and increased lifespan. If each group was subdivided into rapid and slow progressors based on cut-off values for respective median survival, the survival of rapid progressors differed significantly between groups (treated vs. sham-operated = 145.4 ± 1.4 vs. 139.2 ± 1.2). The effect of HAC-MSC sheet transplantation still has a temporally narrow therapeutic window. Further improvement could be achieved by optimization of the transplantation conditions, e.g. co-transplantation of HAC-MSCs with endothelial progenitor cells.
Collapse
|
33
|
N-acetyl-cysteine blunts 6-hydroxydopamine- and l-buthionine-sulfoximine-induced apoptosis in human mesenchymal stromal cells. Mol Biol Rep 2019; 46:4423-4435. [DOI: 10.1007/s11033-019-04897-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
|
34
|
Staff NP, Jones DT, Singer W. Mesenchymal Stromal Cell Therapies for Neurodegenerative Diseases. Mayo Clin Proc 2019; 94:892-905. [PMID: 31054608 PMCID: PMC6643282 DOI: 10.1016/j.mayocp.2019.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/17/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells are multipotent cells that are being used to treat a variety of medical conditions. Over the past decade, there has been considerable excitement about using MSCs to treat neurodegenerative diseases, which are diseases that are typically fatal and without other robust therapies. In this review, we discuss the proposed MSC mechanisms of action in neurodegenerative diseases, which include growth factor secretion, exosome secretion, and attenuation of neuroinflammation. We then provide a summary of preclinical and early clinical work on MSC therapies in amyotrophic lateral sclerosis, multiple system atrophy, Parkinson disease, and Alzheimer disease. Continued rigorous and controlled studies of MSC therapies will be critical in order to establish efficacy and protect patients from possible untoward effects.
Collapse
|
35
|
Ebrahimikia Y, Darabi S, Rajaei F. Roles of stem cells in the treatment of Parkinson's disease. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.4.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
36
|
Puerarin promoted proliferation and differentiation of dopamine-producing cells in Parkinson’s animal models. Biomed Pharmacother 2018; 106:1236-1242. [DOI: 10.1016/j.biopha.2018.07.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022] Open
|
37
|
Combining PLGA Scaffold and MSCs for Brain Tissue Engineering: A Potential Tool for Treatment of Brain Injury. Stem Cells Int 2018; 2018:5024175. [PMID: 30154864 PMCID: PMC6098877 DOI: 10.1155/2018/5024175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Nerve tissue engineering is an important strategy for the treatment of brain injuries. Mesenchymal stem cell (MSC) transplantation has been proven to be able to promote repair and functional recovery of brain damage, and poly (lactic-co-glycolic acid) (PLGA) has also been found to have the capability of bearing cells. In the present study, to observe the ability of PLGA scaffold in supporting the adherent growth of MSCs and neurons in vivo and vitro and to assess the effects of PLGA scaffold on proliferation and neural differentiation of MSCs, this study undertakes the following steps. First, MSCs and neurons were cultured and labeled with green fluorescent protein (GFP) or otherwise identified and the PLGA scaffold was synthesized. Next, MSCs and neurons were inoculated on PLGA scaffolds and their adhesion rates were investigated and the proliferation of MSCs was evaluated by using MTT assay. After MSCs were induced by a neural induction medium, the morphological change and neural differentiation of MSCs were detected using scanning electron microscopy (SEM) and immunocytochemistry, respectively. Finally, cell migration and adhesion in the PLGA scaffold in vivo were examined by immunohistochemistry, nuclear staining, and SEM. The experimental results demonstrated that PLGA did not interfere with the proliferation and neural differentiation of MSCs and that MSCs and neuron could grow and migrate in PLGA scaffold. These data suggest that the MSC-PLGA complex may be used as tissue engineering material for brain injuries.
Collapse
|
38
|
Human peripheral blood-derived mesenchymal stem cells with NTRK1 over-expression enhance repairing capability in a rat model of Parkinson's disease. Cytotechnology 2018; 70:1291-1299. [PMID: 29978273 DOI: 10.1007/s10616-017-0175-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022] Open
Abstract
The potency of mesenchymal stem cells (MSCs) for tissue repair and regeneration is mainly based on their ability to secret beneficial molecules. Administration of MSCs has been proposed as an innovative approach and is proved by a number of clinical trials to a certain degree for the therapy of many diseases including Parkinson's disease (PD). However, the efficacy of MSCs alone is not significant. We investigated the effect of neurotrophic tyrosine receptor kinase 1 (NTRK1) overexpressed peripheral blood MSCs (PB-MSCs) on PD rat model. NTRK1 was overexpressed in PB-MSCs, which were then injected into PD rat model, Dopaminergic (DA) neuron regeneration and rotational performance was assessed. We found that DA neuron repair was increased in lesion site, rotational performance was also improved in MSC transplanted PD rat, with most potent effect in NTRK1 overexpressed PB-MSC transplanted PD rat. Our results indicate that overexpression of NTRK1 in MSCs could be an optimized therapeutic way via MSCs for PD treatment.
Collapse
|
39
|
de Moura TC, Afadlal S, Hazell AS. Potential for stem cell treatment in manganism. Neurochem Int 2018; 112:134-145. [DOI: 10.1016/j.neuint.2017.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023]
|
40
|
Microgrooved-surface topography enhances cellular division and proliferation of mouse bone marrow-derived mesenchymal stem cells. PLoS One 2017; 12:e0182128. [PMID: 28846679 PMCID: PMC5573154 DOI: 10.1371/journal.pone.0182128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells’ (MSCs) fate is largely determined by the various topographical features and a range of extracellular matrix (ECM) components present in their niches. Apart from maintaining structural stability, they regulate cell morphology, division, proliferation, migration and differentiation among others. Traditional MSC cultures, which are mainly based on two-dimensional smooth surfaces of culture dishes and plates, do not provide topographical cues similar to in vivo three-dimensional niches, impacting various cellular processes. Therefore, we culture the mouse bone marrow-derived MSCs on microgrooved bearing surface, partially mimicking in vivo reticulated niche, to study its effect on morphology, pluripotency factor-associated stemness, cell division and rate of proliferation. Following culture, morphological features, and MSC-specific marker gene expression, such as CD29, CD44, Sca-1 along with HSC (Haematopoietic stem cell)-specific markers like CD34, CD45, CD11b were evaluated by microscopy and immunophenotyping, respectively. HSC is another type of bone marrow stem cell population, which concertedly interacts with MSC during various functions, including haematopoiesis. In addition, mesenchymal stem cells were further analyzed for gene expression of pluripotency-associated transcription factors such as Oct3/4, Sox-2, Nanog and Myc, as well as differentiated into adipocytes, osteocytes and chondrocytes. Our results show that microgrooved surface-cultured mesenchymal stem cells (MMSCs) expressed higher levels of expected cell surface and pluripotency-associated markers and proliferated more rapidly (2–3×fold) with higher percentage of cells in S/G2-M-phase, consequently giving rise to higher cell yield compared to standard culture flask-grown cells (MSCs), taken as control. Furthermore, both MSCs and MMSCs showed considerable accumulation of intracellular lipid-droplets, higher alkaline phosphatase activity and secretion of extracellular matrix that are characteristics of adipogenesis, osteogenesis and chondrogenesis, respectively.
Collapse
|
41
|
Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE. Blockade of Neuroglobin Reduces Protection of Conditioned Medium from Human Mesenchymal Stem Cells in Human Astrocyte Model (T98G) Under a Scratch Assay. Mol Neurobiol 2017; 55:2285-2300. [PMID: 28332151 DOI: 10.1007/s12035-017-0481-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 12/25/2022]
Abstract
Previous studies have indicated that paracrine factors (conditioned medium) increase wound closure and reduce reactive oxygen species in a traumatic brain injury in vitro model. Although the beneficial effects of conditioned medium from human adipose tissue-derived mesenchymal stem cells (hMSCA-CM) have been previously suggested for various neurological diseases, their actions on astrocytic cells are not well understood. In this study, we have explored the effect of hMSCA-CM on human astrocyte model (T98G cells) subjected to scratch assay. Our results indicated that hMSCA-CM improved cell viability, reduced nuclear fragmentation, attenuated the production of reactive oxygen species, and preserved mitochondrial membrane potential and ultrastructural parameters. In addition, hMSCA-CM upregulated neuroglobin in T98G cells and the genetic silencing of this protein prevented the protective action of hMSCA-CM on damaged cells, suggesting that neuroglobin is mediating, at least in part, the protective effect of hMSCA-CM. Overall, this evidence suggests that the use of hMSCA-CM is a promising therapeutic strategy for the protection of astrocytic cells in central nervous system (CNS) pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gina Guio Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
- GALLY International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA
- School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA
| | - Vadim V Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., 119991, Moscow, Russia
| | - Paula Esquinas
- Facultad Medicina Veterinaria y Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|