1
|
Chen R, Shi Z, Han Q, Wang Q, Wang B, Guo M, Ji W, Shen L. Expression profiles of NOD1 and NOD2 and pathological changes in gills during Flavobacterium columnare infection in yellow catfish, Tachysurus fulvidraco. JOURNAL OF FISH BIOLOGY 2025. [PMID: 39876057 DOI: 10.1111/jfb.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
NOD-like receptors are significant contributors to the immune response of fish against different types of pathogen invasion. NOD1 and NOD2 genes of yellow catfish (Tachysurus fulvidraco) were identified and characterized in this study. Yellow catfish NOD1 and NOD2 have open reading frames (ORFs) of 2841 and 2949 bp, encoding 946 and 982 amino acids, respectively. Both NOD1 and NOD2 are intracellular proteins lacking transmembrane regions and signal peptides. Sequence homology analysis revealed that the protein sequences of NOD1 and NOD2 of yellow catfish are highly similar to those of channel catfish. Both NOD1 and NOD2 showed high expression in the head kidney, and spleen. Following challenge with Flavobacterium columnare, NOD1 expression obviously increased in the liver, spleen, midgut, and hindgut, whereas NOD2 clearly increased in head kidney, and gut. Microscopic observation of gill tissues revealed evident epithelial hyperplasia in the secondary gill filaments at 3 and 6 hpi, with a notable decrease in the aspect ratio in comparison with the control group, followed by a return to baseline levels. These findings indicate a potential involvement of NOD1 and NOD2 genes in defense against F. columnare invasion. The findings of this study contribute valuable insights into NOD1 and NOD2's functions in the innate immune response of yellow catfish and other fish species to bacterial infection.
Collapse
Affiliation(s)
- Ran Chen
- Key Laboratory of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Department of Aquatic Animal Medicines, College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Zechao Shi
- Key Laboratory of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qianxi Han
- Department of Aquatic Animal Medicines, College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Qin Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Bingchao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Mengge Guo
- Department of Aquatic Animal Medicines, College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Wei Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Li Shen
- Key Laboratory of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
2
|
Lee E, Chang Y. Modulating Neuroinflammation as a Prospective Therapeutic Target in Alzheimer's Disease. Cells 2025; 14:168. [PMID: 39936960 DOI: 10.3390/cells14030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
The recent approval of lecanemab highlights that the amyloid beta (Aβ) protein is an important pathological target in Alzheimer's disease (AD) and further emphasizes the significance of neuroinflammatory pathways in regulating Aβ accumulation. Indeed, Aβ accumulation triggers microglia activation, which are key mediators in neuroinflammation. The inflammatory responses in this process can lead to neuronal damage and functional decline. Microglia secrete proinflammatory cytokines that accelerate neuronal death and release anti-inflammatory cytokines and growth factors contributing to neuronal recovery and protection. Thus, microglia play a dual role in neurodegeneration and neuroprotection, complicating their function in AD. Therefore, elucidating the complex interactions between Aβ protein, microglia, and neuroinflammation is essential for developing new strategies for treating AD. This review investigates the receptors and pathways involved in activating microglia and aims to enhance understanding of how these processes impact neuroinflammation in AD, as well as how they can be regulated. This review also analyzed studies reported in the existing literature and ongoing clinical trials. Overall, these studies will contribute to understanding the regulatory mechanisms of neuroinflammation and developing new therapies that can slow the pathological progression of AD.
Collapse
Affiliation(s)
- Eunshil Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yongmin Chang
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Song H, Pang R, Chen Z, Wang L, Hu X, Feng J, Wang W, Liu J, Zhang A. Every-other-day fasting inhibits pyroptosis while regulating bile acid metabolism and activating TGR5 signaling in spinal cord injury. Front Mol Neurosci 2024; 17:1466125. [PMID: 39328272 PMCID: PMC11424537 DOI: 10.3389/fnmol.2024.1466125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Every-other-day fasting (EODF) is a form of caloric restriction that alternates between periods of normal eating and fasting, aimed at preventing and treating diseases. This approach has gained widespread usage in basic research on neurological conditions, including spinal cord injury, and has demonstrated significant neuroprotective effects. Additionally, EODF is noted for its safety and feasibility, suggesting broad potential for application. This study aims to evaluate the therapeutic effects of EODF on spinal cord injury and to investigate and enhance its underlying mechanisms. Initially, the SCI rat model was utilized to evaluate the effects of EODF on pathological injury and motor function. Subsequently, considering the enhancement of metabolism through EODF, bile acid metabolism in SCI rats was analyzed using liquid chromatography-mass spectrometry (LC-MS), and the expression of the bile acid receptor TGR5 was further assessed. Ultimately, it was confirmed that EODF influences the activation of microglia and NLRP3 inflammasomes associated with the TGR5 signaling, along with the expression of downstream pyroptosis pathway related proteins and inflammatory cytokines, as evidenced by the activation of the NLRP3/Caspase-1/GSDMD pyroptosis pathway in SCI rats. The results demonstrated that EODF significantly enhanced the recovery of motor function and reduced pathological damage in SCI rats while controlling weight gain. Notably, EODF promoted the secretion of bile acid metabolites, activated TGR5, and inhibited the NLRP3/Caspase-1/GSDMD pyroptosis pathway and inflammation in these rats. In summary, EODF could mitigate secondary injury after SCI and foster functional recovery by improving metabolism, activating the TGR5 signaling and inhibiting the NLRP3 pyroptosis pathway.
Collapse
Affiliation(s)
- Honghu Song
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Zhixuan Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linjie Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiaomin Hu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jingzhi Feng
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Wenchun Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
4
|
Yi X, Song Y, Xu J, Wang L, Liu L, Huang D, Zhang L. NLRP10 promotes AGEs-induced NLRP1 and NLRP3 inflammasome activation via ROS/MAPK/NF-κB signaling in human periodontal ligament cells. Odontology 2024; 112:100-111. [PMID: 37043073 DOI: 10.1007/s10266-023-00813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
Diabetes mellitus (DM), characterized by production and accumulation of advanced glycation end products (AGEs), induces and promotes chronic inflammation in tissues, including periodontal tissue. Increasing amount of epidemiological and experimental evidence demonstrated that more extensive inflammatory reaction and bone resorption occurred in periodontal tissues in diabetic patients with periodontitis, which is speculated to be related to NLRP3 inflammasome. NLRP10 is the only NOD-like receptor protein lacking leucine-rich repeats, suggesting that NLRP10 may be a regulatory protein. The aim of this study was to investigate the regulatory role of NLRP10 on NLRP1 and NLRP3 inflammasome in human periodontal ligament cells (HPDLCs) under AGEs treatment. Expression of NLRP10 in HPDLCs stimulated with 100 ug/mL AGEs for 24 h was observed. Detection of TRIM31 is conducted, and in TRIM31-overexpressed HPDLCs, the interaction between NLRP10 with TRIM31 as well as NLRP10 with ubiquitination were explored by immunoprecipitation. Under AGEs stimulation, the activation of reactive oxidative stress (ROS) and inflammatory signaling pathway (NF-κB, MAPK pathway) was detected by biomedical microscope and western blot (WB), respectively. After stimulation with AGEs for 24 h with or without silencing NLRP10, inflammatory cytokines (IL-6 and IL-1β), NF-κB, MAPK pathway, ROS, and components of inflammasome were assessed. In HPDLCs, we found AGEs induced NLRP10 and inhibited TRIM31. TRIM31 overexpression significantly enhanced interaction between TRIM31 and NLRP10, then induced proteasomal degradation of NLRP10. Moreover, under AGEs stimulation, NLRP10 positively regulates NLRP1, NLRP3 inflammasomes by activating NF-κB, MAPK pathway, and increasing ROS, finally promoting the expression of inflammatory cytokines. Together, we, for the first time, confirmed that NLRP10 could promote inflammatory response induced by AGEs in HPDLCs via activation of NF-κB, and MAPK pathway and increasing ROS.
Collapse
Affiliation(s)
- Xiaowei Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Yao Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Jialei Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China.
| |
Collapse
|
5
|
Wu S, Xue Q, Yang M, Wang Y, Kim P, Zhou X, Huang L. Genetic control of RNA editing in neurodegenerative disease. Brief Bioinform 2023; 24:bbad007. [PMID: 36681936 PMCID: PMC10387301 DOI: 10.1093/bib/bbad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/23/2023] Open
Abstract
A-to-I RNA editing diversifies human transcriptome to confer its functional effects on the downstream genes or regulations, potentially involving in neurodegenerative pathogenesis. Its variabilities are attributed to multiple regulators, including the key factor of genetic variants. To comprehensively investigate the potentials of neurodegenerative disease-susceptibility variants from the view of A-to-I RNA editing, we analyzed matched genetic and transcriptomic data of 1596 samples across nine brain tissues and whole blood from two large consortiums, Accelerating Medicines Partnership-Alzheimer's Disease and Parkinson's Progression Markers Initiative. The large-scale and genome-wide identification of 95 198 RNA editing quantitative trait loci revealed the preferred genetic effects on adjacent editing events. Furthermore, to explore the underlying mechanisms of the genetic controls of A-to-I RNA editing, several top RNA-binding proteins were pointed out, such as EIF4A3, U2AF2, NOP58, FBL, NOP56 and DHX9, since their regulations on multiple RNA-editing events were probably interfered by these genetic variants. Moreover, these variants may also contribute to the variability of other molecular phenotypes associated with RNA editing, including the functions of 3 proteins, expressions of 277 genes and splicing of 449 events. All the analyses results shown in NeuroEdQTL (https://relab.xidian.edu.cn/NeuroEdQTL/) constituted a unique resource for the understanding of neurodegenerative pathogenesis from genotypes to phenotypes related to A-to-I RNA editing.
Collapse
Affiliation(s)
- Sijia Wu
- School of Life Science and Technology, Xidian University, Xi’an 710071, China
| | - Qiuping Xue
- School of Life Science and Technology, Xidian University, Xi’an 710071, China
| | - Mengyuan Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfei Wang
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Pora Kim
- Corresponding authors: Liyu Huang, School of Life Science and Technology, Xidian University, Xi’an 710071, China. E-mail: ; Xiaobo Zhou, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail: ; Pora Kim, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail:
| | - Xiaobo Zhou
- Corresponding authors: Liyu Huang, School of Life Science and Technology, Xidian University, Xi’an 710071, China. E-mail: ; Xiaobo Zhou, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail: ; Pora Kim, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail:
| | - Liyu Huang
- Corresponding authors: Liyu Huang, School of Life Science and Technology, Xidian University, Xi’an 710071, China. E-mail: ; Xiaobo Zhou, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail: ; Pora Kim, Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
6
|
Zhu Q, Zheng F, You W, Kang X, Chen C, Pan Z, Zhou J, Hu W. Expression of Histone H1 in Rats with Traumatic Brain Injury and the Effect of the NLRP3 Inflammasome Pathway. World Neurosurg 2023; 171:e286-e290. [PMID: 36509326 DOI: 10.1016/j.wneu.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To explore expression of histone H1 after traumatic brain injury (TBI) and the effect of the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome pathway on its expression. METHODS Of 24 rats, 15 were randomly divided into a sham and 4 TBI groups, with 3 rats in each group; the remaining 9 rats were randomly divided into sham group, TBI group, and TBI+CY-09 group, with 3 rats in each group. The expression of histone H1 in rat serum was detected by enzyme-linked immunosorbent assay; Western blot was used to detect the expression of target protein in the injured brain tissue of rats. RESULTS On the 3rd day after TBI, compared with the sham group, the expression of histone H1 was decreased (P < 0.05). After inhibiting the NLRP3 inflammasome pathway with CY-09, expressions of IL-1β, IL-18, and histone H1 in rat-injured brain tissue in the TBI+CY-09 group were decreased compared with the TBI group (P < 0.05). CONCLUSIONS The expression of histone H1 decreased significantly from the 3rd day after TBI. Inhibiting the NLRP3 inflammasome pathway may reduce the expression of histone H1. The expression of histone H1 was affected by the microglia-related central nervous system inflammatory response.
Collapse
Affiliation(s)
- Qiangbin Zhu
- Department of Neurosurgery, Hui'an County Hospital, Quanzhou Hui'an, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Wei You
- Department of Neurosurgery, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou, China; Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Xiaodong Kang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Chunhui Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Jianfeng Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| |
Collapse
|
7
|
Han S, Zhang Z, Ma W, Gao J, Li Y. Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptor Subfamily C (NLRC) as a Prognostic Biomarker for Glioblastoma Multiforme Linked to Tumor Microenvironment: A Bioinformatics, Immunohistochemistry, and Machine Learning-Based Study. J Inflamm Res 2023; 16:523-537. [PMID: 36798872 PMCID: PMC9926983 DOI: 10.2147/jir.s397305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Purpose Glioblastoma multiforme (GBM) remains the deadliest primary brain tumor. We aimed to illuminate the role of nucleotide-binding oligomerization domain (NOD)-like receptor subfamily C (NLRC) in GBM. Patients and Methods Based on public database data (mainly The Cancer Genome Atlas [TCGA]), we performed bioinformatics analysis to visually evaluate the role and mechanism of NLRCs in GBM. Then, we validated our findings in a glioma tissue microarray (TMA) by immunohistochemistry (IHC), and the prognostic value of NOD1 was assessed via random forest (RF) models. Results In GBM tissues, the expression of NLRC members was significantly increased, which was related to the low survival rate of GBM. Additionally, Cox regression analysis revealed that the expression of NOD1 (among NLRCs) served as an independent prognostic marker. A nomogram based on multivariate analysis proved the effective predictive performance of NOD1 in GBM. Enrichment analysis showed that high expression of NOD1 could regulate extracellular structure, cell adhesion, and immune response to promote tumor progression. Then, immune infiltration analysis showed that NOD1 overexpression correlated with an enhanced immune response. Then, in a glioma TMA, the results of IHC revealed that the increase in NOD1 expression indicated high recurrence and poor prognosis of human glioma. Furthermore, the expression level of NOD1 showed good prognostic value in the TMA cohort via RF. Conclusion The value of NOD1 as a biomarker for GBM was demonstrated. The possible mechanisms may lie in the regulatory role of NLRC-related pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Shiyuan Han
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Zimu Zhang
- Department of General Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Wenbin Ma
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Jun Gao
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Yongning Li
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China,Department of International Medical Service, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), Beijing, People’s Republic of China,Correspondence: Yongning Li, Department of Neurosurgery and Department of International Medical Service, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, People’s Republic of China, Tel +86 13901074129, Fax +86 1069152530, Email
| |
Collapse
|
8
|
Jose S, Groves NJ, Roper KE, Gordon R. Mechanisms of NLRP3 activation and pathology during neurodegeneration. Int J Biochem Cell Biol 2022; 151:106273. [PMID: 35926782 DOI: 10.1016/j.biocel.2022.106273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Inflammasomes are multiprotein complexes that are mainly present in resident and infiltrating immune cells in the central nervous system. Inflammasomes function as intracellular sensors of immunometabolic stress, infection and changes in the local microenvironment. Inflammasome assembly in response to these 'danger signals', triggers recruitment and cluster-dependent activation of caspase-1 and the subsequent proteolytic activation of inflammatory cytokines such as interleukin-1β and interleukin-18. This is typically followed by a form of inflammatory cell death through pyroptosis. Since the discovery of inflammasomes in 2002, they have come to be recognized as central regulators of acute and chronic inflammation, a hallmark of progressive neurological diseases. Indeed, over the last decade, extensive inflammasome activation has been found at the sites of neuropathology in all progressive neurodegenerative diseases. Disease-specific misfolded protein aggregates which accumulate in neurodegenerative diseases, such as alpha synuclein or beta amyloid, have been found to be important triggers of NLRP3 inflammasome activation in the central nervous system. Together, these discoveries have transformed our understanding of how chronic inflammation is triggered and sustained in the central nervous system, and how it can contribute to neuronal death and disease progression in age-related neurodegenerative diseases. Therapeutic strategies around inhibition of NLRP3 activation in the central nervous system are already being evaluated to determine their effectiveness to slow progressive neurodegeneration. This review summarizes current understanding of inflammasomes in the most prevalent neurodegenerative diseases and discusses current knowledge gaps and inflammasome inhibition as a therapeutic strategy.
Collapse
Affiliation(s)
- Sara Jose
- UQ Centre for Clinical Research, Faculty of Medicine, Faculty of Medicine, The University of Queensland, Australia
| | - Natalie J Groves
- UQ Centre for Clinical Research, Faculty of Medicine, Faculty of Medicine, The University of Queensland, Australia
| | - Kathrein E Roper
- UQ Centre for Clinical Research, Faculty of Medicine, Faculty of Medicine, The University of Queensland, Australia
| | - Richard Gordon
- UQ Centre for Clinical Research, Faculty of Medicine, Faculty of Medicine, The University of Queensland, Australia; School of Biomedical Sciences, Faculty of Medicine, Faculty of Medicine, The University of Queensland, Australia.
| |
Collapse
|
9
|
Ye XW, Wang HL, Cheng SQ, Xia LJ, Xu XF, Li XR. Network Pharmacology-Based Strategy to Investigate the Pharmacologic Mechanisms of Coptidis Rhizoma for the Treatment of Alzheimer's Disease. Front Aging Neurosci 2022; 14:890046. [PMID: 35795239 PMCID: PMC9252849 DOI: 10.3389/fnagi.2022.890046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
BackgroundAlzheimer's disease (AD) is becoming a more prevalent public health issue in today's culture. The experimental study of Coptidis Rhizoma (CR) and its chemical components in AD treatment has been widely reported, but the principle of multi-level and multi-mechanism treatment of AD urgently needs to be clarified.ObjectiveThis study focuses on network pharmacology to clarify the mechanism of CR's multi-target impact on Alzheimer's disease.MethodsThe Phytochemical-compounds of CR have been accessed from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) and Symmap database or HPLC determination. The values of Oral Bioavailability (OB) ≥ 30% and Drug Like (DL) ≥ 0.18 or blood ingredient were used to screen the active components of CR; the interactive network of targets and compounds were constructed by STRING and Cytoscape platform, and the network was analyzed by Molecular Complex Detection (MCODE); Gene Ontology (GO) function, Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) and metabolic pathway enrichment of targets were carried out with Metascape, the Database for Annotation, Visualization and Integrated Discovery (DAVID) and MetaboAnalyst platform; Based on CytoHubba, the potential efficient targets were screened by Maximal Clique Centrality (MCC) and Degree, the correlation between potential efficient targets and amyloid β-protein (Aβ), Tau pathology was analyzed by Alzdata database, and the genes related to aging were analyzed by Aging Altas database, and finally, the core targets were obtained; the binding ability between ingredients and core targets evaluated by molecular docking, and the clinical significance of core targets was assessed with Gene Expression Omnibus (GEO) database.Results19 active components correspond to 267 therapeutic targets for AD, of which 69 is potentially effective; in module analysis, RELA, TRAF2, STAT3, and so on are the critical targets of each module; among the six core targets, RELA, MAPK8, STAT3, and TGFB1 have clinical therapeutic significance; GO function, including 3050 biological processes (BP), 257 molecular functions (MF), 184 cellular components (CC), whose functions are mainly related to antioxidation, regulation of apoptosis and cell composition; the HIF-1 signaling pathway, glutathione metabolism is the most significant result of 134 KEGG signal pathways and four metabolic pathways, respectively; most of the active components have an excellent affinity in docking with critical targets.ConclusionThe pharmacological target prediction of CR based on molecular network pharmacology paves the way for a multi-level networking strategy. The study of CR in AD treatment shows a bright prospect for curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Xian-wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-li Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-qing Cheng
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-jing Xia
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Xin-fang Xu
| | - Xiang-ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiang-ri Li
| |
Collapse
|
10
|
Hui F, Guo S, Liu J, Li M, Geng M, Xia Y, Liu X, Li Q, Li J, Zhu T. Genome-wide identification and characterization of NLR genes in lamprey (Lethenteron reissneri) and their responses to lipopolysaccharide/poly(I:C) challenge. Mol Immunol 2022; 143:122-134. [DOI: 10.1016/j.molimm.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/18/2022]
|
11
|
Zhang L, Jiao C, Liu L, Wang A, Tang L, Ren Y, Huang P, Xu J, Mao D, Liu L. NLRC5: A Potential Target for Central Nervous System Disorders. Front Immunol 2021; 12:704989. [PMID: 34220868 PMCID: PMC8250149 DOI: 10.3389/fimmu.2021.704989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleotide oligomerization domain-like receptors (NLRs), a class of pattern recognition receptors, participate in the host’s first line of defense against invading pathogenic microorganisms. NLR family caspase recruitment domain containing 5 (NLRC5) is the largest member of the NLR family and has been shown to play an important role in inflammatory processes, angiogenesis, immunity, and apoptosis by regulating the nuclear factor-κB, type I interferon, and inflammasome signaling pathways, as well as the expression of major histocompatibility complex I genes. Recent studies have found that NLRC5 is also associated with neuronal development and central nervous system (CNS) diseases, such as CNS infection, cerebral ischemia/reperfusion injury, glioma, multiple sclerosis, and epilepsy. This review summarizes the research progress in the structure, expression, and biological characteristics of NLRC5 and its relationship with the CNS.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cui Jiao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aiping Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Too LK, Hunt N, Simunovic MP. The Role of Inflammation and Infection in Age-Related Neurodegenerative Diseases: Lessons From Bacterial Meningitis Applied to Alzheimer Disease and Age-Related Macular Degeneration. Front Cell Neurosci 2021; 15:635486. [PMID: 33867940 PMCID: PMC8044768 DOI: 10.3389/fncel.2021.635486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Age-related neurodegenerative diseases, such as Alzheimer disease (AD) and age-related macular degeneration (AMD), are multifactorial and have diverse genetic and environmental risk factors. Despite the complex nature of the diseases, there is long-standing, and growing, evidence linking microbial infection to the development of AD dementia, which we summarize in this article. Also, we highlight emerging research findings that support a role for parainfection in the pathophysiology of AMD, a disease of the neurosensory retina that has been shown to share risk factors and pathological features with AD. Acute neurological infections, such as Bacterial Meningitis (BM), trigger inflammatory events that permanently change how the brain functions, leading to lasting cognitive impairment. Neuroinflammation likewise is a known pathological event that occurs in the early stages of chronic age-related neurodegenerative diseases AD and AMD and might be triggered as a parainfectious event. To date, at least 16 microbial pathogens have been linked to the development of AD; on the other hand, investigation of a microbe-AMD relationship is in its infancy. This mini-review article provides a synthesis of existing evidence indicating a contribution of parainfection in the aetiology of AD and of emerging findings that support a similar process in AMD. Subsequently, it describes the major immunopathological mechanisms that are common to BM and AD/AMD. Together, this evidence leads to our proposal that both AD and AMD may have an infectious aetiology that operates through a dysregulated inflammatory response, leading to deleterious outcomes. Last, it draws fresh insights from the existing literature about potential therapeutic options for BM that might alleviate neurological disruption associated with infections, and which could, by extension, be explored in the context of AD and AMD.
Collapse
Affiliation(s)
- Lay Khoon Too
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas Hunt
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Matthew P. Simunovic
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Eye Hospital, Sydney, NSW, Australia
| |
Collapse
|
13
|
Arruri VK, Gundu C, Khan I, Khatri DK, Singh SB. PARP overactivation in neurological disorders. Mol Biol Rep 2021; 48:2833-2841. [PMID: 33768369 DOI: 10.1007/s11033-021-06285-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022]
Abstract
Poly (ADP-ribose) polymerases (PARPs) constitute a family of enzymes associated with divergent cellular processes that are not limited to DNA repair, chromatin organization, genome integrity, and apoptosis but also found to play a crucial role in inflammation. PARPs mediate poly (ADP-ribosylation) of DNA binding proteins that is often responsible for chromatin remodeling thereby ensure effective repairing of DNA stand breaks although during the conditions of severe genotoxic stress PARPs direct the cell fate towards apoptotic events. Recent discoveries have pushed PARPs into the spotlight as targets for treating cancer, metabolic, inflammatory and neurological disorders. Of note, PARP-1 is the most abundant isoform of PARPs (18 member super family) which executes more than 90% of PARPs functions. Since oxidative/nitrosative stress actuated PARP-1 is linked to vigorous DNA damage and wide spread provocative inflammatory response that underlie the aetiopathogenesis of different neurological disorders, possibility of developing PARP-1 inhibitors as plausible neurotherapeutic agents attracts considerable research interest. This review outlines the recent advances in PARP-1 biology and examines the capability of PARP-1 inhibitors as treatment modalities in intense and interminable diseases of neuronal origin.
Collapse
Affiliation(s)
- Vijay Kumar Arruri
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chayanika Gundu
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Islauddin Khan
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
14
|
Sanches JM, Correia-Silva RD, Duarte GHB, Fernandes AMAP, Sánchez-Vinces S, Carvalho PO, Oliani SM, Bortoluci KR, Moreira V, Gil CD. Role of Annexin A1 in NLRP3 Inflammasome Activation in Murine Neutrophils. Cells 2021; 10:121. [PMID: 33440601 PMCID: PMC7827236 DOI: 10.3390/cells10010121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
This study evaluated the role of endogenous and exogenous annexin A1 (AnxA1) in the activation of the NLRP3 inflammasome in isolated peritoneal neutrophils. C57BL/6 wild-type (WT) and AnxA1 knockout mice (AnxA1-/-) received 0.3% carrageenan intraperitoneally and, after 3 h, the peritoneal exudate was collected. WT and AnxA1-/- neutrophils were then stimulated with lipopolysaccharide, followed by the NLRP3 agonists nigericin or ATP. To determine the exogenous effect of AnxA1, the neutrophils were pretreated with the AnxA1-derived peptide Ac2-26 followed by the NLRP3 agonists. Ac2-26 administration reduced NLRP3-derived IL-1β production by WT neutrophils after nigericin and ATP stimulation. However, IL-1β release was impaired in AnxA1-/- neutrophils stimulated by both agonists, and there was no further impairment in IL-1β release with Ac2-26 treatment before stimulation. Despite this, ATP- and nigericin-stimulated AnxA1-/- neutrophils had increased levels of cleaved caspase-1. The lipidomics of supernatants from nigericin-stimulated WT and AnxA1-/- neutrophils showed potential lipid biomarkers of cell stress and activation, including specific sphingolipids and glycerophospholipids. AnxA1 peptidomimetic treatment also increased the concentration of phosphatidylserines and oxidized phosphocholines, which are lipid biomarkers related to the inflammatory resolution pathway. Together, our results indicate that exogenous AnxA1 negatively regulates NLRP3-derived IL-1β production by neutrophils, while endogenous AnxA1 is required for the activation of the NLRP3 machinery.
Collapse
Affiliation(s)
- José Marcos Sanches
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
| | - Rebeca D. Correia-Silva
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
| | - Gustavo H. B. Duarte
- Instituto de Química, Universidade Estadual de Campinas, Campinas 13083-862, São Paulo, Brazil;
| | - Anna Maria A. P. Fernandes
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista 12916-900, São Paulo, Brazil; (A.M.A.P.F.); (S.S.-V.); (P.O.C.)
| | - Salvador Sánchez-Vinces
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista 12916-900, São Paulo, Brazil; (A.M.A.P.F.); (S.S.-V.); (P.O.C.)
| | - Patrícia O. Carvalho
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista 12916-900, São Paulo, Brazil; (A.M.A.P.F.); (S.S.-V.); (P.O.C.)
| | - Sonia M. Oliani
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
- Programa de Pós-Graduação em Biociências, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto 15054-000, São Paulo, Brazil
| | - Karina R. Bortoluci
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo, São Paulo 04044-010, Brazil;
| | - Vanessa Moreira
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil;
| | - Cristiane D. Gil
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
- Programa de Pós-Graduação em Biociências, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto 15054-000, São Paulo, Brazil
| |
Collapse
|
15
|
Kong X, Liao Y, Zhou L, Zhang Y, Cheng J, Yuan Z, Wang S. Hematopoietic Cell Kinase (HCK) Is Essential for NLRP3 Inflammasome Activation and Lipopolysaccharide-Induced Inflammatory Response In Vivo. Front Pharmacol 2020; 11:581011. [PMID: 33041826 PMCID: PMC7523510 DOI: 10.3389/fphar.2020.581011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/20/2020] [Indexed: 01/15/2023] Open
Abstract
Activation of the NLRP3 inflammasome results in caspase 1 cleavage, which subsequently leads to IL-1β and IL-18 secretion, as well as pyroptosis, and aberrant activation of the inflammasome is involved in several diseases such as type 2 diabetes, atherosclerosis, multiple sclerosis, Parkinson's disease, and Alzheimer's disease. NLRP3 activity is regulated by various kinases. Genetic and pharmacological inhibition of the hematopoietic cell kinase (HCK), a member of the Src family of non-receptor tyrosine kinases (NRTKs) primarily expressed in myeloid cells, has previously been shown to ameliorate inflammation, indicating that it may be involved in the regulation of microglia function. However, the underlying mechanism is not known. Hence, in this study, we aimed to investigate the role of HCK in NLRP3 inflammasome activation. We demonstrated that HCK silencing inhibited NLRP3 inflammasome activation. Furthermore, the HCK-specific inhibitor, A419259, attenuated the release of IL-1β and caspase 1(P20) from the macrophages and microglia and reduced the formation of the apoptosis-associated speck-like protein with a CARD domain (ASC) oligomer. We also observed that HCK binds to full length NLRP3 and its NBD(NACHT) and LRR domains, but not to the PYD domain. In vivo, the HCK inhibitor attenuated the LPS-induced inflammatory response in the liver of LPS-challenged mice. Collectively, these results suggested that HCK plays a critical role in NLRP3 inflammasome activation. Our results will enhance current understanding regarding the effectiveness of HCK inhibitors for treating acute inflammatory diseases.
Collapse
Affiliation(s)
- Xiangxi Kong
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| | - Lujun Zhou
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shukun Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Guo Q, He J, Zhang H, Yao L, Li H. Oleanolic acid alleviates oxidative stress in Alzheimer's disease by regulating stanniocalcin-1 and uncoupling protein-2 signalling. Clin Exp Pharmacol Physiol 2020; 47:1263-1271. [PMID: 32100892 DOI: 10.1111/1440-1681.13292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is thought to play an important role in the occurrence and development of Alzheimer's disease (AD) and antioxidants may delay or even treat AD. Oleanolic acid (OA) exhibits antioxidant properties against many diseases. However, its effects on oxidative stress in AD remain unclear. Here, we explored the role and mechanism of action of OA in N2a/APP695swe cells exposed to oxidative stress. The cells were incubated with different concentrations of OA (0, 5, 8, 10, 15, and 25 μmol/L) for 24 hours. Higher concentrations of OA (10, 15, and 25 μmol/L) significantly suppressed the apoptosis, caspase-3 activity, reactive oxygen species level, and β amyloid (Aβ) content and increased the viability of these cells. OA (10 μmol/L) also increased the expression of stanniocalcin-1 (STC-1) and uncoupling protein-2 (UCP2) in N2a/APP695swe cells. STC-1 interference markedly reversed the effect of OA on UCP2, indicating that OA may regulate UCP2 expression in N2a/APP695swe cells via STC-1. Moreover, UCP2 inhibition significantly reversed the OA-mediated effects on cell viability, caspase-3 activity, reactive oxygen species, and Aβ level. Thus, OA regulates UCP2 expression via STC-1 to alleviate oxidative stress and Aβ level in N2a/APP695swe cells.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Neurology, Xidian Group Hospital, Xi'an, China
| | - Jianbo He
- Department of Neurology, Xidian Group Hospital, Xi'an, China
| | - Heng Zhang
- Department of Neurology, Xidian Group Hospital, Xi'an, China
| | - Li Yao
- Department of Neurology, Xidian Group Hospital, Xi'an, China
| | - Huiqi Li
- Department of Neurology, Xidian Group Hospital, Xi'an, China
| |
Collapse
|
17
|
Biliktu M, Senol SP, Temiz-Resitoglu M, Guden DS, Horat MF, Sahan-Firat S, Sevim S, Tunctan B. Pharmacological inhibition of soluble epoxide hydrolase attenuates chronic experimental autoimmune encephalomyelitis by modulating inflammatory and anti-inflammatory pathways in an inflammasome-dependent and -independent manner. Inflammopharmacology 2020; 28:1509-1524. [PMID: 32128702 DOI: 10.1007/s10787-020-00691-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
We aimed to determine the effect of soluble epoxide hydrolase (sEH) inhibition on chronic experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), associated with changes in inflammasome-dependent and -independent inflammatory and anti-inflammatory pathways in the CNS of mice. C57BL/6 mice were used to induce chronic EAE by using an injection of MOG35-55 peptide/PT. Animals were observed daily and scored for EAE signs for 25 days after immunization. Following the induction of EAE, the scores were increased after 9 days and reached peak value as determined by ≥ 2 or ≤ 3 with 8% mortality rate on day 17. On day 17, mice were administered daily PBS, DMSO, or TPPU (a potent sEH inhibitor) (1, 3, or 10 mg/kg) until the end of the study. TPPU only at 3 mg/kg dose decreased the AUC values calculated from EAE scores obtained during the disease compared to EAE and vehicle control groups. On day 25, TPPU also caused an increase in the PPARα/β/γ and NLRC3 proteins and a decrease in the proteins of TLR4, MyD88, NF-κB p65, p-NF-κB p65, iNOS/nNOS, COX-2, NLRC4, ASC, caspase-1 p20, IL-1β, caspase-11 p20, NOX subunits (gp91phox and p47phox), and nitrotyrosine in addition to 14,15-DHET and IL-1β levels compared to EAE and vehicle control groups. Our findings suggest that pharmacological inhibition of sEH attenuates chronic EAE likely because of enhanced levels of anti-inflammatory EETs in addition to PPARα/β/γ and NLRC3 expression associated with suppressed inflammatory TLR4/MyD88/NF-κB signalling pathway, NLRC4/ASC/pro-caspase-1 inflammasome, caspase-11 inflammasome, and NOX activity that are responsible for inflammatory mediator formation in the CNS of mice.
Collapse
Affiliation(s)
- Merve Biliktu
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Meryem Temiz-Resitoglu
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Mehmet Furkan Horat
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Serhan Sevim
- Department of Neurology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey.
| |
Collapse
|
18
|
Lu L, Wu C, Lu BJ, Xie D, Wang Z, Bahaji Azami NL, An YT, Wang HJ, Ye G, Sun MY. BabaoDan cures hepatic encephalopathy by decreasing ammonia levels and alleviating inflammation in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112301. [PMID: 31622746 DOI: 10.1016/j.jep.2019.112301] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE BabaoDan (BBD) is a famous traditional Chinese formula frequently used in TCM clinics to eliminate jaundice and treat infectious viral hepatitis. This paper assesses BBD's preventive and therapeutic effects on hepatic encephalopathy after liver cirrhosis (CHE) and acute liver failure (AHE) in rats and explains its possible mechanism of action. METHODS CHE rat model was established by injection of carbon tetrachloride (CCl4) twice a week for a total of 9 weeks and then by injection of thioacetamide (TAA) to induce hepatic encephalopathy. AHE rat model was established by injection of TAA once a day for a total of 3 days. In CHE rat model, BBD was gavaged once a day at the end of the 6th week until the experiment ended. In AHE rat model,BBD was gavaged once a day 3 days before TAA injection until the experiment ended. The preventive and therapeutic effects of BBD on brain dysfunction, as well as liver injury, pathology and fibrosis were evaluated in vivo. The role of BBD in the regulation of inflammatory factors and myeloid differentiation factor 88/Toll-like receptor 4/nuclear factor kappa-B (TLR4/MyD88/NK-κ B) pathway was detected in both liver and brain in vivo. The rat bone marrow derived macrophages (BMDMs) were activated by Lipopolysaccharide (LPS), and the role of BBD in the regulation of inflammatory factors and NK-κ B pathway were detected in vitro. RESULTS In CHE rat model: BBD significantly improved the total distance as well as the activity rate of rats. BBD also improved the learning and memory abilities of rats compared with the control group. In addition, BBD effectively decreased ammonia levels and significantly decreased the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (TBil) and total bile acid (TBA), as well as improved the levels of total protein (TP) and albumin (Alb). In the liver, BBD not only inhibited the gene expressions of tumor necrosis factor alpha (TNF-α), interleukini-6 (IL-6), TLR4, MyD88, and NF-κ B but also inhibited the protein expressions of TLR4, MyD88, NK-κ B and TNF-α. In the brain, BBD inhibited the gene expressions of iNOS, IL-6, TNF-α, TLR-4, MyD88, and NF-κ B, as well as inhibited the protein expressions of TLR4, MyD88, P65 TNF-α and ionized calcium binding adapter molecule 1 (Iba-1). BBD also decreased NO and TNF-α in the blood. IN AHE RAT MODEL BBD improved neurological scores, blood ammonia levels and the brain inflammatory gene expressions of iNOS, TNF-α and IL-1β. BBD also improved liver function biomarkers such as ALT, TBil, TBA, TP, ALB and inflammatory and apoptotic gene expressions of TNF-α, IL-1β, IL-6, Bax, Bcl-2, caspase-9, caspase-3 and NF-κ B. In LPS-activated rat BMDMs, BBD decreased NO and TNF-α production in BMDM culture supernatant. In addition, BBD inhibited the gene expressions of TNF-α, IL-1 β and IL-6 as well as the phosphorylation of P65. CONCLUSION BBD can prevent and cure hepatic encephalopathy (HE) derived from both chronic and acute liver diseases. BBD can reduce hyperammonemia as well as the systematic and neurological inflammation. Inflammation is likely an important target of BBD to treat HE. The anti-inflammatory role of BBD may lie in its regulation of the TLR4/MyD88/NF-κ B pathways.
Collapse
Affiliation(s)
- Lu Lu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Chao Wu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing-Jie Lu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Dong Xie
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zheng Wang
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nisma Lena Bahaji Azami
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong-Tong An
- Central Research Institute of Shanghai Pharmaceutical Group Co, Ltd, Shanghai, 201203, China.
| | - Hui-Jun Wang
- Central Research Institute of Shanghai Pharmaceutical Group Co, Ltd, Shanghai, 201203, China.
| | - Guan Ye
- Central Research Institute of Shanghai Pharmaceutical Group Co, Ltd, Shanghai, 201203, China.
| | - Ming-Yu Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
19
|
Nolan RA, Reeb KL, Rong Y, Matt SM, Johnson HS, Runner K, Gaskill PJ. Dopamine activates NF-κB and primes the NLRP3 inflammasome in primary human macrophages. Brain Behav Immun Health 2019; 2. [PMID: 33665636 PMCID: PMC7929492 DOI: 10.1016/j.bbih.2019.100030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induction of innate immune genes in the brain is thought to be a major factor in the development of addiction to substances of abuse. As the major component of the innate immune system in the brain, aberrant activation of myeloid cells such as macrophages and microglia due to substance use may mediate neuroinflammation and contribute to the development of addiction. All addictive drugs modulate the dopaminergic system and our previous studies have identified dopamine as a pro-inflammatory modulator of macrophage function. However, the mechanism that mediates this effect is currently unknown. Inflammatory activation of macrophages and induction of cytokine production is often mediated by the transcription factor NF-κB, and prior studies have shown that dopamine can modulate NF-κB activity in T-cells and other non-immune cell lines. Here we demonstrated that dopamine can activate NF-κB in primary human macrophages, resulting in the induction of its downstream targets including the NLRP3 inflammasome and the inflammatory cytokine IL-1β. These data also indicate that dopamine primes but does not activate the NLRP3 inflammasome in human macrophages. Activation of NF-κB was required for dopamine-mediated increases in IL-1β, as an inhibitor of NF-κB was able to abrogate the effects of dopamine on production of these cytokines. Connecting an increase in extracellular dopamine to NF-κB activation and inflammation suggests specific intracellular targets that could be used to ameliorate the inflammatory impact of dopamine in neuroinflammatory conditions associated with myeloid cell activation such as addiction. Dopamine exposure primes, but does not activate the NLRP3 inflammasome. Inflammasome priming can be mediated, at least partially, by a dopamine-induced increase in the activation and nuclear translocation of NF-κB in primary human macrophages. Dopamine additively increases the impact of cytomegalovirus on NF-κB activation in macrophages. Dopamine priming increases IL-1β release in response to inflammasome activation.
Collapse
Affiliation(s)
- R A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - Y Rong
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - H S Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| |
Collapse
|
20
|
Morfin N, Goodwin PH, Hunt GJ, Guzman-Novoa E. Effects of sublethal doses of clothianidin and/or V. destructor on honey bee (Apis mellifera) self-grooming behavior and associated gene expression. Sci Rep 2019; 9:5196. [PMID: 30914660 PMCID: PMC6435647 DOI: 10.1038/s41598-019-41365-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Little is known about the combined effects of stressors on social immunity of honey bees (Apis mellifera) and related gene expression. The interaction between sublethal doses of a neurotoxin, clothianidin, and the ectoparasite, Varroa destructor, was examined by measuring differentially expressed genes (DEGs) in brains, deformed wing virus (DWV) and the proportion and intensity of self-grooming. Evidence for an interaction was observed between the stressors in a reduction in the proportion of intense groomers. Only the lowest dose of clothianidin alone reduced the proportion of self-groomers and increased DWV levels. V. destructor shared a higher proportion of DEGs with the combined stressors compared to clothianidin, indicating that the effects of V. destructor were more pervasive than those of clothianidin when they were combined. The number of up-regulated DEGs were reduced with the combined stressors compared to clothianidin alone, suggesting an interference with the impacts of clothianidin. Clothianidin and V. destructor affected DEGs from different biological pathways but shared impacts on pathways related to neurodegenerative disorders, like Alzheimer's, which could be related to neurological dysfunction and may explain their negative impacts on grooming. This study shows that the combination of clothianidin and V. destructor resulted in a complex and non-additive interaction.
Collapse
Affiliation(s)
- Nuria Morfin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, N1G 2W1, Ontario, Canada.
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, N1G 2W1, Ontario, Canada
| | - Greg J Hunt
- Department of Entomology, Purdue University, 901 W State St, West Lafayette, IN, 47907, United States of America
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, N1G 2W1, Ontario, Canada
| |
Collapse
|
21
|
Putatunda R, Bethea JR, Hu WH. Potential immunotherapies for traumatic brain and spinal cord injury. Chin J Traumatol 2018; 21:125-136. [PMID: 29759918 PMCID: PMC6033730 DOI: 10.1016/j.cjtee.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Wen-Hui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA,Corresponding author.
| |
Collapse
|
22
|
Liu CC, Huang ZX, Li X, Shen KF, Liu M, Ouyang HD, Zhang SB, Ruan YT, Zhang XL, Wu SL, Xin WJ, Ma C. Upregulation of NLRP3 via STAT3-dependent histone acetylation contributes to painful neuropathy induced by bortezomib. Exp Neurol 2018; 302:104-111. [PMID: 29339053 DOI: 10.1016/j.expneurol.2018.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/16/2017] [Accepted: 01/12/2018] [Indexed: 01/05/2023]
Abstract
Painful neuropathy, as a severe side effect of chemotherapeutic bortezomib, is the most common reason for treatment discontinuation. However, the mechanism by which administration of bortezomib leads to painful neuropathy remains unclear. In the present study, we found that application of bortezomib significantly increased the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) and phosphorylated signal transducer and activator of transcription-3 (STAT3) in dorsal root ganglion (DRG). Intrathecal injection of NLRP3 siRNA significantly prevented the mechanical allodynia induced by bortezomib treatment, and intrathecal injection of recombinant adeno-associated virus vector encoding NLRP3 markedly decreased paw withdrawal threshold of naive rats. Furthermore, the expressions of p-STAT3 were colocalized with NLRP3-positive cells in DRG neurons, and inhibition of STAT3 by intrathecal injection of AAV-Cre-GFP into STAT3flox/flox mice or inhibitor S3I-201 suppressed the upregulation of NLRP3 and mechanical allodynia induced by bortezomib treatment. Chromatin immunoprecipitation further found that bortezomib increased the recruitment of STAT3, as well as the acetylation of histone H3 and H4, in the NLRP3 promoter region in DRG neurons. Importantly, inhibition of the STAT3 activity by using S3I-201 or DRG local deficiency of STAT3 also significantly prevented the upregulated H3 and H4 acetylation in the NLRP3 promoter region following bortezomib treatment. Altogether, our results suggest that the upregulation of NLRP3 in DRG via STAT3-dependent histone acetylation is critically involved in bortezomib-induced mechanical allodynia.
Collapse
Affiliation(s)
- Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhu-Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiao Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kai-Feng Shen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Meng Liu
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510080, China
| | - Han-Dong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Su-Bo Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yu-Ting Ruan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiao-Long Zhang
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shao-Ling Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Wen-Jun Xin
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chao Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|