1
|
Pradhan AK, Neumüller T, Klug C, Fuchs S, Schlegel M, Ballmann M, Tartler KJ, Pianos A, Garcia MS, Liere P, Schumacher M, Kreuzer M, Rupprecht R, Rammes G. Chronic administration of XBD173 ameliorates cognitive deficits and neuropathology via 18 kDa translocator protein (TSPO) in a mouse model of Alzheimer's disease. Transl Psychiatry 2023; 13:332. [PMID: 37891168 PMCID: PMC10611770 DOI: 10.1038/s41398-023-02630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of β-amyloid peptide (Aβ). It affects cognition and leads to memory impairment. The mitochondrial translocator protein (TSPO) plays an essential role in maintaining mitochondrial homeostasis and has been implicated in several neuronal disorders or neuronal injuries. Ligands targeting the mitochondrial translocator protein (18 kDa), promote neurosteroidogenesis and may be neuroprotective. To study whether the TSPO ligand XBD173 may exert early neuroprotective effects in AD pathology we investigated the impact of XBD173 on amyloid toxicity and neuroplasticity in mouse models of AD. We show that XBD173 (emapunil), via neurosteroid-mediated signaling and delta subunit-containing GABAA receptors, prevents the neurotoxic effect of Aβ on long-term potentiation (CA1-LTP) in the hippocampus and prevents the loss of spines. Chronic but not acute administration of XBD173 ameliorates spatial learning deficits in transgenic AD mice with arctic mutation (ArcAβ). The heterozygous TSPO-knockout crossed with the transgenic arctic mutation model of AD mice (het TSPOKO X ArcAβ) treated with XBD173 does not show this improvement in spatial learning suggesting TSPO is needed for procognitive effects of XBD173. The neuroprotective profile of XBD173 in AD pathology is further supported by a reduction in plaques and soluble Aβ levels in the cortex, increased synthesis of neurosteroids, rescued spine density, reduction of complement protein C1q deposits, and reduced astrocytic phagocytosis of functional synapses both in the hippocampus and cortex. Our findings suggest that XBD173 may exert therapeutic effects via TSPO in a mouse model of AD.
Collapse
Affiliation(s)
- Arpit Kumar Pradhan
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany.
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | - Tatjana Neumüller
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Claudia Klug
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Severin Fuchs
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Martin Schlegel
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Markus Ballmann
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Katharina Johanna Tartler
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Antoine Pianos
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Maria Sanchez Garcia
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Matthias Kreuzer
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Gerhard Rammes
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
2
|
Bhardwaj A, Liyanage SI, Weaver DF. Cancer and Alzheimer's Inverse Correlation: an Immunogenetic Analysis. Mol Neurobiol 2023; 60:3086-3099. [PMID: 36797545 DOI: 10.1007/s12035-023-03260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Numerous studies have demonstrated an inverse link between cancer and Alzheimer's disease (AD), with data suggesting that people with Alzheimer's have a decreased risk of cancer and vice versa. Although other studies have investigated mechanisms to explain this relationship, the connection between these two diseases remains largely unexplained. Processes seen in cancer, such as decreased apoptosis and increased cell proliferation, seem to be reversed in AD. Given the need for effective therapeutic strategies for AD, comparisons with cancer could yield valuable insights into the disease process and perhaps result in new treatments. Here, through a review of existing literature, we compared the expressions of genes involved in cell proliferation and apoptosis to establish a genetic basis for the reciprocal association between AD and cancer. We discuss an array of genes involved in the aforementioned processes, their relevance to both diseases, and how changes in those genes produce varying effects in either disease.
Collapse
Affiliation(s)
- Aditya Bhardwaj
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - S Imindu Liyanage
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Donald F Weaver
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada.
- Departments of Medicine and Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
4
|
van der Spek SJF, Gonzalez-Lozano MA, Koopmans F, Miedema SSM, Paliukhovich I, Smit AB, Li KW. Age-Dependent Hippocampal Proteomics in the APP/PS1 Alzheimer Mouse Model: A Comparative Analysis with Classical SWATH/DIA and directDIA Approaches. Cells 2021; 10:cells10071588. [PMID: 34202490 PMCID: PMC8304546 DOI: 10.3390/cells10071588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the human population, for which there is currently no cure. The cause of AD is unknown; however, the toxic effects of amyloid-β (Aβ) are believed to play a role in its onset. To investigate this, we examined changes in global protein levels in a hippocampal synaptosome fraction of the Amyloid Precursor Protein swe/Presenelin 1 dE9 (APP/PS1) mouse model of AD at 6 and 12 months of age (moa). Data independent acquisition (DIA), or Sequential Window Acquisition of all THeoretical fragment-ion (SWATH), was used for a quantitative label-free proteomics analysis. We first assessed the usefulness of a recently improved directDIA workflow as an alternative to conventional DIA data analysis using a project-specific spectral library. Subsequently, we applied directDIA to the 6- and 12-moa APP/PS1 datasets and applied the Mass Spectrometry Downstream Analysis Pipeline (MS-DAP) for differential expression analysis and candidate discovery. We observed most regulation at 12-moa, in particular of proteins involved in Aβ homeostasis and microglial-dependent processes, like synaptic pruning and the immune response, such as APOE, CLU and C1QA-C. All proteomics data are available via ProteomeXchange with identifier PXD025777.
Collapse
|
5
|
Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer's disease. J Neuroinflammation 2020; 17:289. [PMID: 33023629 PMCID: PMC7542374 DOI: 10.1186/s12974-020-01960-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disorder characterized by memory deficits especially forgetting recent information, recall ability impairment, and loss of time tracking, problem-solving, language, and recognition difficulties. AD is also a globally important health issue but despite all scientific efforts, the treatment of AD is still a challenge. Sleep has important roles in learning and memory consolidation. Studies have shown that sleep deprivation (SD) and insomnia are associated with the pathogenesis of Alzheimer's disease and may have an impact on the symptoms and development. Thus, sleep disorders have decisive effects on AD; this association deserves more attention in research, diagnostics, and treatment, and knowing this relation also can help to prevent AD through screening and proper management of sleep disorders. This study aimed to show the potential role of SD and insomnia in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nima Rezaei
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol 2020; 16:30-42. [PMID: 31827267 PMCID: PMC7268202 DOI: 10.1038/s41582-019-0281-2] [Citation(s) in RCA: 434] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
The shared role of amyloid-β (Aβ) deposition in cerebral amyloid angiopathy (CAA) and Alzheimer disease (AD) is arguably the clearest instance of crosstalk between neurodegenerative and cerebrovascular processes. The pathogenic pathways of CAA and AD intersect at the levels of Aβ generation, its circulation within the interstitial fluid and perivascular drainage pathways and its brain clearance, but diverge in their mechanisms of brain injury and disease presentation. Here, we review the evidence for and the pathogenic implications of interactions between CAA and AD. Both pathologies seem to be driven by impaired Aβ clearance, creating conditions for a self-reinforcing cycle of increased vascular Aβ, reduced perivascular clearance and further CAA and AD progression. Despite the close relationship between vascular and plaque Aβ deposition, several factors favour one or the other, such as the carboxy-terminal site of the peptide and specific co-deposited proteins. Amyloid-related imaging abnormalities that have been seen in trials of anti-Aβ immunotherapy are another probable intersection between CAA and AD, representing overload of perivascular clearance pathways and the effects of removing Aβ from CAA-positive vessels. The intersections between CAA and AD point to a crucial role for improving vascular function in the treatment of both diseases and indicate the next steps necessary for identifying therapies.
Collapse
Affiliation(s)
- Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Brian J Bacskai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeremy Pruzin
- Center for Alzheimer Research and Treatment, Brigham & Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Brigham & Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Stahel PF, Barnum SR. The role of the complement system in CNS inflammatory diseases. Expert Rev Clin Immunol 2014; 2:445-56. [DOI: 10.1586/1744666x.2.3.445] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Ghiso J, Fossati S, Rostagno A. Amyloidosis associated with cerebral amyloid angiopathy: cell signaling pathways elicited in cerebral endothelial cells. J Alzheimers Dis 2014; 42 Suppl 3:S167-76. [PMID: 24670400 PMCID: PMC4467213 DOI: 10.3233/jad-140027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substantial genetic, biochemical, and in vivo data indicate that progressive accumulation of amyloid-β (Aβ) plays a central role in the pathogenesis of Alzheimer's disease (AD). Historically centered in the importance of parenchymal plaques, the role of cerebral amyloid angiopathy (CAA)--a frequently neglected amyloid deposit present in >80% of AD cases--for the mechanism of disease pathogenesis is now starting to emerge. CAA consistently associates with microvascular modifications, ischemic lesions, micro- and macro-hemorrhages, and dementia, progressively affecting cerebral blood flow, altering blood-brain barrier permeability, interfering with brain clearance mechanisms and triggering a cascade of deleterious pro-inflammatory and metabolic events that compromise the integrity of the neurovascular unit. New evidence highlights the contribution of pre-fibrillar Aβ in the induction of cerebral endothelial cell dysfunction. The recently discovered interaction of oligomeric Aβ species with TRAIL DR4 and DR5 cell surface death receptors mediates the engagement of mitochondrial pathways and sequential activation of multiple caspases, eliciting a cascade of cell death mechanisms while unveiling an opportunity for exploring mechanistic-based therapeutic interventions to preserve the integrity of the neurovascular unit.
Collapse
Affiliation(s)
- Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY, USA Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Silvia Fossati
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Benoit ME, Hernandez MX, Dinh ML, Benavente F, Vasquez O, Tenner AJ. C1q-induced LRP1B and GPR6 proteins expressed early in Alzheimer disease mouse models, are essential for the C1q-mediated protection against amyloid-β neurotoxicity. J Biol Chem 2012; 288:654-65. [PMID: 23150673 DOI: 10.1074/jbc.m112.400168] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complement protein C1q is induced in the brain in response to a variety of neuronal injuries, including Alzheimer disease (AD), and blocks fibrillar amyloid-β (fAβ) neurotoxicity in vitro. Here, we show that C1q protects immature and mature primary neurons against fAβ toxicity, and we report for the first time that C1q prevents toxicity induced by oligomeric forms of amyloid-β (Aβ). Gene expression analysis reveals C1q-activated phosphorylated cAMP-response element-binding protein and AP-1, two transcription factors associated with neuronal survival and neurite outgrowth, and increased LRP1B and G protein-coupled receptor 6(GPR6) expression in fAβ-injured neurons. Silencing of cAMP-response element-binding protein, LRP1B or GPR6 expression inhibited C1q-mediated neuroprotection from fAβ-induced injury. In addition, C1q altered the association of oligomeric Aβ and fAβ with neurons. In vivo, increased hippocampal expression of C1q, LRP1B, and GPR6 is observed as early as 2 months of age in the 3 × Tg mouse model of AD, whereas no such induction of LRP1B and GPR6 was seen in C1q-deficient AD mice. In contrast, expression of C1r and C1s, proteases required to activate the classical complement pathway, and C3 showed a significant age-dependent increase only after 10-13 months of age when Aβ plaques start to accumulate in this AD model. Thus, our results identify pathways by which C1q, up-regulated in vivo early in response to injury without the coordinate induction of other complement components, can induce a program of gene expression that promotes neuroprotection and thus may provide protection against Aβ in preclinical stages of AD and other neurodegenerative processes.
Collapse
Affiliation(s)
- Marie E Benoit
- Department of Molecular Biology and Biochemistry, of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
'Amyloid binging proteins' is a generic term used to designate proteins that interact with different forms of amyloidogenic peptides or proteins and that, as a result, may modulate their physiological and pathological functions by altering solubility, transport, clearance, degradation, and fibril formation. We describe a simple affinity chromatography protocol to isolate and characterize amyloid-binding proteins based on the use of sequential elution steps that may provide further information on the type of binding interaction. As an example, we depict the application of this protocol to the study of Alzheimer's amyloid β (Aβ) peptide-binding proteins derived from human plasma. Biochemical analysis of the proteins eluted under different conditions identified serum amyloid P component (SAP) and apolipoprotein J (clusterin) as the main plasma Aβ-binding proteins while various apolipoproteins (apoA-IV, apoE, and apoA-I), as well as albumin (HSA) and fibulin were identified as minor contributors.
Collapse
Affiliation(s)
- Miguel Calero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | | |
Collapse
|
11
|
Yan XD, Kumar B, Nahreini P, Hanson AJ, Prasad JE, Prasad KN. Prostaglandin-induced neurodegeneration is associated with increased levels of oxidative markers and reduced by a mixture of antioxidants. J Neurosci Res 2005; 81:85-90. [PMID: 15920743 DOI: 10.1002/jnr.20545] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Prostaglandin E2 (PGE2), one product of inflammatory reactions, and PGA1, which is formed during PGE2 extraction, induce degeneration in adenosine 3',5'-cyclic monophosphate (cAMP)-induced differentiated neuroblastoma (NB) cells in culture. The mechanisms of action of PGE2 on neurodegeneration are not well understood. To investigate this, we have utilized PGA(1), which mimics the effect of PGE2 and is very stable in solution. We have assayed selected markers of oxidative stress such as heme oxygenase-1 (HO-1), catalase, glutathione peroxidase (GPx1), mitochondrial superoxide dismutase (Mn-SOD-2) and cytosolic superoxide dismutase (Cu/Zn-SOD-1). The results showed that the treatment of differentiated NB cells with PGA1 for a period of 48 hr increased the expression of HO-1 and catalase, decreased the expression of GPx1 and Mn-SOD-2, and did not change the expression of Cu/Zn-SOD-1 as measured by gene array and confirmed by real-time PCR. The protein levels of HO-1 and GPx1 increased; however, the protein level of Mn-SOD-2 decreased and the levels of catalase and Cu/Zn-SOD-1 did not change as determined by Western blot. The increases in the levels of HO-1 and GPx1 reflected an adaptive response to increased oxidative stress, whereas decrease in the level of Mn-SOD-2 may make cells more sensitive to oxidative damage. These data suggest that one of the mechanisms of action of PGA1 on neurodegeneration may involve increased oxidative stress. This was supported further by the fact that a mixture of antioxidants (alpha-tocopherol, vitamin C, selenomethionine, and reduced glutathione), but not the individual antioxidants, reduced the level of PGA1-induced degeneration in differentiated NB cells. The addition of a single antioxidant at two or four times the concentration used in the mixture was toxic.
Collapse
Affiliation(s)
- Xiang-Dong Yan
- Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
12
|
Veerhuis R, Boshuizen RS, Morbin M, Mazzoleni G, Hoozemans JJM, Langedijk JPM, Tagliavini F, Langeveld JPM, Eikelenboom P. Activation of human microglia by fibrillar prion protein-related peptides is enhanced by amyloid-associated factors SAP and C1q. Neurobiol Dis 2005; 19:273-82. [PMID: 15837583 DOI: 10.1016/j.nbd.2005.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 12/06/2004] [Accepted: 01/04/2005] [Indexed: 11/19/2022] Open
Abstract
Complement activation products C1q and C3d, serum amyloid P component (SAP) and activated glial cells accumulate in amyloid deposits of conformationally changed prion protein (PrP(Sc)) in Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease and scrapie-infected mouse brain. Biological properties, including the potential to activate microglia, relate to prion (PrP) peptide fibrillogenic abilities. We investigated if SAP and C1q influence the fibrillogenic properties of human and mouse PrP peptide and concomitantly their stimulatory effects on human microglia in vitro. PrP-peptide induced microglial IL-6 and TNF-alpha release significantly increased in the presence of SAP and C1q. Also, SAP and C1q enhanced PrP-peptide fibril formation as revealed by electron microscopy and thioflavin S-based quantitative assays. This suggests that SAP and C1q contribute to fibrillar state-dependent cellular effects of PrP. Combined, ultrastructural and thioflavin assays, together with microglial cytokine release measurements, provide a test system to screen potential, fibrillarity impeding therapeutics for prion disease.
Collapse
Affiliation(s)
- Robert Veerhuis
- Institute for Clinical and Experimental Neurosciences-VU (ICEN-VU), Department of Psychiatry, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The role of inflammation in Alzheimer's disease neuropathology and clinical dementia. From epidemiology to treatment. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Fonseca MI, Zhou J, Botto M, Tenner AJ. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. J Neurosci 2005; 24:6457-65. [PMID: 15269255 PMCID: PMC6729885 DOI: 10.1523/jneurosci.0901-04.2004] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
C1q, the recognition component of the classical complement activation pathway, is a multifunctional protein known to be expressed in brain of Alzheimer's disease (AD) patients. To experimentally address the role of C1q in AD, a mouse model lacking C1q (APPQ-/-) was generated by crossing Tg2576 animals (APP) with C1q-deficient mice. The pathology of APPQ-/- was compared with that of APP mice and B6SJL controls at 3-16 months of age by immunohistochemistry and Western blot analysis. At younger ages (3-6 months), when no plaque pathology was present, no significant differences were seen in any of the neuronal or glial markers tested. At older ages (9-16 months), the APP and APPQ-/- mice developed comparable total amyloid and fibrillar beta-amyloid in frontal cortex and hippocampus; however, the level of activated glia surrounding the plaques was significantly lower in the APPQ-/- mice at 12 and 16 months. In addition, although Tg2576 mice showed a progressive decrease in synaptophysin and MAP2 in the CA3 area of hippocampus compared with control B6SJL at 9, 12, and 16 months, the APPQ-/- mice had significantly less of a decrease in these markers at 12 and 16 months. In a second murine model for AD containing transgenes for both APP and mutant presenilin 1 (APP/PS1), a similar reduction of pathology was seen in the APPPS1Q-/- mice. These data suggest that at ages when the fibrillar plaque pathology is present, C1q exerts a detrimental effect on neuronal integrity, most likely through the activation of the classical complement cascade and the enhancement of inflammation.
Collapse
Affiliation(s)
- Maria Isabel Fonseca
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
15
|
Loeffler DA. Using animal models to determine the significance of complement activation in Alzheimer's disease. J Neuroinflammation 2004; 1:18. [PMID: 15479474 PMCID: PMC529311 DOI: 10.1186/1742-2094-1-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 10/12/2004] [Indexed: 12/11/2022] Open
Abstract
Complement inflammation is a major inflammatory mechanism whose function is to promote the removal of microorganisms and the processing of immune complexes. Numerous studies have provided evidence for an increase in this process in areas of pathology in the Alzheimer's disease (AD) brain. Because complement activation proteins have been demonstrated in vitro to exert both neuroprotective and neurotoxic effects, the significance of this process in the development and progression of AD is unclear. Studies in animal models of AD, in which brain complement activation can be experimentally altered, should be of value for clarifying this issue. However, surprisingly little is known about complement activation in the transgenic animal models that are popular for studying this disorder. An optimal animal model for studying the significance of complement activation on Alzheimer's – related neuropathology should have complete complement activation associated with senile plaques, neurofibrillary tangles (if present), and dystrophic neurites. Other desirable features include both classical and alternative pathway activation, increased neuronal synthesis of native complement proteins, and evidence for an increase in complement activation prior to the development of extensive pathology. In order to determine the suitability of different animal models for studying the role of complement activation in AD, the extent of complement activation and its association with neuropathology in these models must be understood.
Collapse
Affiliation(s)
- David A Loeffler
- Department of Neurology, William Beaumont Hospital Research Institute, Royal Oak, MI 48073, USA.
| |
Collapse
|
16
|
Navarro A, Del Valle E, Astudillo A, González del Rey C, Tolivia J. Immunohistochemical study of distribution of apolipoproteins E and D in human cerebral beta amyloid deposits. Exp Neurol 2004; 184:697-704. [PMID: 14769361 DOI: 10.1016/s0014-4886(03)00315-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Revised: 05/28/2003] [Accepted: 06/04/2003] [Indexed: 11/23/2022]
Abstract
Several molecules are known to be closely associated with amyloid deposits in human brain. Among these, apolipoproteins such as apolipoproteins E (apo E) and J (apo J) have been found in two neuropathological hallmarks of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA): senile plaques (SPs) and cerebrovascular amyloid. These apolipoproteins may be implicated in amyloid fibrillogenesis. Apo D is a multiligand-multifunctional glycoprotein present in SPs, as we previously reported. The aim of this work is to study the link between immunolocalization of apo E and apo D in AD and CAA brains. Both apolipoproteins were found in all types of SPs, but apo E was observed more often than apo D in mature plaques. Whereas apo E is always located overlapping the amyloid core, apo D seems to situate preferably around and near the amyloid. Immunohistochemistry revealed that these apolipoproteins behave differently in cerebral vessels. Apo E labeling in vessels appears mainly linked to amyloid deposits, whereas apo D shows a distribution almost opposite to that of apo E. This could be an indication of the different roles that each apolipoprotein plays in the pathogenesis of amyloid deposition.
Collapse
Affiliation(s)
- Ana Navarro
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo 33006, Spain
| | | | | | | | | |
Collapse
|
17
|
Abstract
The spectrum of inflammatory diseases is nowadays considered to include diverse diseases of the central nervous system (CNS). Current evidence suggests that syndromes such as Alzheimer's disease (AD) have important inflammatory and immune components and may be amenable to treatment by anti-inflammatory and immunotherapeutic approaches. Compelling evidence has been reported that complement activation occurs in the brain with Alzheimer's disease, and that this contributes to the development of a local inflammatory state that is correlated with cognitive dysfunction. The complement system is a critical element of the innate immune system recognizing and killing, or targeting for destruction, otherwise pathogenic organisms. In addition to triggering the generation of a membranolytic complex, complement proteins interact with cell surface receptors to promote a local inflammatory response that contributes to the protection and healing of the host. Complement activation causes inflammation and cell damage, yet it is an essential component in trying to eliminate cell debris and potentially toxic protein aggregates. It is the balance of these seemingly competing events--the "Yin" and the "Yang"--that influences the ultimate state of neuronal function. Knowledge of the unique molecular interactions that occur in the development of Alzheimer's disease, the functional consequences of those interactions, and the proportional contribution of each element to this disorder, should facilitate the design of effective therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Yong Shen
- Haldeman Laboratory of Molecular and Cellular Neurobiology, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351, USA.
| | | |
Collapse
|
18
|
Abstract
Neuroinflammation is now recognized as a prominent feature in Alzheimer's pathology and a potential target for therapy aimed at treatment and prevention of disease. This review provides a synopsis of current information about cellular and molecular mediators involved in Alzheimer's neuroinflammation as well as interactions between these mediators that influence pathology. Anti-inflammatory therapies, particularly nonsteroidal anti-inflammatory drugs, are considered from experimental and clinical perspectives and potential mechanisms underlying their apparent benefits are discussed. Finally, possible protective effects of the inflammatory response in Alzheimer's are described. Taken all together, evidence presented in this review suggests a scheme for Alzheimer's pathogenesis, with neuroinflammation playing a crucial role influencing and linking beta-amyloid deposition to neuronal damage and clinical disease.
Collapse
Affiliation(s)
- Amy H Moore
- Department of Neurobiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | | |
Collapse
|
19
|
Prasad KN, Cole WC, Prasad KC. Risk factors for Alzheimer's disease: role of multiple antioxidants, non-steroidal anti-inflammatory and cholinergic agents alone or in combination in prevention and treatment. J Am Coll Nutr 2002; 21:506-22. [PMID: 12480796 DOI: 10.1080/07315724.2002.10719249] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The etiology of Alzheimer's disease (AD) is not well understood. Etiologic factors, chronic inflammatory reactions, oxidative and nitrosylative stresses and high cholesterol levels are thought to be important for initiating and promoting neurodegenerative changes commonly found in AD brains. Even in familial AD, oxidative stress plays an important role in the early onset of the disease. Mitochondrial damage and proteasome inhibition represent early events in the pathogenesis of AD, whereas increased processing of amyloid precursor protein (APP) to beta-amyloid (Abeta) fragments (Abeta(40) and Abeta(42)) and formation of senile plaques and neurofibrillary tangles (NFTs) represent late events. We propose a hypothesis that in idiopathic AD, epigenetic components of neurons such as mitochondria, proteasomes and post-translation protein modifications (processing of amyloid precursor protein to beta-amyloid and hyperphosphorylation of tau), rather than nuclear genes, are the primary targets for the action of diverse groups of neurotoxins. Based on epidemiologic, laboratory and limited clinical studies, we propose that a combination of non steroidal anti-inflammatory drugs (NSAIDs) and appropriate levels and types of multiple micronutrients, including antioxidants, may be more effective than the individual agents in the prevention, and they, in combination with a cholinergic agent, may be more effective in the treatment of AD than the individual agents alone. In addition, agents, which can prevent formation of plaques or dissolve these plaques may further enhance the efficacy of our proposed treatment strategy.
Collapse
Affiliation(s)
- Kedar N Prasad
- Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
20
|
Hashimoto T, Wakabayashi T, Watanabe A, Kowa H, Hosoda R, Nakamura A, Kanazawa I, Arai T, Takio K, Mann DM, Iwatsubo T. CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV. EMBO J 2002; 21:1524-34. [PMID: 11927537 PMCID: PMC125364 DOI: 10.1093/emboj/21.7.1524] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We raised monoclonal antibodies against senile plaque (SP) amyloid and obtained a clone 9D2, which labeled amyloid fibrils in SPs and reacted with approximately 50/100 kDa polypeptides in Alzheimer's disease (AD) brains. We purified the 9D2 antigens and cloned a cDNA encoding its precursor, which was a novel type II transmembrane protein specifically expressed in neurons. This precursor harbored three collagen-like Gly-X-Y repeat motifs and was partially homologous to collagen type XIII. Thus, we named the 9D2 antigen as CLAC (collagen-like Alzheimer amyloid plaque component), and its precursor as CLAC-P/collagen type XXV. The extracellular domain of CLAC-P/collagen type XXV was secreted by furin convertase, and the N-terminus of CLAC deposited in AD brains was pyroglutamate modified. Both secreted and membrane-tethered forms of CLAC-P/collagen type XXV specifically bound to fibrillized Abeta, implicating these proteins in beta-amyloidogenesis and neuronal degeneration in AD.
Collapse
Affiliation(s)
- Tadafumi Hashimoto
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Biomolecular Characterization Division, Characterization Center, RIKEN, Wako 351-0198, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Faculty of Science and Technology, Science University of Tokyo, Noda, Taisho Pharmaceutical Co. Ltd, Omiya, Saitama 330-8530, Japan and Greater Manchester Neurosciences Centre, Hope Hospital, Salford M6 8HD, UK Present address: National Institute for Longevity Science,Obu 474-8522, Japan Corresponding author e-mail: T.Hashimoto and T.Wakabayashi contributed equally to this work
| | - Tomoko Wakabayashi
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Biomolecular Characterization Division, Characterization Center, RIKEN, Wako 351-0198, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Faculty of Science and Technology, Science University of Tokyo, Noda, Taisho Pharmaceutical Co. Ltd, Omiya, Saitama 330-8530, Japan and Greater Manchester Neurosciences Centre, Hope Hospital, Salford M6 8HD, UK Present address: National Institute for Longevity Science,Obu 474-8522, Japan Corresponding author e-mail: T.Hashimoto and T.Wakabayashi contributed equally to this work
| | - Atsushi Watanabe
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Biomolecular Characterization Division, Characterization Center, RIKEN, Wako 351-0198, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Faculty of Science and Technology, Science University of Tokyo, Noda, Taisho Pharmaceutical Co. Ltd, Omiya, Saitama 330-8530, Japan and Greater Manchester Neurosciences Centre, Hope Hospital, Salford M6 8HD, UK Present address: National Institute for Longevity Science,Obu 474-8522, Japan Corresponding author e-mail: T.Hashimoto and T.Wakabayashi contributed equally to this work
| | - Hisatomo Kowa
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Biomolecular Characterization Division, Characterization Center, RIKEN, Wako 351-0198, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Faculty of Science and Technology, Science University of Tokyo, Noda, Taisho Pharmaceutical Co. Ltd, Omiya, Saitama 330-8530, Japan and Greater Manchester Neurosciences Centre, Hope Hospital, Salford M6 8HD, UK Present address: National Institute for Longevity Science,Obu 474-8522, Japan Corresponding author e-mail: T.Hashimoto and T.Wakabayashi contributed equally to this work
| | - Ritsuko Hosoda
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Biomolecular Characterization Division, Characterization Center, RIKEN, Wako 351-0198, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Faculty of Science and Technology, Science University of Tokyo, Noda, Taisho Pharmaceutical Co. Ltd, Omiya, Saitama 330-8530, Japan and Greater Manchester Neurosciences Centre, Hope Hospital, Salford M6 8HD, UK Present address: National Institute for Longevity Science,Obu 474-8522, Japan Corresponding author e-mail: T.Hashimoto and T.Wakabayashi contributed equally to this work
| | - Atsushi Nakamura
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Biomolecular Characterization Division, Characterization Center, RIKEN, Wako 351-0198, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Faculty of Science and Technology, Science University of Tokyo, Noda, Taisho Pharmaceutical Co. Ltd, Omiya, Saitama 330-8530, Japan and Greater Manchester Neurosciences Centre, Hope Hospital, Salford M6 8HD, UK Present address: National Institute for Longevity Science,Obu 474-8522, Japan Corresponding author e-mail: T.Hashimoto and T.Wakabayashi contributed equally to this work
| | - Ichiro Kanazawa
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Biomolecular Characterization Division, Characterization Center, RIKEN, Wako 351-0198, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Faculty of Science and Technology, Science University of Tokyo, Noda, Taisho Pharmaceutical Co. Ltd, Omiya, Saitama 330-8530, Japan and Greater Manchester Neurosciences Centre, Hope Hospital, Salford M6 8HD, UK Present address: National Institute for Longevity Science,Obu 474-8522, Japan Corresponding author e-mail: T.Hashimoto and T.Wakabayashi contributed equally to this work
| | - Takao Arai
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Biomolecular Characterization Division, Characterization Center, RIKEN, Wako 351-0198, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Faculty of Science and Technology, Science University of Tokyo, Noda, Taisho Pharmaceutical Co. Ltd, Omiya, Saitama 330-8530, Japan and Greater Manchester Neurosciences Centre, Hope Hospital, Salford M6 8HD, UK Present address: National Institute for Longevity Science,Obu 474-8522, Japan Corresponding author e-mail: T.Hashimoto and T.Wakabayashi contributed equally to this work
| | - Koji Takio
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Biomolecular Characterization Division, Characterization Center, RIKEN, Wako 351-0198, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Faculty of Science and Technology, Science University of Tokyo, Noda, Taisho Pharmaceutical Co. Ltd, Omiya, Saitama 330-8530, Japan and Greater Manchester Neurosciences Centre, Hope Hospital, Salford M6 8HD, UK Present address: National Institute for Longevity Science,Obu 474-8522, Japan Corresponding author e-mail: T.Hashimoto and T.Wakabayashi contributed equally to this work
| | - David M.A. Mann
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Biomolecular Characterization Division, Characterization Center, RIKEN, Wako 351-0198, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Faculty of Science and Technology, Science University of Tokyo, Noda, Taisho Pharmaceutical Co. Ltd, Omiya, Saitama 330-8530, Japan and Greater Manchester Neurosciences Centre, Hope Hospital, Salford M6 8HD, UK Present address: National Institute for Longevity Science,Obu 474-8522, Japan Corresponding author e-mail: T.Hashimoto and T.Wakabayashi contributed equally to this work
| | - Takeshi Iwatsubo
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Biomolecular Characterization Division, Characterization Center, RIKEN, Wako 351-0198, Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Faculty of Science and Technology, Science University of Tokyo, Noda, Taisho Pharmaceutical Co. Ltd, Omiya, Saitama 330-8530, Japan and Greater Manchester Neurosciences Centre, Hope Hospital, Salford M6 8HD, UK Present address: National Institute for Longevity Science,Obu 474-8522, Japan Corresponding author e-mail: T.Hashimoto and T.Wakabayashi contributed equally to this work
| |
Collapse
|
21
|
Exley C, Korchazhkina OV. Promotion of formation of amyloid fibrils by aluminium adenosine triphosphate (AlATP). J Inorg Biochem 2001; 84:215-24. [PMID: 11374584 DOI: 10.1016/s0162-0134(01)00171-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The formation of amyloid fibrils is considered to be an important step in the aetiology of Alzheimer's disease and other amyloidoses. Fibril formation in vitro has been shown to depend on many different factors including modifications to the amino acid profile of fibrillogenic peptides and interactions with both large and small molecules of physiological significance. How these factors might contribute to amyloid fibril formation in vivo is not clear as very little is known about the promotion of fibril formation in undersaturated solutions of amyloidogenic peptides. We have used thioflavin T fluorescence and reverse phase high performance liquid chromatography to show that ATP, and in particular AlATP, promoted the formation of thioflavin T-reactive fibrils of beta amyloid and, an unrelated amyloidogenic peptide, amylin. Evidence is presented that induction of fibril formation followed the complexation of AIATP by one or more monomers of the respective peptide. However, the complex formed could not be identified directly and it is suggested that AlATP might be acting as a chaperone in the assembly of amyloid fibrils. The effect of AlATP was not mimicked by either AlADP or AlAMP. However, it was blocked by suramin, a P2 ATP receptor antagonist, and this has prompted us to speculate that the precursor proteins to beta amyloid and amylin may be substrates or receptors for ATP in vivo.
Collapse
Affiliation(s)
- C Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, School of Chemistry and Physics, Keele University, Staffordshire, UK.
| | | |
Collapse
|
22
|
Strohmeyer R, Shen Y, Rogers J. Detection of complement alternative pathway mRNA and proteins in the Alzheimer's disease brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 81:7-18. [PMID: 11000474 DOI: 10.1016/s0169-328x(00)00149-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous research on complement activation in the Alzheimer's disease (AD) brain has focused almost exclusively on the classical complement pathway. The alternative pathway represents another important arm for complement activation, converging with the classical cascade at the C5 cleavage step. Here, we show that mRNA for a critical alternative pathway component, factor B, is present in AD frontal cortex and that the factor D cleaved split products of factor B, Bb and Ba, are significantly increased, indicating alternative pathway activation. By contrast, the two major inhibitors of alternative pathway activation, factor H and factor I, are present at the level of mRNA and protein but are not significantly upregulated. Immunohistochemical analysis reveals significant positive staining in AD sections for all three components. Taken together with previous reports demonstrating alternative pathway activation by amyloid beta peptide, these findings suggest that conditions conducive to chronic alternative pathway activation may exist in the AD brain.
Collapse
Affiliation(s)
- R Strohmeyer
- Roberts Center for Alzheimer's Research, Sun Health Research Institute, P.O. Box 1278, Sun City, AZ 85372, USA
| | | | | |
Collapse
|
23
|
Hafer-Macko CE, Dyck PJ, Koski CL. Complement activation in acquired and hereditary amyloid neuropathy. J Peripher Nerv Syst 2000; 5:131-9. [PMID: 11442169 DOI: 10.1046/j.1529-8027.2000.00018.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pathogenesis of the axonal degeneration in acquired or hereditary amyloidosis is unknown. In this immunohistochemistry study, we examined 20 sural nerve biopsies from individuals with amyloid neuropathy (14 acquired and 6 hereditary) for evidence of complement activation. Complement activation products were detected on and around amyloid deposits within peripheral nerves. We found no difference in the extent, location or pattern of complement activation products between the 2 forms of amyloidosis. The presence of early classical pathway activation markers in the absence of antibody in hereditary cases suggests an antibody-independent activation of the classical pathway through binding of C1q. The lack of Factor Bb-suggested alternative pathway activation was not significant in these cases. The detection of C5b-9 neoantigen on amyloid deposits demonstrated that the full complement cascade was activated. Complement activation on amyloid deposits and the generation of C5b-9 in vivo may contribute to bystander injury of axons in the vicinity of amyloid deposits.
Collapse
Affiliation(s)
- C E Hafer-Macko
- Department of Neurology, University of Maryland School of Medicine, Baltimore 21201-1595, USA.
| | | | | |
Collapse
|
24
|
Emmerling MR, Watson MD, Raby CA, Spiegel K. The role of complement in Alzheimer's disease pathology. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:158-71. [PMID: 10899441 DOI: 10.1016/s0925-4439(00)00042-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complement proteins are integral components of amyloid plaques and cerebral vascular amyloid in Alzheimer brains. They can be found at the earliest stages of amyloid deposition and their activation coincides with the clinical expression of Alzheimer's dementia. This review will examine the origins of complement in the brain and the role of beta-amyloid peptide (Abeta) in complement activation in Alzheimer's disease, an event that might serve as a nidus of chronic inflammation. Pharmacology therapies that may serve to inhibit Abeta-mediated complement activation will also be discussed.
Collapse
Affiliation(s)
- M R Emmerling
- Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, MI 48106, USA.
| | | | | | | |
Collapse
|
25
|
Prasad KN, Hovland AR, Cole WC, Prasad KC, Nahreini P, Edwards-Prasad J, Andreatta CP. Multiple antioxidants in the prevention and treatment of Alzheimer disease: analysis of biologic rationale. Clin Neuropharmacol 2000; 23:2-13. [PMID: 10682224 DOI: 10.1097/00002826-200001000-00002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The etiology of Alzheimer disease (AD) is not well understood; therefore, neither prevention strategies nor long-term effective treatment modalities are available for this disease. Based on laboratory and clinical studies, it appears that reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated extracellularly and intracellularly by various mechanisms are among the major intermediary risk factors that initiate and promote neurodegeneration in idiopathic AD. Therefore, multiple antioxidant supplements could be useful in the prevention of AD, and as an adjunct to standard therapy in the treatment of AD. The products of inflammatory reactions such as prostaglandins (PGs; PGE1 and PGA1), free radicals, cytokines, and complement proteins are neurotoxic. Nonsteroidal antiinflammatory drugs (NSAIDs), which inhibit the synthesis of PGs, reduce the rate of deterioration of cognitive functions in patients with advanced AD. Cholinergic drugs are routinely used in the treatment of AD to improve cognitive functions. Therefore, we propose that a combination of multiple antioxidants and NSAIDs may be more beneficial in the prevention of AD, and that this combination taken together with cholinergic drugs may be more effective in the treatment of AD than the individual agents alone. We also hypothesize that, in idiopathic AD, epigenetic components of neurons such as mitochondria, membranes, other membranous structures, and protein modifications--rather than the genes of neurons--are the primary targets for the action of neurotoxins including free radicals. In some familial AD, mutations in amyloid precursor protein and presenilins are associated with the risk of early onset of this disease; however, their mechanisms of action are not fully understood.
Collapse
Affiliation(s)
- K N Prasad
- Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Kumar A, La Rosa FG, Hovland AR, Cole WC, Edwards-Prasad J, Prasad KN. Adenosine 3',5'-cyclic monophosphate increases processing of amyloid precursor protein (APP) to beta-amyloid in neuroblastoma cells without changing APP levels or expression of APP mRNA. Neurochem Res 1999; 24:1209-15. [PMID: 10492515 DOI: 10.1023/a:1020912704404] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Beta-Amyloid (Abeta), a 39-43 residue peptide generated by splicing of the amyloid precursor protein (APP), is one of the major components of senile plaques which are the hallmark of Alzheimer's disease (AD); and therefore, a role of Abeta in neuronal degeneration has been proposed. The factors which regulate the levels of Abeta have not been fully identified. Since an elevation of the intracellular levels of adenosine, 3', 5'-cyclic monophosphate (cAMP) in neuroblastoma cells (NB) induces terminal differentiation, and since these differentiated NB cells undergo spontaneous degeneration, the role of cAMP in the regulation of Abeta levels in these cells have been investigated. In order to determine the specificity of the effect of cAMP on nerve cells, rat glioma cells (C-6) were investigated in a similar manner. Results showed that an elevation of the levels of cAMP in NB cells enhances the intensity of Abeta immunostaining without changing the levels of APP or APP mRNA. This suggests that the rate of processing of APP to Abeta increases following an elevation of cAMP level in NB cells. Data also revealed that an elevation of cAMP level in glioma cells did not alter the intensity of staining with APP or Abeta.
Collapse
Affiliation(s)
- A Kumar
- Center for Vitamins and Cancer Research, Department of Radiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
27
|
Bergamaschini L, Canziani S, Bottasso B, Cugno M, Braidotti P, Agostoni A. Alzheimer's beta-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner. Clin Exp Immunol 1999; 115:526-33. [PMID: 10193429 PMCID: PMC1905247 DOI: 10.1046/j.1365-2249.1999.00835.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta-Amyloid (beta-A) accumulates in the brain of patients with Alzheimer's disease (AD) and is presumably involved in the pathogenesis of this disease, on account of its neurotoxicity and complement-activating ability. Although assembly of beta-A in particular aggregates seems to be crucial, soluble non-fibrillar beta-A may also be involved. Non-fibrillar beta-A does not bind C1q, so we investigated alternative mechanisms of beta-A-dependent complement activation in vitro. On incubation with normal human plasma, non-fibrillar beta-A 1-42, and truncated peptide 1-28, induced dose-dependent activation of C1s and C4, sparing C3, as assessed by densitometric analysis of immunostained membrane after SDS-PAGE and Western blotting. The mechanism of C4 activation was not dependent on C1q, because non-fibrillar beta-A can still activate C1s and C4 in plasma genetically deficient in C1q (C1qd). In Factor XII-deficient plasma (F.XIId) the amount of cleaved C4 was about 5-10% less that in C1qd and in normal EDTA plasma; the reconstitution of F.XIId plasma with physiologic concentrations of F.XII resulted in an increased (8-15%) beta-A-dependent cleavage of C4. Thus our results indicate that the C1q-independent activation of C1 and C4 can be partially mediated by the activation products of contact system. Since the activation of contact system and of C4 leads to generation of several humoral inflammatory peptides, non-fibrillar beta-A might play a role in initiating the early inflammatory reactions leading to a multistep cascade contributing to neuronal and clinical dysfunction of AD brain.
Collapse
Affiliation(s)
- L Bergamaschini
- Department of Internal Medicine, Maggiore Hospital, IRCCS, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Wing MG, Seilly DJ, Nicholas RS, Rahman S, Zajicek J, Lachmann PJ, Compston DA. Comparison of C1q-receptors on rat microglia and peritoneal macrophages. J Neuroimmunol 1999; 94:74-81. [PMID: 10376938 DOI: 10.1016/s0165-5728(98)00227-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A comparison of the expression and ligand specificity of the C1q (first complement component) receptor on rat microglia and peritoneal macrophages was made. This revealed that radiolabelled C1q was competed from the peritoneal macrophages with intact C1q, and additively displaced by calf-skin collagen and purified C1q globular heads, suggesting the presence of at least two receptors. This was in contrast to microglia, where radiolabelled C1q was displaced with intact C1q and to a modest degree with collagen, but not with globular heads. Taken together, this implies that under these conditions, peritoneal macrophages and microglia both express a C1q receptor which binds to the collagen-like region, and that peritoneal macrophages additionally express a molecule which binds to the globular head of C1q. Analysis of the ligand bound by these cells reflected the differences observed in the competitive binding experiments, with the novel identification of naturally-occurring peptides from the globular head of C1q bound to the peritoneal macrophages, but not the microglia.
Collapse
Affiliation(s)
- M G Wing
- Molecular Immunopathology Unit, MRC Centre, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a deadly outcome. AD is the leading cause of senile dementia and although the pathogenesis of this disorder is not known, various hypotheses have been developed based on experimental data accumulated since the initial description of this disease by Alois Alzheimer about 90 years ago. Most approaches to explain the pathogenesis of AD focus on its two histopathological hallmarks, the amyloid beta protein- (A(beta)-) loaded senile plaques and the neurofibrillary tangles, which consist of the filament protein tau. Various lines of genetic evidence support a central role of A(beta) in the pathogenesis of AD and an increasing number of studies show that oxidation reactions occur in AD and that A(beta) may be one molecular link between oxidative stress and AD-associated neuronal cell death. A(beta) itself can be neurotoxic and can induce oxidative stress in cultivated neurons. A(beta) is, therefore, one player in the concert of oxidative reactions that challenge neurons besides inflammatory reactions which are also associated with the AD pathology. Consequently, antioxidant approaches for the prevention and therapy of AD are of central interest. Experimental as well as clinical data show that lipophilic antioxidants, such as vitamin E and estrogens, are neuroprotective and may help patients suffering from AD. While an additional intensive elucidation of the cellular and molecular events of neuronal cell death in AD will, ultimately, lead to novel drug targets, various antioxidants are already available for a further exploitation of their preventive and therapeutic potential. reserved
Collapse
Affiliation(s)
- C Behl
- Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
30
|
Eikelenboom P, Rozemuller JM, van Muiswinkel FL. Inflammation and Alzheimer's disease: relationships between pathogenic mechanisms and clinical expression. Exp Neurol 1998; 154:89-98. [PMID: 9875271 DOI: 10.1006/exnr.1998.6920] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past 15 years a variety of inflammatory proteins has been identified in the brains of patients with Alzheimer's disease (AD) postmortem. There is now considerable evidence that in AD the deposition of amyloid-beta (A beta) protein precedes a cascade of events that ultimately leads to a local "brain inflammatory response." Here we reviewed the evidence (i) that inflammatory mechanisms can be a part of the relevant etiological factors for AD in patients with head trauma, ischemia, and Down's syndrome; (ii) that in cerebral A beta disorders the clinical symptoms are determined to a great extent by the site of inflammation; and (iii) that a brain inflammatory response can explain some poorly understood characteristics of the clinical picture, among others the susceptibility of AD patients to delirium. The present data indicate that inflammatory processes in the brain contribute to the etiology, the pathogenesis, and the clinical expression of AD.
Collapse
Affiliation(s)
- P Eikelenboom
- Department of Psychiatry, Graduate School Neurosciences Amsterdam, Vrije Universiteit, Valeriuskliniek, The Netherlands
| | | | | |
Collapse
|
31
|
Shen Y, Sullivan T, Lee CM, Meri S, Shiosaki K, Lin CW. Induced expression of neuronal membrane attack complex and cell death by Alzheimer's beta-amyloid peptide. Brain Res 1998; 796:187-97. [PMID: 9689469 DOI: 10.1016/s0006-8993(98)00346-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
beta-amyloid peptide (A beta) and complement-derived membrane attack complex (MAC) are co-localized in senile plaques of brains from Alzheimer's disease (AD) patients. But the relationship between A beta and complement activation is unclear. We have used human neurotypic cells, differentiated SH-SY5Y, as a model system to examine regulation of neuronal MAC expression and cell death by A beta. We demonstrated that mRNAs (C1q, C2, C3, C4, C5, C6, C7, C8 and C9) and proteins (C1q, C3 and C9) for the major components of the classical complement cascade are present in the SH-SY5Y neurotypic cells, indicating that neuronal cells can synthesize the necessary proteins required for MAC formation. Furthermore, immunocytochemical studies showed the A beta-induced neuronal MAC expression on the SH-SY5Y cells after CD59 was removed by PIPLC or blocked by anti-CD59 antibody. Meanwhile, increased A beta-induced neuronal cell death was observed following treatment with anti-CD59. Taken together, these results suggest that A beta activates neuronal complement cascade to induce MAC, and a deficiency of endogenous complement regulatory proteins, e.g., CD59, may increase the vulnerability of neurons to complement-mediated cytotoxicity.
Collapse
Affiliation(s)
- Y Shen
- Neuroscience Department, Abbott Laboratories, Abbott Park, IL 60064-3500, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Walker DG. Expression and regulation of complement C1q by human THP-1-derived macrophages. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 34:197-218. [PMID: 10327418 DOI: 10.1007/bf02815080] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The regulation of C1q expression was examined in the human monocytic cell line THP-1. Since these cells can be differentiated into cells with macrophage properties and induced to express C1q, they were used as models for mature human monocyte/macrophages and indirectly microglia. Interferon-gamma (IFN-gamma) and the anti-inflammatory steroid agents dexamethasone and prednisone were powerful stimulators of C1q production, alone or in combination. Interleukin-6 (IL-6) and lipopolysaccharide (LPS) also had significant stimulatory activity. Phorbol myristate acetate, a protein kinase C activator, reduced C1q expression. Four additional classes of pharmacological agents were tested for their effect on C1q secretion. Tacrine, but not indomethacin, cimetidine, or propentofylline, showed activity in inhibiting C1q secretion by IFN-gamma treated THP-1-derived macrophages.
Collapse
Affiliation(s)
- D G Walker
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
33
|
Abstract
Alzheimer's disease (AD) is an archetype of a class of diseases characterized by abnormal protein deposition. In each case, deposition manifests itself in the form of amyloid deposits composed of fibrils of otherwise normal, soluble proteins or peptides. An ever-increasing body of genetic, physiologic, and biochemical data supports the hypothesis that fibrillogenesis of the amyloid beta-protein is a seminal event in Alzheimer's disease. Inhibiting A beta fibrillogenesis is thus an important strategy for AD therapy. However, before this strategy can be implemented, a mechanistic understanding of the fibrillogenesis process must be achieved and appropriate steps selected as therapeutic targets. Following a brief introduction to AD, I review here the current state of knowledge of A beta fibrillogenesis. Special emphasis is placed on the morphologic, structural, and kinetic aspects of this complex process.
Collapse
Affiliation(s)
- D B Teplow
- Department of Neurology (Neuroscience), Harvard Medical School Boston, MA, USA.
| |
Collapse
|
34
|
Kuo YM, Webster S, Emmerling MR, Roher AE. Irreversible dimerization/tetramerization and post-translational modifications inhibit proteolytic degradation of A beta peptides of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1406:291-8. [PMID: 9630681 DOI: 10.1016/s0925-4439(98)00014-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Experimental evidence increasingly implicates the beta-amyloid peptide in the pathogenesis of Alzheimer's disease. Beta-amyloid filaments dramatically accumulate in the neuritic plaques and vascular deposits as the result of the brain's inability to clear these structures. In this paper, we demonstrate that in addition to the intrinsic stability of A beta N-42, the time dependent generation of irreversibly associated A beta dimers and tetramers incorporated into A beta filaments are themselves resistant to proteolytic degradation. The presence of post-translational modifications such as isomerization of aspartyls 1 and 7, cyclization of glutamyl 3 to pyroglutamyl and oxidation of methionyl 35, further contribute to the insolubility and stability of A beta. All these factors promote the accumulation of neurotoxic amyloid in the brains of patients with Alzheimer's disease, and should be considered in therapeutic strategies directed towards the dissociation of the brain's A beta filaments.
Collapse
Affiliation(s)
- Y M Kuo
- Haldeman Laboratory for Alzheimer Disease Research, Sun Health Research Institute, Sun City, AZ 85351, USA
| | | | | | | |
Collapse
|
35
|
McLaurin J, Franklin T, Chakrabartty A, Fraser PE. Phosphatidylinositol and inositol involvement in Alzheimer amyloid-beta fibril growth and arrest. J Mol Biol 1998; 278:183-94. [PMID: 9571042 DOI: 10.1006/jmbi.1998.1677] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A key pathological feature of Alzheimer's disease is the formation and accumulation of amyloid fibres. The major component is the 39 to 42 residue amyloid-beta peptide (Abeta) which is an internal proteolytic fragment of the integral membrane amyloid precursor protein. Aggregation of Abeta into insoluble amyloid fibres is a nucleation-dependent event that may be modulated by the presence of amyloid-associated molecules. Fibril formation is also associated with neurotoxicity which may be the result of specific Abeta interactions with membrane proteins and/or lipids. Using circular dichroism spectroscopy, tyrosine fluorescence spectroscopy and electron microscopy, we have examined the binding of Abeta peptides 1-40 (Abeta40) and 1-42 (Abeta42) to the glycolipid, phosphatidylinositol (PI), and different inositol headgroups. At pH 6.0 and in the presence of PI vesicles, both Abeta40 and Abeta42 adopted an amyloidogenic beta-structure. In contrast, at neutral pH only Abeta42 folded into a beta-structure in the presence of PI vesicles. To determine whether the induction of beta-structure stemmed from interactions with the headgroup of PI, the effects of inositol derivatives on Abeta were also examined. At pH 7.0, myo-inositol was sufficient to induce beta-structure in Abeta42 but had no effect on the conformation of Abeta40. Myo-inositol may promote beta-structure as a result of its ability to be both a hydrogen-bond donor and acceptor. Mono-, di- and triphosphorylated forms of inositol had reduced ability to induce beta-structure in both peptides. The results from this study indicate that interaction of Abeta40 and Abeta42 with PI acts as a seed for fibril formation while myo-inositol stabilizes a soluble Abeta42 micelle.
Collapse
Affiliation(s)
- J McLaurin
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada
| | | | | | | |
Collapse
|
36
|
Kaul M, Loos M. Dissection of C1q capability of interacting with IgG. Time-dependent formation of a tight and only partly reversible association. J Biol Chem 1997; 272:33234-44. [PMID: 9407113 DOI: 10.1074/jbc.272.52.33234] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
C1q-bearing immune complexes have been observed in diseases such as rheumatoid arthritis and human immunodeficiency virus infection-associated neuropathy. For the purpose of understanding better the phenomenon of C1q-bearing immune complexes, we investigated the constancy of the C1q-IgG interaction. An enzyme-linked immunosorbent assay was developed in which wells were coated with IgG to mimic antigen-complexed IgG. Serial dilutions of C1q were applied for distinct time intervals, and bound C1q was detected either directly or after exposure to one of several elution buffers. Our results show that a part of C1q attached to IgG forms a tight association that is not reversible under treatment with buffers containing usually protein-protein interaction-dissociating reagents such as 3 M NaCl, 5 M urea, sodium dodecyl sulfate, or beta-mercaptoethanol. The formation of the highly stable C1q-IgG complex was found to be time-, temperature-, and pH-dependent and to proceed with bound C1q even in the absence of free C1q in the supernatant. In ligand blotting experiments we demonstrate for the first time directly that all three chains of C1q can individually bind IgG. Altogether, our results provide a suitable explanation for the formation and persistence of C1q-bearing immune complexes.
Collapse
Affiliation(s)
- M Kaul
- Institute of Medical Microbiology and Hygiene, Johannes Gutenberg University, Hochhaus am Augustusplatz, 55101 Mainz, Germany
| | | |
Collapse
|
37
|
Abstract
Amyloidosis is implicated in the aetiology of a number of disorders of human health. The factors that influence its instigation and subsequent rate of progress are the subject of a considerable research effort. The peptide fragment A beta(25-35) is amyloidogenic and has proven to be a useful model of the processes involved in amyloidosis. It is demonstrated herein that the assembly of A beta(25-35) into thioflavin T-reactive fibrils and their subsequent rearrangement into advanced glycation endproducts is accelerated by ATP. Aluminium potentiated these effects of ATP, suggesting a possible link with the aetiology of amyloidoses in vivo.
Collapse
Affiliation(s)
- C Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Staffordshire, UK
| |
Collapse
|
38
|
Abstract
Since the identification in 1984 of the amyloid beta protein (Abeta) as the major component of senile plaques and cerebrovascular amyloid in Alzheimer's disease (AD) brains, it is well accepted that the production of this protein is a crucial factor in the pathogenesis of AD. Abeta is produced by cleavage from the amyloid precursor protein (APP) and can form fibrils in vivo and in vitro. The formation of these fibrils is influenced by proteins that are found in association with Abeta-containing lesions in the AD brain. Several of these proteins arise by an inflammatory response of the brain to Abeta production. The distribution of different isoforms of Abeta, varying at the C-terminus of the peptide, varies among the Abeta-containing lesions in AD brains. Such variations may have consequences for the pathogenesis of AD because the various Abeta isoforms differ in their capacity to form fibrils, and they have different toxic effects on neurons and vascular cells, respectively. The experimental data indicate that the pathogenesis of senile plaques is different from the generation of cerebrovascular amyloidosis. Summarizing models for either type of AD pathology are presented.
Collapse
Affiliation(s)
- M M Verbeek
- Department of Pathology, University Hospital Nijmegen, The Netherlands
| | | | | |
Collapse
|
39
|
Rogers J, Webster S, Lue LF, Brachova L, Civin WH, Emmerling M, Shivers B, Walker D, McGeer P. Inflammation and Alzheimer's disease pathogenesis. Neurobiol Aging 1996; 17:681-6. [PMID: 8892340 DOI: 10.1016/0197-4580(96)00115-7] [Citation(s) in RCA: 299] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Appreciation of the role that inflammatory mediators play in Alzheimer's disease (AD) pathogenesis continues to be hampered by two related misconceptions. The first is that to be pathogenically significant a neurodegenerative mechanism must be primary. The second is that inflammation merely occurs to clear the detritis of already existent pathology. The present review addresses these issues by showing that 1) inflammatory molecules and mechanisms are uniquely present or significantly elevated in the AD brain, 2) inflammation may be a necessary component of AD pathogenesis, 3) inflammation may be sufficient to cause AD neurodegeneration, and 4) retrospective and direct clinical trials suggest a therapeutic benefit of conventional antiinflammatory medications in slowing the progress or even delaying the onset of AD.
Collapse
Affiliation(s)
- J Rogers
- Sun Health Research Institute, Sun City, AZ 85372, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eikelenboom P, Veerhuis R. The role of complement and activated microglia in the pathogenesis of Alzheimer's disease. Neurobiol Aging 1996; 17:673-80. [PMID: 8892339 DOI: 10.1016/0197-4580(96)00108-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A variety of inflammatory mediators including complement activation products, protease inhibitors, and cytokines are colocalized with beta-amyloid (A beta) deposits in the Alzeimer's disease (AD) brain. Activation products of the early complement components C1, C4, and C3 are always found in neuritic plaques and to a lesser extent in varying numbers of diffuse plaques. In contrast to these findings, no immunohistochemical evidence was obtained for the presence of the late complement components C7 and C9 and the complement membrane attack complex in the neuropathological lesions in AD brains. The mRNA encoding the late complement components C7 and C9 appears to be hardly or not detectable. These findings indicate that in AD the complement system does not act as an inflammatory mediator through membrane attack complex formation, but through the actions of the early complement products. In this review we focus on the role of complement in the pathological amyloid cascade in AD. In our opinion, the early complement activation products play a crucial role as mediators between the A beta deposits and the inflammatory responses leading to neurotoxicity.
Collapse
Affiliation(s)
- P Eikelenboom
- Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, Department of Psychiatry, Amsterdam, The Netherlands
| | | |
Collapse
|
41
|
Abstract
To investigate the role of the apopotosis-related protooncogene bcl-2 in Alzheimer's disease (AD), we compared levels of its protein product, designated Bcl-2, in AD and nondemented (ND) age-matched control neocortical samples. The 26 kD Bcl-2 protein is increased in expression by more than three-fold in AD compared to ND samples as detected by immunoblots. Immunohistochemical analyses give similar results. In AD patients Bcl-2 immunoreactivity is dense and profuse and appears to occur on reactive astrocytes, whereas Bcl-2 immunoreactivity of astrocytes in ND patients is light and sparse. Staining of both gray and white matter is observed but is most prominent in the latter. Increased expression of Bcl-2 by astrocytes may partially underlie their resistance to loss in AD. By contrast, neuronal Bcl-2 immunoreactivity is more sparse and equivocal, perhaps reflecting the vulnerability of this cell type to apoptotic mechanisms in AD. High levels of Bcl-2 in glial cells may aid in cell survival of reactive astrocytes resulting in either beneficial or deleterious effects on neuronal viability.
Collapse
Affiliation(s)
- S O'Barr
- L.J. Roberts Center, Sun Health Research Institute, Sun City, AZ 85372, USA
| | | | | |
Collapse
|
42
|
Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS. The toxicity in vitro of beta-amyloid protein. Biochem J 1995; 311 ( Pt 1):1-16. [PMID: 7575439 PMCID: PMC1136112 DOI: 10.1042/bj3110001] [Citation(s) in RCA: 346] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- L L Iversen
- Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, U.K
| | | | | | | |
Collapse
|
43
|
Zhan SS, Veerhuis R, Kamphorst W, Eikelenboom P. Distribution of beta amyloid associated proteins in plaques in Alzheimer's disease and in the non-demented elderly. NEURODEGENERATION : A JOURNAL FOR NEURODEGENERATIVE DISORDERS, NEUROPROTECTION, AND NEUROREGENERATION 1995; 4:291-7. [PMID: 8581561 DOI: 10.1016/1055-8330(95)90018-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies have shown that cerebral beta amyloid (A beta) protein deposition is a necessary, but not sufficient, factor to develop the pathology of Alzheimer's disease (AD). In the present immunohistochemical study, we have investigated in AD the distribution of A beta associated proteins in the cerebral neocortex, in the cerebellar cortex where A beta plaques are mainly of the diffuse type, and also in the cerebral neocortex of non-demented patients with A beta plaques. Results show that immunolabeling for C1q, C4c, C3d, alpha 1-ACT and Apolipoprotein E (ApoE) occurs in the great majority of A beta plaques in all groups. ApoJ is present in A beta plaques of the cerebral neocortex in AD and in non-demented elderly, but is almost absent from those of the AD cerebellar cortex. C4Bp and P-component, in contrast to AD, rarely occurs in A beta plaques of the cerebral neocortex in the non-demented elderly. Heparan sulphate proteoglycan (HSPG) core protein and intercellular adhesion molecule-1 (ICAM-1) are absent in the diffuse A beta plaques in the AD cerebellum. These differences in distribution and expression of A beta associated proteins may be determined by brain region specific factors (cerebral cortex versus cerebellar cortex) and clinical state (demented versus non-demented cases). We suggest that, besides A beta peptide, certain A beta associated proteins are required for both amyloid plaque formation and for the induction of neurofibrillary changes.
Collapse
Affiliation(s)
- S S Zhan
- Graduate School of Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, Dept. of Psychiatry, The Netherlands
| | | | | | | |
Collapse
|