1
|
Rezende AC, Peroni D, Vieira AS, Rogerio F, Talaisys RL, Costa FTM, Langone F, Skaper SD, Negro A. Ciliary neurotrophic factor fused to a protein transduction domain retains full neuroprotective activity in the absence of cytokine-like side effects. J Neurochem 2009; 109:1680-90. [DOI: 10.1111/j.1471-4159.2009.06091.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Wu D, Zhang Y, Bo X, Huang W, Xiao F, Zhang X, Miao T, Magoulas C, Subang MC, Richardson PM. Actions of neuropoietic cytokines and cyclic AMP in regenerative conditioning of rat primary sensory neurons. Exp Neurol 2006; 204:66-76. [PMID: 17112514 DOI: 10.1016/j.expneurol.2006.09.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 12/16/2022]
Abstract
A conditioning lesion to peripheral axons of primary sensory neurons accelerates regeneration of their central axons in vivo or neurite outgrowth if the neurons are grown in vitro. Previous evidence has implicated neuropoietic cytokines and also cyclic AMP in regenerative conditioning. In experiments reported here, delivery through a lentivirus vector of ciliary neurotrophic factor to the appropriate dorsal root ganglion in rats was sufficient to mimic the conditioning effect of peripheral nerve injury on the regeneration of dorsal spinal nerve root axons. Regeneration in this experimental preparation was also stimulated by intraganglionic injection of dibutyryl cyclic AMP but the effects of ciliary neurotrophic factor and dibutyryl cyclic AMP were not additive. Dibutyryl cyclic AMP injection into the dorsal root ganglion induced mRNAs for two other neuropoietic cytokines, interleukin-6 and leukemia inhibitory factor and increased the accumulation of phosphorylated STAT3 in neuronal nuclei. The in vitro conditioning action of dibutyryl cyclic AMP was partially blocked by a pharmacological inhibitor of Janus kinase 2, a neuropoietic cytokine signaling molecule. We suggest that the beneficial actions of increased cyclic AMP activity on axonal regeneration of primary sensory neurons are mediated, at least in part, through the induction of neuropoietic cytokine synthesis within the dorsal root ganglion.
Collapse
Affiliation(s)
- Dongsheng Wu
- Center for Neuroscience, Institute of Cell and Molecular Sciences, Barts and The London, Queen Mary's School of Medicine, University of London, 4 Newark Street, London E1 2AT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
MacLusky NJ, Chalmers-Redman R, Kay G, Ju W, Nethrapalli IS, Tatton WG. Ovarian steroids reduce apoptosis induced by trophic insufficiency in nerve growth factor-differentiated PC12 cells and axotomized rat facial motoneurons. Neuroscience 2003; 118:741-54. [PMID: 12710981 DOI: 10.1016/s0306-4522(02)00940-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies have demonstrated that ovarian steroids exert neuroprotective effects in a variety of in vitro and in vivo systems. The mechanisms underlying these effects remain poorly understood. In the present study, the neuroprotective effects of estradiol (E(2)) and progesterone (P) were examined in two models of apoptosis induced by growth factor insufficiency: partially nerve growth factor (NGF)-differentiated PC12 cells, after serum and NGF withdrawal; and axotomized immature rat facial motor motoneurons. E(2) and P both increased the survival of trophically withdrawn NGF-differentiated PC12 cells, at physiologically relevant concentrations. However, neither steroid had a significant effect on the survival of PC12 cells that had not been NGF treated. Exposure to NGF had no effect on the expression of estrogen receptor (ER)beta, but markedly increased the levels of ERalpha and altered the expression of the progesterone receptor (PR) from predominantly PR-B in NGF naive cells, to predominantly PR-A after NGF. The survival promoting effects of E(2) and P were blocked by the specific steroid receptor antagonists Faslodex (ICI 182780) and onapristone (ZK98299), respectively. Inhibitors of RNA (actinomycin D) or protein (cycloheximide) synthesis also abrogated the protective effects of both steroids. In immature rats, E(2) and P both significantly increased the numbers of surviving facial motor neurons at 21 days after axotomy. These data demonstrate significant protective effects of E(2) and P in two well-characterized models of apoptosis induced by trophic withdrawal and suggest that, at least in PC12 cells, the effects of the steroids are mediated via interaction with nuclear steroid receptor systems. The lack of steroid responsiveness in NGF-naive PC12 cells despite the presence of abundant ERbeta and PR-B are consistent with the view that ERalpha and PR-A may be particularly important as mediators of the neuroprotective effects of their corresponding hormonal ligands.
Collapse
Affiliation(s)
- N J MacLusky
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia-Presbyterian Medical Center, 622 West 168th Street, New York, NY 10032-3702, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Turnley AM, Bartlett PF. Cytokines that signal through the leukemia inhibitory factor receptor-beta complex in the nervous system. J Neurochem 2000; 74:889-99. [PMID: 10693919 DOI: 10.1046/j.1471-4159.2000.0740889.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cytokines that signal through the leukemia inhibitory factor (LIF) receptor, such as LIF and ciliary neuronotrophic factor, have a wide range of roles within both the developing and mature nervous system. They play a vital role in the differentiation of neural precursor cells into astrocytes and can prevent or promote neuronal differentiation. One of the conundrums regarding signalling through the LIF receptor is how it can have multiple, often conflicting roles in different cell types, such as enhancing the differentiation of astrocytes while inhibiting the differentiation of some neuronal cells. Factors that can modulate signal transduction downstream of cytokine signalling, such as "suppressor of cytokine signalling" proteins, which inhibit the JAK/STAT but not the mitogen-activated protein kinase pathway, may therefore play an important role in determining how a given cell will respond to cytokine signalling. This review discusses the general effects of cytokine signalling within the nervous system. Special emphasis is placed on differentiation of neural precursor cells and the role that regulation of cytokine signalling may play in how a given precursor cell responds to cytokine stimulation.
Collapse
Affiliation(s)
- A M Turnley
- The Walter and Eliza Hall Institute of Medical Research, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
5
|
Waldmeier PC, Boulton AA, Cools AR, Kato AC, Tatton WG. Neurorescuing effects of the GAPDH ligand CGP 3466B. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2000:197-214. [PMID: 11205140 DOI: 10.1007/978-3-7091-6301-6_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
(-)-Deprenyl, used for the treatment of Parkinson's disease, was reported to possess neurorescuing/antiapoptotic effects independent of its MAO-B inhibiting properties. It is metabolized to (-)-desmethyldeprenyl, which seems to be the active principle, and further to (-)-amphetamine and (-)-methamphetamine, which antagonize its rescuing effects. These complications may explain the limited neurorescuing potential of (-)-deprenyl observed clinically. CGP 3466 (dibenzo[b,f]oxepin-10-ylmethyl-methyl-prop-2-ynyl-amine), structurally related to (-)-deprenyl, exhibits virtually no MAO-B nor MAO-A inhibiting properties and is not metabolized to amphetamines. It was shown to bind to glyceraldehyde-3-phosphate dehydrogenase, a glycolytic enzyme with multiple other functions including an involvement in apoptosis, and shows neurorescuing properties qualitatively similar to, but about 100-fold more potent than those of (-)-deprenyl in several in vitro and in vivo paradigms. In concentrations ranging from 10(-13)-10(-5) M, it rescues partially differentiated PC12 cells from apoptosis induced by trophic withdrawal, cerebellar granule cells from apoptosis induced by cytosine arabinoside, rat embryonic mesencephalic dopaminergic cells from death caused by MPP+, and PAJU human neuroblastoma cells from death caused by rotenone. However, it did not affect apoptosis elicited by a variety of agents in rapidly proliferating cells from thymus or skin or in liver or kidney cells. In vivo, it rescued facial motor neuron cell bodies in rat pups after axotomy, rat hippocampal CA1 neurons after transient ischemia/hypoxia, and mouse nigral dopaminergic cell bodies from death induced by MPTP, in doses ranging between 0.0003 and 0.1 mg/kg p.o. or s.c., depending on the model. It also partially prevented the loss of tyrosine hydroxylase immunoreactivity in the substantia nigra of 6-OHDA-lesioned rats and improved motor function in these animals. Moreover, it prolonged the life-span of progressive motor neuronopathy (pmn) mice (a model for ALS), preserved their body weight and improved their motor performance. This was accompanied by a decreased loss of motor neurons and motor neuron fibers, and protection of mitochondria. The active concentration- or dose-ranges in the different in vitro and in vivo paradigms were remarkably similar. In several paradigms, bell-shaped dose-response curves were observed, the rescuing effect being lost above about 1 mg/kg, a fact that must be considered in clinical investigations.
Collapse
Affiliation(s)
- P C Waldmeier
- Nervous System Research, Novartis Pharma Ltd, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
6
|
Knoll J. (-)Deprenyl (selegiline), a catecholaminergic activity enhancer (CAE) substance acting in the brain. PHARMACOLOGY & TOXICOLOGY 1998; 82:57-66. [PMID: 9498233 DOI: 10.1111/j.1600-0773.1998.tb01399.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
beta-Phenylethylamine and its long acting derivatives, the amphetamines, are mixed-acting stimulants of the sympathetic system in the brain. They enhance the impulse propagation mediated release of catecholamines (catecholaminergic activity enhancer effect) and displace catecholamines from their stores (catecholamine releasing effect). (-)Deprenyl (selegiline), a close structural relative to (-)methamphetamine, is the first catecholaminergic activity enhancer substance in clinical use devoid of catecholamine releasing property, being therefore free of the 'cheese effect' and of the dependence capacity of the amphetamines. (-)Deprenyl is also a highly potent and selective, irreversible inhibitor of monoamine oxidase type B. (-)Deprenyl enhances superoxide dismutase and catalase activity in the striatum, protects the nigrostriatal dopaminergic neurons against selective neurotoxins (6-hydroxy-dopamine, MPTP, 4-N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) and prevents characteristic age-related morphological changes in the neurocytes of the substantia nigra. Maintenance of rats on (-)deprenyl during the postdevelopmental phase of their life slows the age-related decline of sexual and learning performances and prolongs life significantly. Patients with early, untreated Parkinson's disease maintained on (-)deprenyl need levodopa significantly later than their placebo-treated peers, and when on levodopa plus (-)deprenyl, they live significantly longer than patients on levodopa alone. In patients with moderately severe impairment from Alzheimer's disease, treatment with (-)deprenyl slows the progression of the disease. It may be supposed that a prophylactic low dose administration of a safe catecholaminergic activity enhancer substance during the postdevelopmental phase of life will slow the age-related decline of behavioral performances, delay natural death and decrease susceptibility to Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- J Knoll
- Department of Pharmacology, Semmelweis University of Medicine, Budapest, Hungary
| |
Collapse
|
7
|
ThyagaRajan S, Felten SY, Felten DL. Restoration of sympathetic noradrenergic nerve fibers in the spleen by low doses of L-deprenyl treatment in young sympathectomized and old Fischer 344 rats. J Neuroimmunol 1998; 81:144-57. [PMID: 9521616 DOI: 10.1016/s0165-5728(97)00169-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well-established that noradrenergic (NA) nerve fibers in spleen and lymph nodes influence cell-mediated immune responses. Such responses are diminished in young animals following chemical sympathectomy and in older animals accompanying an age-related decline in NA nerve fibers in spleen and lymph nodes. The purpose of this study was to determine whether treatment with deprenyl, an irreversible monoamine oxidase-B (MAO-B) inhibitor, would hasten the process of splenic NA reinnervation following chemical sympathectomy in young rats and would reverse the age-related loss of sympathetic NA fibers in the spleen of old rats. To examine the effects of deprenyl in young sympathectomized rats, 3-month-old male Fischer 344 (F344) rats were treated with 6-hydroxydopamine (6-OHDA) and administered 0, 0.25, 1.0, 2.5, or 5.0 mg deprenyl/kg body weight (BW)/day intraperitoneally (i.p.) for 1, 15, or 30 days. In another study, 21-month-old male F344 rats were treated with 0, 0.25, or 1.0 mg deprenyl/kg BW/day i.p. for 9 weeks. At the end of the treatment period, spleens were removed and NA innervation was assessed by fluorescence histochemistry, immunocytochemistry, and quantitation of norepinephrine (NE) by high performance liquid chromatography with electrochemical detection (HPLC-EC). In the spleens of young sympathectomized rats, there was faint fluorescence or absence of fluorescence and tyrosine hydroxylase-positive (TH+) fibers around the central arteriole and in the periarteriolar lymphatic sheath of the white pulp one day after administration of 6-OHDA, indicating a severe loss of NA innervation compared with unlesioned control animals. Treatment of sympathectomized rats with 1.0 mg, 2.5 mg, and 5.0 mg/kg deprenyl for 30 days increased the density of NA innervation estimated by both fluorescence histochemistry and immunocytochemistry compared with vehicle-treated controls recovering spontaneously from 6-OHDA. Splenic NE concentration was increased in the hilar region of sympathectomized rats treated with 2.5 mg and 1.0 mg/kg deprenyl after 15 and 30 days, respectively, compared with untreated and vehicle-treated sympathectomized rats. The spleens of untreated and saline-treated old rats showed a reduction in the density of NA innervation in the white pulp compared with young animals. Treatment of old rats for 9 weeks with 1.0 mg/kg deprenyl induced moderate to intense fluorescent fibers and linear TH+ nerve fibers around the central arteriole and in other compartments of the white pulp, and increased splenic NE concentration in the hilar region and NE content in the whole spleen. Taken together, these results provide strong evidence for a neurorestorative property of deprenyl on sympathetic NA innervation of the spleen, which may lead to an improvement in cell-mediated immune responses.
Collapse
Affiliation(s)
- S ThyagaRajan
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine, NY 14642, USA.
| | | | | |
Collapse
|
8
|
Guest JD, Hesse D, Schnell L, Schwab ME, Bunge MB, Bunge RP. Influence of IN-1 antibody and acidic FGF-fibrin glue on the response of injured corticospinal tract axons to human Schwann cell grafts. J Neurosci Res 1997; 50:888-905. [PMID: 9418975 DOI: 10.1002/(sici)1097-4547(19971201)50:5<888::aid-jnr24>3.0.co;2-w] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two strategies have been shown by others to improve CST regeneration following thoracic spinal cord injury: 1) the administration of a monoclonal antibody, IN-1, raised against a myelin-associated, neurite growth inhibitory protein, and 2) the delivery of acidic fibroblast growth factor (aFGF) in fibrin glue in association with peripheral nerve grafts. Because autologous transplantation of human Schwann cells (SCs) is a potential strategy for CNS repair, we evaluated the ability of these two molecular agents to induce CST regeneration into human SC grafts placed to span a midthoracic spinal cord transection in the adult nude rat, a xenograft tolerant strain. IN-1 or control (HRP) antibodies were delivered to the injury/graft region by encapsulated hybridoma cells ("IN-1 ravioli") or daily infusion of hybridoma culture supernatant; aFGF-fibrin glue was placed in the same region in other animals. Anterograde tracing from the motor cortex using the dextran amine tracers, Fluororuby (FR) and biotinylated dextran amine (BDA), was performed. Thirty-five days after grafting, the CST response was evaluated qualitatively by looking for regenerated CST fibers in or beyond grafts and quantitatively by constructing camera lucida composites to determine the sprouting index (SI), the position of the maximum termination density (MTD) rostral to the GFAP-defined host/graft interface, and the longitudinal spread (LS) of bulbous end terminals. The latter two measures provided information about axonal die-back. In control animals (graft only), the CST did not enter the SC graft and underwent axonal die-back [SI = 1.4 +/- 0.1, MTD = 2.0 +/- 0.2, LS = 1.3 +/- 0.3, (n = 3)]. Results of IN-1 delivery from ravioli did not differ from controls, but injections of IN-1-containing supernatant resulted in a significant degree of sprouting but did not prevent axonal die-back [SI = 1.9 +/- 0.1, MTD = 1.5 +/- 0.2, LS = 1.1 +/- 0.1, (n = 7)] and traced fibers did not enter grafts. Acidic FGF dramatically reduced axonal die-back and caused sprouting [SI = 2.0 +/- 0.1 (n = 5), MTD = 0.5 +/- 0.04 (n = 6), LS = 0.4 +/- 0.1 (n = 6)]. Some traced fibers entered SC grafts and in 2/6 cases entered the distal interface. We conclude that 1) human SC grafts alone do not support the regeneration of injured CST fibers and do not prevent die-back, 2) grafts plus IN-1 antibody-containing supernatant support some sprouting but die-back continues, and 3) grafts plus aFGF-fibrin glue support regeneration of some fibers into the grafts and reduce die-back.
Collapse
Affiliation(s)
- J D Guest
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
It is known that ciliary neurotrophic factor (CNTF) administration reduces the atrophy observed with denervation, suggesting its role as a trophic factor for muscle cells. At the present, we studied the effects of 'in vivo' CNTF administration on the regenerative capacity of skeletal muscle fibres. Adult mice had their extensor digitorium longus muscle subjected to a denervation-devascularization lesion. CNTF (0.5 ng/microl) was administered using osmotic pumps implanted subcutaneously in unrestrained mice. CNTF was delivered into the muscle's region at a rate of 1 microl/h from 1 to 8 days after denervation. The results show that CNTF increased the number of regenerating myofibres by day 4. From day 7 on, the values seen on control and CNTF-treated groups were not significantly different. Our results show that 'in vivo' CNTF administration accelerates myotube differentiation.
Collapse
Affiliation(s)
- M J Marques
- Departamento de Anatomia, Instituto de Biologia, UNICAMP, Campinas, Brazil.
| | | |
Collapse
|
10
|
Murphy M, Dutton R, Koblar S, Cheema S, Bartlett P. Cytokines which signal through the LIF receptor and their actions in the nervous system. Prog Neurobiol 1997; 52:355-78. [PMID: 9304697 DOI: 10.1016/s0301-0082(97)00020-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of different cytokines, each initially characterized on the basis of very different biological activities, all have very similar signalling pathways and share a similar tertiary structure. These cytokines include leukaemia inhibitory factor, ciliary neuronotrophic factor, oncostatin M, growth-promoting activity and cardiotrophin 1. They all have been found to regulate a number of properties of cells of the developing and mature nervous system in vitro and thus are neuroregulatory cytokines. The actions of these cytokines include regulation of neurotransmitter phenotype, differentiation of neuronal precursor cells both in the peripheral nervous system and in the spinal cord, survival of differentiated neurons, and regulation of development of both astrocytes and oligodendrocytes. In addition, studies in animal models show that these factors can rescue sensory and motor neurons from axotomy-induced cell death, which suggests that they can act as trauma factors for injured neurons. Analysis of the expression patterns of the different neuroregulatory cytokines and their receptors reveals that the receptors are expressed throughout nervous system development and following trauma, whereas the cytokines show temporal and spatial specific expression patterns. This is consistent with the idea that specific cytokines have specific roles in neural development and repair, but that their signalling pathways are shared. The phenotypes of the receptor knockouts show clear deficits in nervous system development, indicating a crucial role for LIF receptor signalling. Knockouts of individual cytokines are less dramatic, but LIF and CNTF knockouts do reveal deficits in maintenance of motor neurons or following trauma. Thus, whereas LIF and CNTF have clear roles in maintenance and following trauma, it is unclear which of the cytokines is involved in nervous system development. In clinical terms, these findings add further support to the use of these cytokines in nervous system trauma and disease.
Collapse
Affiliation(s)
- M Murphy
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
11
|
Tatton WG, Chalmers-Redman RM, Ju WY, Wadia J, Tatton NA. Apoptosis in neurodegenerative disorders: potential for therapy by modifying gene transcription. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1997; 49:245-268. [PMID: 9266433 DOI: 10.1007/978-3-7091-6844-8_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Apoptotic, rather than necrotic, nerve cell death now appears as likely to underlie a number of common neurological conditions including stroke, Alzheimer's disease, Parkinson's disease, hereditary retinal dystrophies and Amyotrophic Lateral Sclerosis. Apoptotic neuronal death is a delayed, multistep process and therefore offers a therapeutic opportunity if one or more of these steps can be interrupted or reversed. Research is beginning to show how specific macromolecules play a role in determining the apoptotic death process. We are particularly interested in the critical nature of gradual mitochondrial failure in the apoptotic process and propose that a maintenance of mitochondrial function through the pharmacological modulation of gene expression offers an opportunity for the effective treatment of some types of neurological dysfunction. Our research into the development of small diffusible molecules that reduce apoptosis has grown from studies of the irreversible MAO-B inhibitor (-)-deprenyl. (-)-Deprenyl can reduce neuronal death independently of MAO-B inhibition even after neurons have sustained seemingly lethal damage. (-)-Deprenyl can also influence the process outgrowth of some glial and neuronal populations and can reduce the concentrations of oxidative radicals in damaged cells at concentrations too small to inhibit MAO. In accord with earlier work of others, we showed that (-)-deprenyl alters the expression of a number of mRNAs or of proteins in nerve and glial cells and that the alterations in gene expression/protein synthesis are the result of a selective action on transcription. The alterations in gene expression/protein synthesis are accompanied by a decrease in DNA fragmentation characteristic of apoptosis and the death of responsive cells. The onco-proteins Bcl-2 and Bax and the scavenger proteins Cu/Zn superoxide dismutase (SOD1) and Mn superoxide dismutase (SOD-2) are among the 40-50 proteins whose synthesis is altered by (-)-deprenyl. Since mitochondrial membrane potential correlates with mitochondrial ATP production, we have used confocal laser imaging techniques in living cells to show that the transcriptional changes induced by (-)-deprenyl result in a maintenance of mitochondrial membrane potential, a decrease in intramitochondrial calcium and a decrease in cytoplasmic oxidative radical levels. We therefore propose that (-)-deprenyl acts on gene expression to maintain mitochondrial function and decrease cytoplasmic oxidative radical levels and thereby reduces apoptosis. An understanding of the molecular steps by which (-)-deprenyl selectively alters transcription may lead to the development of new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- W G Tatton
- Department of Physiology/Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
12
|
Tatton WG, Wadia JS, Ju WY, Chalmers-Redman RM, Tatton NA. (-)-Deprenyl reduces neuronal apoptosis and facilitates neuronal outgrowth by altering protein synthesis without inhibiting monoamine oxidase. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1996; 48:45-59. [PMID: 8988461 DOI: 10.1007/978-3-7091-7494-4_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
(-)-Deprenyl stereospecifically reduces neuronal death even after neurons have sustained seemingly lethal damage at concentrations too small to cause monoamine oxidase-B (MAO-B) inhibition. (-)-Deprenyl can also influence the process growth of some glial and neuronal populations and can reduce the concentrations of oxidative radicals in damaged cells at concentrations too small to inhibit MAO. In accord with the earlier work of others, we showed that (-)-deprenyl alters the expression of a number mRNAs or proteins in nerve and glial cells and that the alterations in gene expression/protein synthesis are the result of a selective action on transcription. The alterations in gene expression/protein synthesis are accompanied by a decrease in DNA fragmentation characteristic of apoptosis and the death of responsive cells. The onco-proteins Bcl-2 and Bax and the scavenger proteins Cu/Zn superoxide dismutase (SOD1) and Mn superoxide dismutase (SOD2) are among the 40-50 proteins whose synthesis is altered by (-)-deprenyl. Since mitochondrial ATP production depends on mitochondrial membrane potential (MMP) and mitochondrial failure has been shown to be one of the earliest events in apoptosis, we used confocal laser imaging techniques in living cells to show that the transcriptional changes induced by (-)-deprenyl are accompanied by a maintenance of mitochondrial membrane potential, a decrease in intramitochondrial calcium and a decrease in cytoplasmic oxidative radical levels. We therefore propose that (-)-deprenyl acts on gene expression to maintain mitochondrial function and to decrease cytoplasmic oxidative radical levels and thereby to reduce apoptosis. An understanding of the molecular steps by which (-)-deprenyl selectively alters transcription may contribute to the development of new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- W G Tatton
- Department of Physiology/Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
13
|
Chalmers-Redman RM, Fraser AD, Ju WY, Wadia J, Tatton NA, Tatton WG. Mechanisms of nerve cell death: apoptosis or necrosis after cerebral ischaemia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 40:1-25. [PMID: 8989614 DOI: 10.1016/s0074-7742(08)60713-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R M Chalmers-Redman
- Department of Physiology/Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|