1
|
Liu J, Cui T. Expression, Characterisation, Homology Modelling and Molecular Docking of a Novel M17 Family Leucyl-Aminopeptidase from Bacillus cereus CZ. Int J Mol Sci 2023; 24:15939. [PMID: 37958921 PMCID: PMC10649214 DOI: 10.3390/ijms242115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Leucyl-aminopeptidase (LAP), an important metallopeptidase, hydrolyses amino acid residues from the N-terminus of polypeptides and proteins, acting preferentially on the peptide bond formed by N-terminus leucine. A new leucyl-aminopeptidase was found in Bacillus cereus CZ. Its gene (bclap) contained a 1485 bp ORF encoding 494 amino acids with a molecular weight of 54 kDa. The bcLAP protein was successfully expressed in E. coli BL21(DE3). Optimal activity is obtained at pH 9.0 and 58 °C. The bcLAP displays a moderate thermostability and an alkaline pH adaptation range. Enzymatic activity is dramatically enhanced by Ni2+. EDTA significantly inhibits the enzymatic activity, and bestatin and SDS also show strong inhibition. The three-dimensional model of bcLAP monomer and homohexamer is simulated byPHYRE2 server and SWISS-MODEL server. The docking of bestatin, Leu-Trp, Asp-Trp and Ala-Ala-Gly to bcLAP is performed using AutoDock4.2.5, respectively. Molecular docking results show that the residues Lys260, Asp265, Lys272, Asp283, Asp342, Glu344, Arg346, Gly372 and His437 are involved in the hydrogen bonding with the ligands and zinc ions. There may be two nucleophilic catalytic mechanisms in bcLAP, one involving His 437 or Arg346 and the other involving His437 and Arg346. The bcLAP can hydrolyse the peptide bonds in Leu-Trp, Asp-Trp and Ala-Ala-Gly.
Collapse
Affiliation(s)
| | - Tangbing Cui
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
| |
Collapse
|
2
|
Chang X, Wang J, Harlina PW, Geng F. Quantitative N-Glycoproteomic Analysis of Cattle-Yak and Yak Longissimus Thoracis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37471694 DOI: 10.1021/acs.jafc.3c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
In this study, the N-glycosylated protein profiles of cattle-yak longissimus thoracis (CYLT) and yak longissimus thoracis (YLT) were comparatively analyzed using quantitative proteomics techniques. A total of 76 differential N-glycosylated proteins (DGPs) were screened from 181 quantified N-glycoproteins, indicating that differences in N-glycosylation levels are key to the differences between CYLT and YLT. In particular, a variety of N-glycoproteins involved in the extracellular matrix were differentially N-glycosylated between CYLT and YLT, mainly including fibrillin-1, fibromodulin, collagen, and laminins. In addition, the N-glycosylation levels of several lysosomal-related proteolytic enzymes (cathepsin D, dipeptidyl peptidase 1, legumain, and aminopeptidases, etc.) were significantly higher in CYLT. These results indicated that the N-glycosylation of CYLT and YLT proteins plays a crucial role in the regulation of extracellular matrix organization (muscle fiber structure) and lysosomal activity (postmortem meat tenderness). The results remind us that posttranslation modifications, especially N-glycosylation, are still icebergs beneath the surface.
Collapse
Affiliation(s)
- Xinping Chang
- School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jinqiu Wang
- School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Fang Geng
- School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China
| |
Collapse
|
3
|
From bitter to delicious: properties and uses of microbial aminopeptidases. World J Microbiol Biotechnol 2023; 39:72. [PMID: 36625962 DOI: 10.1007/s11274-022-03501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
Protein hydrolysates are easily digested and utilized by humans and animals, and are less likely to cause allergies. Protein hydrolysis caused by endopeptidases often leads to the exposure of hydrophobic amino acids at the ends of peptides, which consequently causes bitter taste. Microbial aminopeptidases remove the exposed hydrophobic amino acids at the ends of aminopeptides, which improves taste, allowing for easier production. This processe is attacking significant attention from industry and laboratories. Aminopeptidases selectively hydrolyze peptide bonds from the N-terminal of proteins or peptides to produce free amino acids. Aminopeptidases can be classified into leucine, lysine, methionine and proline aminopeptidases by hydrolyzed N-terminal residues; metallo-, serine- and cysteine- aminopeptidases by the reaction mechanisms; dipeptide and triphoptide enzymes by the released number of amino acid residues at the end of hydrolyzed peptides; or acidic, neutral and basic aminopeptidases by their optimal hydrolysis pH. Commercial aminopeptidases are generally produced by microbial fermentation, and are mainly applied in the debittering of protein hydrolysates, the deep hydrolysis of protein, and the production of condiments, cheese, and bioactive peptides, as well as for disease detection in the medical industry.
Collapse
|
4
|
Chen Y, Zhang R, Zhang W, Xu Y. Alanine aminopeptidase from Bacillus licheniformis E7 expressed in Bacillus subtilis efficiently hydrolyzes soy protein to small peptides and free amino acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Song P, Feng W. Functional expression and characterization of a novel aminopeptidase B from Aspergillus niger in Pichia pastoris. 3 Biotech 2021; 11:366. [PMID: 34290949 DOI: 10.1007/s13205-021-02915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/01/2021] [Indexed: 11/27/2022] Open
Abstract
A novel aminopeptidase B (APB-AN) was identified from Aspergillus niger CGMCC 3.1454 for the first time and was cloned and expressed in Pichia pastoris. The mature enzyme of approximately 100 kDa was purified for characterization. The optimum pH and temperature of the recombinant APB-AN were determined to be 7.0 and 40 °C, respectively. The enzyme was stable below 40 °C and at pH values from 5.0 to 8.0. The K m and V max values were determined to be 0.61 mmol/L and 11.45 mmol/L/min, respectively, using Arg-pNA as the substrate. APB-AN was inhibited by Cu2+ and Fe2+ and activated by Co2+ and Na+. Most metal chelators (Ca2+, Mg2+ and Mn2+) and aminopeptidase inhibitors (bestatin and puromycin) suppressed its activity. APB-AN was found to be active towards 13 kinds of amino acid p-nitroanilide (pNA) substrates:Arg-pNA, Lys-pNA, Tyr- pNA, Trp-pNA, Phe-pNA, His-pNA, Ala-pNA, Met-pNA, Leu-pNA, Glu-pNA, Val-pNA, Pro-pNA and Ile-pNA, and the most preferred N-terminal amino acids were arginine and lysine. APB-AN also hydrolyzed 4 natural proteins: casein, bovine serum albumin, soy protein isolate and water-soluble wheat protein. It is expected that APB-AN has potential food processing applications.
Collapse
Affiliation(s)
- Peng Song
- School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Wei Feng
- School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
6
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
7
|
Song P, Cheng L, Tian K, Zhang M, Singh S, Niu D, Prior B, Mchunu NP, Wang ZX. A novel aminopeptidase with potential debittering properties in casein and soybean protein hydrolysates. Food Sci Biotechnol 2020; 29:1491-1499. [PMID: 33088598 DOI: 10.1007/s10068-020-00813-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 11/29/2022] Open
Abstract
A new aminopeptidase (An-APa) was identified and biochemically characterized from Aspergillus niger CICIM F0215. It had maximal activity at 40 °C and pH 7.0 and exhibited a broad substrate specificity both on hydrophilic and hydrophobic amino acid residues at N-terminals. With An-APa hydrolysis for 1 h, the casein-pepsin and soybean protein isolates (SPI)-pepsin hydrolysates released both hydrophilic and hydrophobic amino acids and the hydrophobic amino acids having Q values (degree of hydrophobicity) greater than 1500 cal/mol were remarkably released. Leu, Ile, Phe, Tyr, Trp, Pro, Val and Lys in the casein hydrolysate after treatment with An-APa increased 18.61, 0.84, 11.35, 13.18, 3.34, 6.30, 7.46, and 8.19 mg/100 mL, respectively, and 19.72, 1.47, 18.37, 11.72, 4.61, 4.10, 8.13, and 5.85 mg/100 mL, respectively, in the SPI hydrolysate. Both accounted for 65.0% and 64.4% of total released free amino acids from casein and SPI hydrolysates, respectively. This indicated that An-APa could be potentially applicable in debittering protein hydrolysates.
Collapse
Affiliation(s)
- Peng Song
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China.,Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Lei Cheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China.,Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Kangming Tian
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Meng Zhang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4001 South Africa
| | - Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Bernard Prior
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602 South Africa
| | - Nokuthula Peace Mchunu
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110 South Africa
| | - Zheng-Xiang Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| |
Collapse
|
8
|
Wang K, Tian Y, Zhou N, Liu D, Zhang D. Studies on fermentation optimization, stability and application of prolyl aminopeptidase from Bacillus subtilis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Sierra EM, Pereira MR, Maester TC, Gomes-Pepe ES, Mendoza ER, Lemos EGDM. Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis. Sci Rep 2017; 7:10684. [PMID: 28878230 PMCID: PMC5587760 DOI: 10.1038/s41598-017-10932-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/16/2017] [Indexed: 12/04/2022] Open
Abstract
The aminopeptidase gene from Mesorhizobium SEMIA3007 was cloned and overexpressed in Escherichia coli. The enzyme called MesoAmp exhibited optimum activity at pH 8.5 and 45 °C and was strongly activated by Co2+ and Mn2+. Under these reaction conditions, the enzyme displayed Km and kcat values of 0.2364 ± 0.018 mM and 712.1 ± 88.12 s−1, respectively. Additionally, the enzyme showed remarkable stability in organic solvents and was active at high concentrations of NaCl, suggesting that the enzyme might be suitable for use in biotechnology. MesoAmp is responsible for 40% of the organism’s aminopeptidase activity. However, the enzyme’s absence does not affect bacterial growth in synthetic broth, although it interfered with biofilm synthesis and osmoregulation. To the best of our knowledge, this report describes the first detailed characterization of aminopeptidase from Mesorhizobium and suggests its importance in biofilm formation and osmotic stress tolerance. In summary, this work lays the foundation for potential biotechnological applications and/or the development of environmentally friendly technologies and describes the first solvent- and halo-tolerant aminopeptidases identified from the Mesorhizobium genus and its importance in bacterial metabolism.
Collapse
Affiliation(s)
- Elwi Machado Sierra
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil.,Universidad Simón Bolívar, Barranquilla, Colombia
| | | | | | - Elisangela Soares Gomes-Pepe
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil.,Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, Brazil
| | - Elkin Rodas Mendoza
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil
| | - Eliana G de Macedo Lemos
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil. .,Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, Brazil. .,Av. Prof. Paulo Donato Castellane, s/n. Jaboticabal, Post code 14884-900, São Paulo State, Brazil.
| |
Collapse
|
10
|
Yang H, Zhu Q, Zhou N, Tian Y. Optimized expression of prolyl aminopeptidase in Pichia pastoris and its characteristics after glycosylation. World J Microbiol Biotechnol 2016; 32:176. [PMID: 27628336 DOI: 10.1007/s11274-016-2135-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
Prolyl aminopeptidases are specific exopeptidases that catalyze the hydrolysis of the N-terminus proline residue of peptides and proteins. In the present study, the prolyl aminopeptidase gene (pap) from Aspergillus oryzae JN-412 was optimized through the codon usage of Pichia pastoris. Both the native and optimized pap genes were inserted into the expression vector pPIC9 K and were successfully expressed in P. pastoris. Additionally, the activity of the intracellular enzyme expressed by the recombinant optimized pap gene reached 61.26 U mL(-1), an activity that is 2.1-fold higher than that of the native gene. The recombinant enzyme was purified by one-step elution through Ni-affinity chromatography. The optimal temperature and pH of the purified PAP were 60 °C and 7.5, respectively. Additionally, the recombinant PAP was recovered at a yield greater than 65 % at an extremely broad range of pH values from 6 to 10 after treatment at 50 °C for 6 h. The molecular weight of the recombinant PAP decreased from 50 kDa to 48 kDa after treatment with a deglycosylation enzyme, indicating that the recombinant PAP was completely glycosylated. The glycosylated PAP exhibited high thermo-stability. Half of the activity remained after incubation at 50 °C for 50 h, whereas the remaining activity of PAP expressed in E. coli was only 10 % after incubation at 50 °C for 1 h. PAP could be activated by the appropriate salt concentration and exhibited salt tolerance against NaCl at a concentration up to 5 mol L(-1).
Collapse
Affiliation(s)
- Hongyu Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qiang Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Nandi Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaping Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
High-level expression and characterization of the Bacillus subtilis subsp. subtilis str. BSP1 YwaD aminopeptidase in Pichia pastoris. Protein Expr Purif 2016; 122:23-30. [PMID: 26898926 DOI: 10.1016/j.pep.2016.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 01/16/2023]
Abstract
Aminopeptidases are widely used for creating protein hydrolysates and peptide sequencing. The ywaD gene from a new Bacillus isolate, named Bacillus subtilis subsp. subtilis str. BSP1, was cloned into the yeast expression vector pHBM905A and expressed and secreted by Pichia pastoris strain GS115. The deduced amino acid sequence of the aminopeptidase encoded by the ywaD gene shared up to 98% identity with aminopeptidases from B. subtilis strains 168 and zj016. The yield (3.81 g/l) and specific activity (788 U/mg) of recombinant YwaD in high-density fermentation were extremely high. And 829.83 mg of the purified enzyme (4089.72 U/mg) were harvested. YwaD was glycosylated, and its activity decreased after deglycosylation, which was similar to that of the aminopeptidase from B. subtilis strain zj016. YwaD was most active toward l-arginine-4-nitroanilide. Moreover, it exhibited high resistance to carbamide, which was not true for aminopeptidases from B. subtilis strains 168 and zj016, which could simplify the purification of YwaD. Moreover, the expression and parts of characterization of the aminopeptidase from B. subtilis strain 168 in Pichia pastoris were added as supplementary material. The sequence and other characteristics of YwaD were compared with those of aminopeptidases from B. subtilis strains 168 and zj016, and they will provide a solid foundation for further research on the influence of amino acid mutations on the function of aminopeptidases.
Collapse
|
12
|
Huang WQ, Zhong LF, Meng ZZ, You ZJ, Li JZ, Luo XC. The Structure and Enzyme Characteristics of a Recombinant Leucine Aminopeptidase rLap1 from Aspergillus sojae and Its Application in Debittering. Appl Biochem Biotechnol 2015; 177:190-206. [DOI: 10.1007/s12010-015-1737-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/26/2015] [Indexed: 11/28/2022]
|