1
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Mohaghegh S, Alirezaei F, Ahmadi N, Kouhestani F, Motamedian SR. Application of chemical factors for acceleration of consolidation phase of the distraction osteogenesis: a scoping review. Oral Maxillofac Surg 2023; 27:559-579. [PMID: 35852720 DOI: 10.1007/s10006-022-01097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This study aimed to analyze the effect of injecting chemical factors compared to conventional distraction osteogenesis (DO) treatment on the bone formation of the distracted area of the maxillofacial region in human and animal studies. METHOD Electronic search was done in PubMed, Scopus, Embase, and Cochrane database for studies published until September 2021. The studies' risk of bias (ROB) was assessed using the Cochrane Collaborations and NIH quality assessment tools. Meta-analyses were performed to assess the difference in the amount of bone formation and maximal load tolerance. RESULTS Among a total of 58 included studies, eight studies analyzed the bone formation rate of the distracted area in human models and others in animal models. Results of the human studies showed acceptable outcomes in the case of using bone morphogenic protein-2 (BMP-2), autologous bone-platelet gel, and calcium sulfate. However, using platelet reach plasma does not increase the rate of bone formation significantly. Quantitative analyses showed that both BMP-2 (SMD = 26.57; 95% CI = 18.86 to 34.28) and neuron growth factor (NGF) (SMD = 16.19; 95% CI = 9.64 to 22.75) increase the amount of bone formation. Besides, NGF increased the amount of load tolerance significantly (SMD = 30.03; 95% CI = 19.91 to 40.16). Additionally, BMP-2 has no significant impact on the post-treatment maxillary length (SMD = 9.19; 95% CI = - 2.35 to 20.73). CONCLUSION Limited number of human studies with low quality used chemical factors to enhance osteogenesis and showed acceptable results. However, more studies with higher quality are required.
Collapse
Affiliation(s)
- Sadra Mohaghegh
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Fatemeh Alirezaei
- Department of Orthodontics, School of Dentistry, Babol University of Medical Sciences, Babol, Iran
| | - Nima Ahmadi
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Farnaz Kouhestani
- Department of Periodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran.
| |
Collapse
|
3
|
Şen E, Özkan N, Önger ME, Kaplan S. Effects of NGF and Photobiomodulation Therapy on Crush Nerve Injury and Fracture Healing: A Stereological and Histopathological Study in an Animal Model. Craniomaxillofac Trauma Reconstr 2023; 16:281-291. [PMID: 38047151 PMCID: PMC10693267 DOI: 10.1177/19433875221138175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Study Design A stereological and histopathological study in an animal model. Objective This study explores the effects of the nerve growth factor and photobiomodulation therapy on the damaged nerve tissue and fracture healing. Methods A total of 24 rabbits were divided into 4 groups: control group (n = 5), nerve growth factor (NGF) group (n = 7), photobiomodulation (PBMT) group (n = 6), and nerve growth factor and photobiomodulation therapy (NGF+PBMT) group (n = 6). The vertical fracture was performed between the mental foramen and the first premolar, and the mental nerve was crushed for 30 seconds with a standard serrated clamp with a force of approximately 50 N in all groups. The control group received an isotonic solution (.02 mL, .09% NaCl) to the operation site locally. The NGF group received 1 μg human NGF-β/.9% .2 mL NaCl solution for 7 days locally. The PBMT group received PBMT treatment (GaAlAs laser, 810 nm, .3 W, 18 J/cm2) every 48 hours for 14 sessions following the surgery. The NGF+PBMT group received both NGF and PBMT treatment as described above. After 28 days, the bone tissues and mental nerves from all groups were harvested and histologically and stereologically analyzed. Results According to the stereological results, the volume of the new vessel and the volume of the new bone were significantly higher in the PBMT group than in other groups (P < .001). According to the histopathological examinations, higher myelinated axons were observed in experimental groups than in the control group. Conclusions As a result, PBMT has beneficial effects on bone regeneration. Based on the light microscopic evaluation, more regenerated axon populations were observed in the NGF group than in the PBMT and PBMT + NGF groups in terms of myelinated axon content.
Collapse
Affiliation(s)
- Esengül Şen
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ondokuz Mayıs University, Turkey
| | - Nilüfer Özkan
- Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ondokuz Mayıs University, Turkey
| | - Mehmet Emin Önger
- Associate Professor, Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayis University, Turkey
| | - Süleyman Kaplan
- Professor, Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayis University, Turkey
| |
Collapse
|
4
|
Hassan MG, Horenberg AL, Coler-Reilly A, Grayson WL, Scheller EL. Role of the Peripheral Nervous System in Skeletal Development and Regeneration: Controversies and Clinical Implications. Curr Osteoporos Rep 2023; 21:503-518. [PMID: 37578676 PMCID: PMC10543521 DOI: 10.1007/s11914-023-00815-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW This review examines the diverse functional relationships that exist between the peripheral nervous system (PNS) and bone, including key advances over the past century that inform our efforts to translate these discoveries for skeletal repair. RECENT FINDINGS The innervation of the bone during development, homeostasis, and regeneration is highly patterned. Consistent with this, there have been nearly 100 studies over the past century that have used denervation approaches to isolate the effects of the different branches of the PNS on the bone. Overall, a common theme of balance emerges whereby an orchestration of both local and systemic neural functions must align to promote optimal skeletal repair while limiting negative consequences such as pain. An improved understanding of the functional bidirectional pathways linking the PNS and bone has important implications for skeletal development and regeneration. Clinical advances over the next century will necessitate a rigorous identification of the mechanisms underlying these effects that is cautious not to oversimplify the in vivo condition in diverse states of health and disease.
Collapse
Affiliation(s)
- Mohamed G Hassan
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Allison L Horenberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ariella Coler-Reilly
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Erica L Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University, MO, St. Louis, USA.
- Department of Cell Biology and Physiology, Washington University, MO, St. Louis, USA.
| |
Collapse
|
5
|
Tschaffon-Müller MEA, Kempter E, Steppe L, Kupfer S, Kuhn MR, Gebhard F, Pankratz C, Kalbitz M, Schütze K, Gündel H, Kaleck N, Strauß G, Vacher J, Ichinose H, Weimer K, Ignatius A, Haffner-Luntzer M, Reber SO. Neutrophil-derived catecholamines mediate negative stress effects on bone. Nat Commun 2023; 14:3262. [PMID: 37277336 DOI: 10.1038/s41467-023-38616-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Mental traumatization is associated with long-bone growth retardation, osteoporosis and increased fracture risk. We revealed earlier that mental trauma disturbs cartilage-to-bone transition during bone growth and repair in mice. Trauma increased tyrosine hydroxylase-expressing neutrophils in bone marrow and fracture callus. Here we show that tyrosine hydroxylase expression in the fracture hematoma of patients correlates positively with acknowledged stress, depression, and pain scores as well as individual ratings of healing-impairment and pain-perception post-fracture. Moreover, mice lacking tyrosine hydroxylase in myeloid cells are protected from chronic psychosocial stress-induced disturbance of bone growth and healing. Chondrocyte-specific β2-adrenoceptor-deficient mice are also protected from stress-induced bone growth retardation. In summary, our preclinical data identify locally secreted catecholamines in concert with β2-adrenoceptor signalling in chondrocytes as mediators of negative stress effects on bone growth and repair. Given our clinical data, these mechanistic insights seem to be of strong translational relevance.
Collapse
Affiliation(s)
| | - Elena Kempter
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Lena Steppe
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Sandra Kupfer
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Melanie R Kuhn
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Florian Gebhard
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, Ulm University Medical Center, Ulm, Germany
| | - Carlos Pankratz
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, Ulm University Medical Center, Ulm, Germany
| | - Miriam Kalbitz
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, Ulm University Medical Center, Ulm, Germany
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Konrad Schütze
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, Ulm University Medical Center, Ulm, Germany
| | - Harald Gündel
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Nele Kaleck
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Gudrun Strauß
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jean Vacher
- Department of Medicine, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Institut de Recherche Cliniques de Montréal, Department of Medicine, Université de Montréal, H2W 1R7, Montréal, QC, Canada
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Katja Weimer
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
6
|
Asada N, Katayama Y. A mysterious triangle of blood, bones, and nerves. J Bone Miner Metab 2023; 41:404-414. [PMID: 36752904 DOI: 10.1007/s00774-023-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
The relationship between bone tissue and bone marrow, which is responsible for hematopoiesis, is inseparable. Osteoblasts and osteocytes, which produce and consist of bone tissue, regulate the function of hematopoietic stem cells (HSC), the ancestors of all hematopoietic cells in the bone marrow. The peripheral nervous system finely regulates bone remodeling in bone tissue and modulates HSC function within the bone marrow, either directly or indirectly via modification of the HSC niche function. Peripheral nerve signals also play an important role in the development and progression of malignant tumors (including hematopoietic tumors) and normal tissues, and peripheral nerve control is emerging as a potential new therapeutic target. In this review, we summarize recent findings on the linkage among blood system, bone tissue, and peripheral nerves.
Collapse
Affiliation(s)
- Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Yoshio Katayama
- Division of Hematology, Department of Medicine, Kobe University Hospital, 7-5-2 Kusunoki-Cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
7
|
Wang X, Zheng W, Bai Z, Huang S, Jiang K, Liu H, Liu L. Mimicking bone matrix through coaxial electrospinning of core-shell nanofibrous scaffold for improving neurogenesis bone regeneration. BIOMATERIALS ADVANCES 2023; 145:213246. [PMID: 36549151 DOI: 10.1016/j.bioadv.2022.213246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/22/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
There is a significant clinical demand for bone repair materials with high efficacy. This study was designed to fabricate nanofibrous scaffolds to promote bone defect regeneration using magnesium doped mesoporous bioactive glass (MBG), a fusion protein Osteocalcin-Osteopontin-Biglycan (OOB), silk fibroin (SF) and nerve growth factor (NGF) for facilitating accelerated bone formation. We found that MBG adsorbed with OOB (OOB@MBG) as core, and SF adsorbed with NGF (SF@NGF) as shell to fabricate the nanofibrous scaffolds (OOB@MBG/NGF@SF) through coaxial electrospinning. OOB@MBG/NGF@SF scaffolds could effectively mimic the component and structure of bone matrix. Interestingly, we observed that OOB@MBG/NGF@SF scaffolds could substantially promote bone mesenchymal stem cells (BMSCs) osteogenesis through stimulating Erk1/2 activated Runx2 and mTOR pathway, and it could also activate the expression level of various osteogenic marker genes. Intriguingly, OOB@MBG/NGF@SF scaffolds could also enhance BMSCs induced neural differentiation cells differentiated into neuron, and activate the expression of the different neuron specific marker genes. Moreover, it was found that OOB@MBG/NGF@SF scaffolds accelerated bone regeneration with neurogenesis, and new neurons were formed in Haversian canal in vivo. Consistent with these observations, we found that Erk1/2 and mTOR signaling pathways also regulated osteogenesis with the neurogenesis process from RNA sequencing result. Overall, our findings provided novel evidence suggesting that OOB@MBG/NGF@SF scaffolds could function as a potential biomaterial in accelerating bone defect regeneration with neurogenesis, as well as in recovering the motor ability and improving the quality of life of patients.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China.
| | - Weijia Zheng
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Zhenzu Bai
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Shan Huang
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Kai Jiang
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Haoming Liu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Long Liu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| |
Collapse
|
8
|
Bashir MH, Korany NS, Farag DBE, Abbass MMS, Ezzat BA, Hegazy RH, Dörfer CE, Fawzy El-Sayed KM. Polymeric Nanocomposite Hydrogel Scaffolds in Craniofacial Bone Regeneration: A Comprehensive Review. Biomolecules 2023; 13:biom13020205. [PMID: 36830575 PMCID: PMC9953024 DOI: 10.3390/biom13020205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Nanocomposite biomaterials combine a biopolymeric matrix structure with nanoscale fillers. These bioactive and easily resorbable nanocomposites have been broadly divided into three groups, namely natural, synthetic or composite, based on the polymeric origin. Preparing such nanocomposite structures in the form of hydrogels can create a three-dimensional natural hydrophilic atmosphere pivotal for cell survival and new tissue formation. Thus, hydrogel-based cell distribution and drug administration have evolved as possible options for bone tissue engineering and regeneration. In this context, nanogels or nanohydrogels, created by cross-linking three-dimensional polymer networks, either physically or chemically, with high biocompatibility and mechanical properties were introduced as promising drug delivery systems. The present review highlights the potential of hydrogels and nanopolymers in the field of craniofacial tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Maha H. Bashir
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Nahed S. Korany
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Dina B. E. Farag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Bassant A. Ezzat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Radwa H. Hegazy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence: ; Tel.: +49-431-500-26210
| |
Collapse
|
9
|
Neural Regeneration in Regenerative Endodontic Treatment: An Overview and Current Trends. Int J Mol Sci 2022; 23:ijms232415492. [PMID: 36555133 PMCID: PMC9779866 DOI: 10.3390/ijms232415492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases are the most common dental diseases. The traditional treatment is root canal therapy, which achieves satisfactory therapeutic outcomes-especially for mature permanent teeth. Apexification, pulpotomy, and pulp revascularization are common techniques used for immature permanent teeth to accelerate the development of the root. However, there are obstacles to achieving functional pulp regeneration. Recently, two methods have been proposed based on tissue engineering: stem cell transplantation, and cell homing. One of the goals of functional pulp regeneration is to achieve innervation. Nerves play a vital role in dentin formation, nutrition, sensation, and defense in the pulp. Successful neural regeneration faces tough challenges in both animal studies and clinical trials. Investigation of the regeneration and repair of the nerves in the pulp has become a serious undertaking. In this review, we summarize the current understanding of the key stem cells, signaling molecules, and biomaterials that could promote neural regeneration as part of pulp regeneration. We also discuss the challenges in preclinical or clinical neural regeneration applications to guide deep research in the future.
Collapse
|
10
|
Liu Z, Suh JS, Deng P, Bezouglaia O, Do M, Mirnia M, Cui ZK, Lee M, Aghaloo T, Wang CY, Hong C. Epigenetic Regulation of NGF-Mediated Osteogenic Differentiation in Human Dental Mesenchymal Stem Cells. Stem Cells 2022; 40:818-830. [PMID: 35728620 PMCID: PMC9512103 DOI: 10.1093/stmcls/sxac042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022]
Abstract
Nerve growth factor (NGF) is the best-characterized neurotrophin and is primarily recognized for its key role in the embryonic development of the nervous system and neuronal cell survival/differentiation. Recently, unexpected actions of NGF in bone regeneration have emerged as NGF is able to enhance the osteogenic differentiation of mesenchymal stem cells. However, little is known regarding how NGF signaling regulates osteogenic differentiation through epigenetic mechanisms. In this study, using human dental mesenchymal stem cells (DMSCs), we demonstrated that NGF mediates osteogenic differentiation through p75NTR, a low-affinity NGF receptor. P75NTR-mediated NGF signaling activates the JNK cascade and the expression of KDM4B, an activating histone demethylase, by removing repressive H3K9me3 epigenetic marks. Mechanistically, NGF-activated c-Jun binds to the KDM4B promoter region and directly upregulates KDM4B expression. Subsequently, KDM4B directly and epigenetically activates DLX5, a master osteogenic gene, by demethylating H3K9me3 marks. Furthermore, we revealed that KDM4B and c-Jun from the JNK signaling pathway work in concert to regulate NGF-mediated osteogenic differentiation through simultaneous recruitment to the promoter region of DLX5. We identified KDM4B as a key epigenetic regulator during the NGF-mediated osteogenesis both in vitro and in vivo using the calvarial defect regeneration mouse model. In conclusion, our study thoroughly elucidated the molecular and epigenetic mechanisms during NGF-mediated osteogenesis.
Collapse
Affiliation(s)
- Zhenqing Liu
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jin Sook Suh
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Peng Deng
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Megan Do
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Mojan Mirnia
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Zhong-Kai Cui
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christine Hong
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
11
|
[Research progress of Schwann cells regulating bone regeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:236-241. [PMID: 35172412 PMCID: PMC8863537 DOI: 10.7507/1002-1892.202108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To review the research progress on the role of Schwann cells in regulating bone regeneration. METHODS The domestic and foreign literature about the behavior of Schwann cells related to bone regeneration, multiple tissue repair ability, nutritional effects of their neurotrophic factor network, and their application in bone tissue engineering was extensively reviewed. RESULTS As a critical part of the peripheral nervous system, Schwann cells regulate the expression level of various neurotrophic factors and growth factors through the paracrine effect, and participates in the tissue regeneration and differentiation process of non-neural tissues such as blood vessels and bone, reflecting the nutritional effect of neural-vascular-bone integration. CONCLUSION Taking full advantage of the multipotent differentiation ability of Schwann cells in nerve, blood vessel, and bone tissue regeneration may provide novel insights for clinical application of tissue engineered bone.
Collapse
|
12
|
Negri S, Samuel TJ, Lee S. The Potential Role of Exercise Training and Mechanical Loading on Bone-Associated Skeletal Nerves. J Bone Metab 2021; 28:267-277. [PMID: 34905674 PMCID: PMC8671028 DOI: 10.11005/jbm.2021.28.4.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/07/2021] [Indexed: 11/11/2022] Open
Abstract
The spatial distribution, innervation, and functional role of the bone-associated skeletal nerves have been previously reported in detail. However, studies examining exercise-induced associations between skeletal nerves and bone metabolism are limited. This review introduces a potential relationship between exercise and the skeletal nerves and discusses how it can contribute to exercise-induced bone anabolism. First, the background and current understanding of nerve fiber types and their functions in the skeleton are provided. Next, the influence of exercise and mechanical loading on the skeletal nervous system is elaborated. Effective synthesis of recent studies could serve as an established baseline for the novel discovery of the effects of exercise on skeletal nerve density and bone anabolic activity in the future. Therefore, this review overviews the existing evidence for the neural control of bone metabolism and the potential positive effects of exercise on the peripheral skeletal nervous system. The influence of exercise training models on the relationships of sensory nerve signals with osteoblast-mediated bone formation and the increased bone volume provides the first insight on the potential importance of exercise training in stimulating positive adaptations in the skeletal nerve-bone interaction and its downstream effect on bone metabolism, thereby highlighting its therapeutic potential in a variety of clinical populations.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Orthopedics and Trauma Surgery, Department of Surgery, Dentistry, Pediatrics and Gynecology of the University of Verona, Verona, Italy
| | - T Jake Samuel
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seungyong Lee
- Department of Physiology, College of Graduate Studies, Midwestern University Arizona College of Osteopathic Medicine, Glendale, AZ, USA
| |
Collapse
|
13
|
Yang X, Mou D, Yu Q, Zhang J, Xiong Y, Zhang Z, Xing S. Nerve growth factor promotes osteogenic differentiation of MC3T3-E1 cells via BMP-2/Smads pathway. Ann Anat 2021; 239:151819. [PMID: 34391912 DOI: 10.1016/j.aanat.2021.151819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Exogenous nerve growth factor (NGF) can induce osteogenic precursor cell differentiation and promote fracture healing. However, the molecular mechanism by which NGF induces osteogenesis is not well understood. BMP-2 has good osteogenic efficacy and is one of the most osteogenic-inducing growth factors known. Therefore, this study aimed to determine whether NGF induces osteogenic differentiation of mouse embryonic osteogenic precursor cell line MC3T3-E1 by BMP-2 and search further mechanisms of NGF on BMP-2. METHODS MC3T3-E1 cells were treated with NGF at a concentration gradient for indicated times, after which the cell viability was measured by CCK-8 kit. Osteogenic differentiation was detected with quantification of alkaline phosphatase (ALP) activity also visualized with ALP staining. The transcription and expression of relevant genes were detected by qPCR and western blotting, respectively. NGF's effect on BMP2 was studied with qPCR and luciferase reporter assay. The phosphorylation of Smads was probed with specific antibodies by western blotting, and the location of Smads was observed through immunofluorescence. RESULTS We found that NGF promoted proliferation and osteogenic differentiation of MC3T3-E1, increased the expression level of BMP-2, as well as the phosphorylation and nuclear translocation of Smad1/5/8. However, neutralization of BMP-2 with si-BMP-2 or BMP-2 signal inhibitors reversed NGF induced phosphorylation and nuclear translocation of Smad1/5/8, as well as the expression of Runx2, type I collagen, osteocalcin and osteopontin. In addition, si-BMP-2 abrogated NGF-induced ALP activity. CONCLUSION NGF induced osteogenic differentiation of MC3T3-E1 cells through BMP-2/Smads pathway and induction of Runx2. Our study would provide a theoretical basis for clinical treatment of fractures using NGF.
Collapse
Affiliation(s)
- Xuming Yang
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China.
| | - Donggang Mou
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China
| | - Qunying Yu
- Maternity Department, The Second Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Jimei Zhang
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650065, Yunnan Province, China
| | - Ying Xiong
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China
| | - Zhimin Zhang
- Orthopedics Department, Yanshan County Hospital of Traditional Chinese Medicine, Wenshan Zhuang and Miao Autonomous Prefecture 663100, Yunnan Province, China
| | - Shan Xing
- Orthopedics Department, The Second People's Hospital of Yanshan County, Wenshan Zhuang and Miao Autonomous Prefecture 663101, Yunnan Province, China
| |
Collapse
|
14
|
Yang S, Cheng J, Man C, Jiang L, Long G, Zhao W, Zheng D. Effects of exogenous nerve growth factor on the expression of BMP-9 and VEGF in the healing of rabbit mandible fracture with local nerve injury. J Orthop Surg Res 2021; 16:74. [PMID: 33478541 PMCID: PMC7818757 DOI: 10.1186/s13018-021-02220-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mandibular fracture healing is a complex process involving nerves and growth factors. Nerve growth factor (NGF) not only facilitates the maintenance of sympathetic neurite growth but also stimulates other growth factors that can promote the essential osteogenesis and angiogenesis for fracture healing. Therefore, it is necessary to analyze the combined effects of NGF, bone morphogenic protein-9 (BMP-9), and vascular endothelial growth factor (VEGF) to accelerate the healing of mandible fractures. METHODS The models of mandible fracture with local nerve injury established in 48 rabbits were randomly divided into nerve growth factor group (NGF group), gelatin sponge group (GS group), blank group, and intact group. The recovery of nerve reflex was assessed by observing the number of rabbits with lower lip responses to acupuncture. The fracture healing was observed with visual and CBCT, and then callus tissues from the mandibular fracture area were collected for hematoxylin and eosin (HE) staining observation, and the expression of BMP-9 and VEGF in callus at different stages was detected by quantitative real-time PCR (qRT-PCR). RESULTS Needling reaction in the lower lip showed the number of animals with nerve reflex recovery was significantly higher in the NGF group than that in the GS and blank groups at the 2nd and 4th weeks after the operation. The combined results of macroscopic observation, CBCT examination, and histological analysis showed that a large number of osteoblasts and some vascular endothelial cells were found around the trabecular bone in the NGF group and the amount of callus formation and reconstruction was better than that in the GS group at the 2nd week after the operation. The qRT-PCR results indicated that the expression levels of BMP-9 and VEGF in the four groups reached the highest values at the 2nd week, while the expression levels of both in the NGF group were significantly higher than that in the GS group. CONCLUSION The exogenous NGF could accelerate the healing of mandible fractures. This work will provide a new foundation and theoretical basis for clarifying the mechanism of fracture healing, thereby promoting fracture healing and reducing the disability rate of patients.
Collapse
Affiliation(s)
- Sen Yang
- Oral Maxillofacial Trauma and Orthognathic Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiao Cheng
- Oral Maxillofacial Trauma and Orthognathic Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Cheng Man
- Oral Maxillofacial Trauma and Orthognathic Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lian Jiang
- Oral Maxillofacial Trauma and Orthognathic Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guogeng Long
- Oral Maxillofacial Trauma and Orthognathic Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wenjun Zhao
- Oral Maxillofacial Trauma and Orthognathic Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Dexin Zheng
- Oral Maxillofacial Trauma and Orthognathic Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
15
|
Ye J, Huang B, Gong P. Nerve growth factor-chondroitin sulfate/hydroxyapatite-coating composite implant induces early osseointegration and nerve regeneration of peri-implant tissues in Beagle dogs. J Orthop Surg Res 2021; 16:51. [PMID: 33436038 PMCID: PMC7805124 DOI: 10.1186/s13018-020-02177-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background Osseointegration is the premise of the chewing function of dental implant. Nerve growth factor (NGF), as a neurotrophic factor, can induce bone healing. However, the influence of NGF-chondroitin sulfate (CS)/hydroxyapatite (HA)-coating composite implant on the osseointegration and innervations is still not entirely clear. Materials and methods NGF-CS/HA-coating composite implants were prepared using the modified biomimetic method. The characteristics of NGF-CS/HA-coating implants were determined using a scanning electron microscope. After NGF-CS/HA-coating implants were placed in the mandible of Beagle dogs, the early osseointegration and innervation in peri-implant tissues were assessed through X-ray, Micro-CT, maximal pull-out force, double fluorescence staining, toluidine blue staining, DiI neural tracer, immunohistochemistry, and RT-qPCR assays. Results NGF-CS/HA-coating composite implants were made successfully, which presented porous mesh structures with the main components (Ti and HA). Besides, we revealed that implantation of NGF-CS/HA-coating implants significantly changed the morphology of bone tissues and elevated maximum output, MAR, BIC, and nerve fiber in the mandible of Beagle dogs. Moreover, we proved that the implantation of NGF-CS/HA-coating implants also markedly upregulated the levels of NGF, osteogenesis differentiation, and neurogenic differentiation-related genes in the mandible of Beagle dogs. Conclusion Implantation of NGF-CS/HA-coating composite implants has significant induction effects on the early osseointegration and nerve regeneration of peri-implant tissues in the mandible of Beagle dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-02177-5.
Collapse
Affiliation(s)
- Jun Ye
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, People's Republic of China
| | - Bo Huang
- State Key Laboratory of Oral Diseases, General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, Department of Oral Implant, West China School of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
16
|
Local injections of β-NGF accelerates endochondral fracture repair by promoting cartilage to bone conversion. Sci Rep 2020; 10:22241. [PMID: 33335129 PMCID: PMC7747641 DOI: 10.1038/s41598-020-78983-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
There are currently no pharmacological approaches in fracture healing designed to therapeutically stimulate endochondral ossification. In this study, we test nerve growth factor (NGF) as an understudied therapeutic for fracture repair. We first characterized endogenous expression of Ngf and its receptor tropomyosin receptor kinase A (TrkA) during tibial fracture repair, finding that they peak during the cartilaginous phase. We then tested two injection regimens and found that local β-NGF injections during the endochondral/cartilaginous phase promoted osteogenic marker expression. Gene expression data from β-NGF stimulated cartilage callus explants show a promotion in markers associated with endochondral ossification such as Ihh, Alpl, and Sdf-1. Gene ontology enrichment analysis revealed the promotion of genes associated with Wnt activation, PDGF- and integrin-binding. Subsequent histological analysis confirmed Wnt activation following local β-NGF injections. Finally, we demonstrate functional improvements to bone healing following local β-NGF injections which resulted in a decrease in cartilage and increase of bone volume. Moreover, the newly formed bone contained higher trabecular number, connective density, and bone mineral density. Collectively, we demonstrate β-NGF’s ability to promote endochondral repair in a murine model and uncover mechanisms that will serve to further understand the molecular switches that occur during cartilage to bone transformation.
Collapse
|
17
|
Effects of Early Life Stress on Bone Homeostasis in Mice and Humans. Int J Mol Sci 2020; 21:ijms21186634. [PMID: 32927845 PMCID: PMC7556040 DOI: 10.3390/ijms21186634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/27/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022] Open
Abstract
Bone pathology is frequent in stressed individuals. A comprehensive examination of mechanisms linking life stress, depression and disturbed bone homeostasis is missing. In this translational study, mice exposed to early life stress (MSUS) were examined for bone microarchitecture (μCT), metabolism (qPCR/ELISA), and neuronal stress mediator expression (qPCR) and compared with a sample of depressive patients with or without early life stress by analyzing bone mineral density (BMD) (DXA) and metabolic changes in serum (osteocalcin, PINP, CTX-I). MSUS mice showed a significant decrease in NGF, NPYR1, VIPR1 and TACR1 expression, higher innervation density in bone, and increased serum levels of CTX-I, suggesting a milieu in favor of catabolic bone turnover. MSUS mice had a significantly lower body weight compared to control mice, and this caused minor effects on bone microarchitecture. Depressive patients with experiences of childhood neglect also showed a catabolic pattern. A significant reduction in BMD was observed in depressive patients with childhood abuse and stressful life events during childhood. Therefore, future studies on prevention and treatment strategies for both mental and bone disease should consider early life stress as a risk factor for bone pathologies.
Collapse
|
18
|
Sun S, Diggins NH, Gunderson ZJ, Fehrenbacher JC, White FA, Kacena MA. No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone 2020; 131:115109. [PMID: 31715336 PMCID: PMC6934100 DOI: 10.1016/j.bone.2019.115109] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
Abstract
Neuropeptides and neurotrophins are key regulators of peripheral nociceptive nerves and contribute to the induction, sensitization, and maintenance of pain. It is now known that these peptides also regulate non-neuronal tissues, including bone. Here, we review the effects of numerous neuropeptides and neurotrophins on fracture healing. The neuropeptides calcitonin-gene related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP) have varying effects on osteoclastic and osteoblastic activity. Ultimately, CGRP and SP both accelerate fracture healing, while VIP and PACAP seem to negatively impact healing. Unlike the aforementioned neuropeptides, the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have more uniform effects. Both factors upregulate osteoblastic activity, osteoclastic activity, and, in vivo, stimulate osteogenesis to promote fracture healing. Future research will need to clarify the exact mechanism by which the neuropeptides and neurotrophins influence fracture healing. Specifically, understanding the optimal expression patterns for these proteins in the fracture healing process may lead to therapies that can maximize their bone-healing capabilities and minimize their pain-promoting effects. Finally, further examination of protein-sequestering antibodies and/or small molecule agonists and antagonists may lead to new therapies that can decrease the rate of delayed union/nonunion outcomes and fracture-associated pain.
Collapse
Affiliation(s)
- Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Nicklaus H Diggins
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Zachary J Gunderson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, IN, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA.
| |
Collapse
|
19
|
Tomlinson RE, Christiansen BA, Giannone AA, Genetos DC. The Role of Nerves in Skeletal Development, Adaptation, and Aging. Front Endocrinol (Lausanne) 2020; 11:646. [PMID: 33071963 PMCID: PMC7538664 DOI: 10.3389/fendo.2020.00646] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
The skeleton is well-innervated, but only recently have the functions of this complex network in bone started to become known. Although our knowledge of skeletal sensory and sympathetic innervation is incomplete, including the specific locations and subtypes of nerves in bone, we are now able to reconcile early studies utilizing denervation models with recent work dissecting the molecular signaling between bone and nerve. In total, sensory innervation functions in bone much as it does elsewhere in the body-to sense and respond to stimuli, including mechanical loading. Similarly, sympathetic nerves regulate autonomic functions related to bone, including homeostatic remodeling and vascular tone. However, more study is required to translate our current knowledge of bone-nerve crosstalk to novel therapeutic strategies that can be effectively utilized to combat skeletal diseases, disorders of low bone mass, and age-related decreases in bone quality.
Collapse
Affiliation(s)
- Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Ryan E. Tomlinson
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Adrienne A. Giannone
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
20
|
Guo J, Qu L, Dou TC, Shen MM, Hu YP, Ma M, Wang KH. Genome-wide association study provides insights into the genetic architecture of bone size and mass in chickens. Genome 2019; 63:133-143. [PMID: 31794256 DOI: 10.1139/gen-2019-0022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone size is an important trait for chickens because of its association with osteoporosis in layers and meat production in broilers. Here, we employed high density genotyping platforms to detect candidate genes for bone traits. Estimates of the narrow heritabilities ranged from 0.37 ± 0.04 for shank length to 0.59 ± 0.04 for tibia length. The dominance heritability was 0.12 ± 0.04 for shank length. Using a linear mixed model approach, we identified a promising locus within NCAPG on chromosome 4, which was associated with tibia length and mass, femur length and area, and shank length. In addition, three other loci were associated with bone size or mass at a Bonferroni-corrected genome-wide significance threshold of 1%. One region on chicken chromosome 1 between 168.38 and 171.82 Mb harbored HTR2A, LPAR6, CAB39L, and TRPC4. A second region that accounted for 2.2% of the phenotypic variance was located around WNT9A on chromosome 2, where allele substitution was predicted to be associated with tibia length. Four candidate genes identified on chromosome 27 comprising SPOP, NGFR, GIP, and HOXB3 were associated with tibia length and mass, femur length and area, and shank length. Genome partitioning analysis indicated that the variance explained by each chromosome was proportional to its length.
Collapse
Affiliation(s)
- Jun Guo
- Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China.,Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China
| | - Liang Qu
- Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China.,Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China
| | - Tao-Cun Dou
- Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China.,Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China
| | - Man-Man Shen
- Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China.,Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China
| | - Yu-Ping Hu
- Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China.,Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China
| | - Meng Ma
- Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China.,Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China
| | - Ke-Hua Wang
- Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China.,Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu province, Yangzhou, Jiangsu, 225125, China
| |
Collapse
|
21
|
Integrative genomic analysis predicts novel functional enhancer-SNPs for bone mineral density. Hum Genet 2019; 138:167-185. [PMID: 30656451 DOI: 10.1007/s00439-019-01971-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/03/2019] [Indexed: 01/20/2023]
Abstract
Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and deterioration of bone microarchitecture. To identify novel genetic loci underlying osteoporosis, an effective strategy is to focus on scanning of variants with high potential functional impacts. Enhancers play a crucial role in regulating cell-type-specific transcription. Therefore, single-nucleotide polymorphisms (SNPs) located in enhancers (enhancer-SNPs) may represent strong candidate functional variants. Here, we performed a targeted analysis for potential functional enhancer-SNPs that may affect gene expression and biological processes in bone-related cells, specifically, osteoblasts, and peripheral blood monocytes (PBMs), using five independent cohorts (n = 5905) and the genetics factors for osteoporosis summary statistics, followed by comprehensive integrative genomic analyses of chromatin states, transcription, and metabolites. We identified 15 novel enhancer-SNPs associated with femoral neck and lumbar spine BMD, including 5 SNPs mapped to novel genes (e.g., rs10840343 and rs10770081 in IGF2 gene) and 10 novel SNPs mapped to known BMD-associated genes (e.g., rs2941742 in ESR1 gene, and rs10249092 and rs4342522 in SHFM1 gene). Interestingly, enhancer-SNPs rs10249092 and rs4342522 in SHFM1 were tightly linked, but annotated to different enhancers in PBMs and osteoblasts, respectively, suggesting that even tightly linked SNPs may regulate the same target gene and contribute to the phenotype variation in cell-type-specific manners. Importantly, ten enhancer-SNPs may also regulate BMD variation by affecting the serum metabolite levels. Our findings revealed novel susceptibility loci that may regulate BMD variation and provided intriguing insights into the genetic mechanisms of osteoporosis.
Collapse
|
22
|
Su YW, Chim SM, Zhou L, Hassanshahi M, Chung R, Fan C, Song Y, Foster BK, Prestidge CA, Peymanfar Y, Tang Q, Butler LM, Gronthos S, Chen D, Xie Y, Chen L, Zhou XF, Xu J, Xian CJ. Osteoblast derived-neurotrophin‑3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats. Bone 2018; 116:232-247. [PMID: 30125729 PMCID: PMC6550307 DOI: 10.1016/j.bone.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
Abstract
Faulty bony repair causes dysrepair of injured growth plate cartilage and bone growth defects in children; however, the underlying mechanisms are unclear. Recently, we observed the prominent induction of neurotrophin‑3 (NT-3) and its important roles as an osteogenic and angiogenic factor promoting the bony repair. The current study investigated its roles in regulating injury site remodelling. In a rat tibial growth plate drill-hole injury repair model, NT-3 was expressed prominently in osteoblasts at the injury site. Recombinant NT-3 (rhNT-3) systemic treatment enhanced, but NT-3 immunoneutralization attenuated, expression of cartilage-removal proteases (MMP-9 and MMP-13), presence of bone-resorbing osteoclasts and expression of osteoclast protease cathepsin K, and remodelling at the injury site. NT-3 was also highly induced in cultured mineralizing rat bone marrow stromal cells, and the conditioned medium augmented osteoclast formation and resorptive activity, an ability that was blocked by presence of anti-NT-3 antibody. Moreover, NT-3 and receptor TrkC were induced during osteoclastogenesis, and rhNT-3 treatment activated TrkC downstream kinase Erk1/2 in differentiating osteoclasts although rhNT-3 alone did not affect activation of osteoclastogenic transcription factors NF-κB or NFAT in RAW264.7 osteoclast precursor cells. Furthermore, rhNT-3 treatment increased, but NT-3 neutralization reduced, expression of osteoclastogenic cytokines (RANKL, TNF-α, and IL-1) in mineralizing osteoblasts and in growth plate injury site, and rhNT-3 augmented the induction of these cytokines caused by RANKL treatment in RAW264.7 cells. Thus, injury site osteoblast-derived NT-3 is important in promoting growth plate injury site remodelling, as it induces cartilage proteases for cartilage removal and augments osteoclastogenesis and resorption both directly (involving activing Erk1/2 and substantiating RANKL-induced increased expression of osteoclastogenic signals in differentiating osteoclasts) and indirectly (inducing osteoclastogenic signals in osteoblasts).
Collapse
Affiliation(s)
- Yu-Wen Su
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Lin Zhou
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Chiaming Fan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia
| | - Yunmei Song
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, SA 5006, Australia.
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia.
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Qian Tang
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Lisa M Butler
- University of Adelaide Schools of Medicine and Medical Sciences, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Stan Gronthos
- University of Adelaide Schools of Medicine and Medical Sciences, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Yangli Xie
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
23
|
Yao Y, Du Y, Gu X, Guang MK, Huang B, Gong P. [Local injection of exogenous nerve growth factor improves early bone maturation of implants]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:128-132. [PMID: 29779271 PMCID: PMC7030349 DOI: 10.7518/hxkq.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/30/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the effects of nerve growth factor (NGF) in the osteogenic action of implants and the maturation and reconstruction changes in bone tissues in the early stage of osseointegration. METHODS The mouse implant model was established by placing titanium in the femoral head of the mouse and locally injecting NGF in the implant zone. On 1, 2 and 4 weeks after operation, stain samples were collected from animals using hematoxylin-eosin (HE) staining and Masson staining. The effect of NGF on the bone maturation was compared at different time points of early stage osseointegration. RESULTS The results of HE and Masson staining indicated that the local injection of external NGF can up-regulate bone mass, amount of bone trabecula, and bone maturity in the mouse model. The mature bone rate in treatment group of 1 week and 4 weeks after operation were significantly higher than those in the control group (P<0.05). CONCLUSIONS NGF can shorten the period of bone maturation.
Collapse
Affiliation(s)
- Yang Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xia Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meng-Kai Guang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Yang C, Wu H, Wang J. Effect of steroidal saponins-loaded nano-bioglass/phosphatidylserine/collagen bone substitute on bone healing. ACTA ACUST UNITED AC 2017; 62:487-491. [DOI: 10.1515/bmt-2016-0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/06/2016] [Indexed: 12/30/2022]
Abstract
AbstractThe objective of this study was to investigate the therapeutic potential of nano-bioglass/phosphatidylserine/collagen (nBG/PS/COL) scaffolds loaded with steroidal saponins as an inducer factor for skeletal defects. The drugs-encapsulated bone substitute was prepared by loading steroidal saponins-collagen microsphere suspension in nano-bioglass and phosphatidylserine (PS) composite. The scaffolds possess an interconnected porous structure with a porosity of about 82.3%. The pore size ranges from several micrometers up to about 400 μm. The drug release assays showed the long-term sustained release of steroidal saponins from the scaffolds with effective and safe bioactivity. Moreover,
Collapse
|
25
|
Su YW, Zhou XF, Foster BK, Grills BL, Xu J, Xian CJ. Roles of neurotrophins in skeletal tissue formation and healing. J Cell Physiol 2017; 233:2133-2145. [PMID: 28370021 DOI: 10.1002/jcp.25936] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
Neurotrophins and their receptors are key molecules that are known to be critical in regulating nervous system development and maintenance and have been recognized to be also involved in regulating tissue formation and healing in skeletal tissues. Studies have shown that neurotrophins and their receptors are widely expressed in skeletal tissues, implicated in chondrogenesis, osteoblastogenesis, and osteoclastogenesis, and are also involved in regulating tissue formation and healing events in skeletal tissue. Increased mRNA expression for neurotrophins NGF, BDNF, NT-3, and NT-4, and their Trk receptors has been observed in injured bone tissues, and NT-3 and its receptor, TrkC, have been identified to have the highest induction at the injury site in a drill-hole injury repair model in both bone and the growth plate. In addition, NT-3 has also recently been shown to be both an osteogenic and angiogenic factor, and this neurotrophin can also enhance expression of the key osteogenic factor, BMP-2, as well as the major angiogenic factor, VEGF, to promote bone formation, vascularization, and healing of the injury site. Further studies, however, are needed to investigate if different neurotrophins have differential roles in skeletal repair, and if NT-3 can be a potential target of intervention for promoting bone fracture healing.
Collapse
Affiliation(s)
- Yu-Wen Su
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Xin-Fu Zhou
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Brian L Grills
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Cory J Xian
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Guangxi cobra venom-derived NGF promotes the osteogenic and therapeutic effects of porous BCP ceramic. Exp Mol Med 2017; 49:e312. [PMID: 28386125 PMCID: PMC5420796 DOI: 10.1038/emm.2016.173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 01/21/2023] Open
Abstract
Neuro-osteological interactions have an important role in the regulation of bone metabolism and regeneration. Neuropeptides combined with porous biphasic calcium phosphates (BCP) using protein adsorption may contribute to the acceleration of bone formation. In the present study, we investigated the effect of BCP combined with nerve growth factor (NGF) on the growth of osteoblasts in vitro and the combinational therapeutic effect on the repair of calvarial defects in vivo. NGF was separated and purified from Chinese cobra venom using a simplified three-step chromatography method. BCP combined with NGF exerted a potent effect on osteoblast differentiation, as evidenced by enhanced cell proliferation, increased ALP activity and the up-regulated expression of osteogenesis-related genes and proteins. Further, combinational therapy with BCP and NGF improved calvarial regeneration, which was superior to treatment with therapy alone, as observed using imageological and morphological examination and histological and immunohistochemical staining. The results confirmed the effect of neuro-osteological interactions through combinatorial treatment with NGF and BCP to promote osteogenesis and bone formation, which may provide an effective and economical strategy for clinical application.
Collapse
|
27
|
Sang XG, Wang ZY, Cheng L, Liu YH, Li YG, Qin T, Di K. Analysis of the mechanism by which nerve growth factor promotes callus formation in mice with tibial fracture. Exp Ther Med 2017; 13:1376-1380. [PMID: 28413480 PMCID: PMC5377403 DOI: 10.3892/etm.2017.4108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/26/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to analyze the mechanism by which nerve growth factor (NGF) promotes callus formation in mice with tibial fracture. NGF transgenic homozygotic mice and NGF wild homozygotic mice were selected to construct non-stabilized fracture model of tibia. The mice were sacrificed on days 7, 14 and 21, respectively, and each group had a sample with 8 mice at each point in time. X-ray radiography and safranin fast green were used to observe fracture healing and in situ hybridization was used to examine the NGF mRNA expression of tibia at each phase of fracture healing. Tartrate-resistant acid phosphatase (TRAP) staining of callus tissue and the expression level of TRAP mRNA were combined to observe osteoclast formation. COL2A1, a chondrocyte differentiation-related gene in callus, and the mRNA level of SOX9 were combined to observe chondrocyte differentiation. It was found that under X-ray radiography, the fracture of NGF transgenic homozygotic mice healed in advance (P<0.05). Cartilage and bone tissue were identified by safranin and fast green staining. The residual cartilage on the callus tissue of NGF transgenic homozygotic mice had decreased significantly (P<0.05). The NGF mRNA expression level in each phase of callus formation of NGF transgenic homozygotic mice was significantly higher than that of the wild group (P<0.05). The number of positive cells in NGF-TRAP staining at each time point after fracture and the NGF mRNA expression level was markedly higher than that of the wild group, and the expression levels of COL2A1 and SOX9 mRNA were distinctively higher than that of the wild group. In conclusion, NGF potentially improves the healing of tibial fracture by osteoclast formation. Additionally, an increase in the number of osteoblasts in the NGF transgenic homozygotic mice compared with the wild-type mice may be achieved by cartilage differentiation due to NGF increasing the COL2A1 and SOX9 mRNA expression levels.
Collapse
Affiliation(s)
- Xi-Guang Sang
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhi-Yong Wang
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lin Cheng
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yan-Hong Liu
- Department of Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yong-Gang Li
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tao Qin
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Kai Di
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
28
|
Brady RD, Shultz SR, Sun M, Romano T, van der Poel C, Wright DK, Wark JD, O'Brien TJ, Grills BL, McDonald SJ. Experimental Traumatic Brain Injury Induces Bone Loss in Rats. J Neurotrauma 2016; 33:2154-2160. [PMID: 25686841 DOI: 10.1089/neu.2014.3836] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p < 0.01) and cortical thickness (10% decrease at 1 week, 11% decrease at 12 weeks p < 0.001). There was also a 23% reduction in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p < 0.001). There were no differences in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.
Collapse
Affiliation(s)
- Rhys D Brady
- 1 Department of Physiology, Anatomy and Microbiology, La Trobe University , Bundoora, VIC, Australia
| | - Sandy R Shultz
- 2 Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne , Parkville, VIC, Australia
| | - Mujun Sun
- 2 Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne , Parkville, VIC, Australia
| | - Tania Romano
- 1 Department of Physiology, Anatomy and Microbiology, La Trobe University , Bundoora, VIC, Australia
| | - Chris van der Poel
- 1 Department of Physiology, Anatomy and Microbiology, La Trobe University , Bundoora, VIC, Australia
| | - David K Wright
- 3 Anatomy and Neuroscience, The University of Melbourne , Parkville, VIC, Australia .,4 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Parkville, VIC, Australia
| | - John D Wark
- 2 Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne , Parkville, VIC, Australia
| | - Terence J O'Brien
- 2 Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne , Parkville, VIC, Australia
| | - Brian L Grills
- 1 Department of Physiology, Anatomy and Microbiology, La Trobe University , Bundoora, VIC, Australia
| | - Stuart J McDonald
- 1 Department of Physiology, Anatomy and Microbiology, La Trobe University , Bundoora, VIC, Australia
| |
Collapse
|
29
|
Su YW, Chung R, Ruan CS, Chim SM, Kuek V, Dwivedi PP, Hassanshahi M, Chen KM, Xie Y, Chen L, Foster BK, Rosen V, Zhou XF, Xu J, Xian CJ. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats. J Bone Miner Res 2016; 31:1258-74. [PMID: 26763079 DOI: 10.1002/jbmr.2786] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/20/2022]
Abstract
Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yu-Wen Su
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Chun-Sheng Ruan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Vincent Kuek
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Prem P Dwivedi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, Australia
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
30
|
Compton J, Fragomen A, Rozbruch SR. Skeletal Repair in Distraction Osteogenesis: Mechanisms and Enhancements. JBJS Rev 2015; 3:01874474-201508000-00002. [PMID: 27490473 DOI: 10.2106/jbjs.rvw.n.00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jocelyn Compton
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10031
| | - Austin Fragomen
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| | - S Robert Rozbruch
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| |
Collapse
|
31
|
Rapp AE, Kroner J, Baur S, Schmid F, Walmsley A, Mottl H, Ignatius A. Analgesia via blockade of NGF/TrkA signaling does not influence fracture healing in mice. J Orthop Res 2015; 33:1235-41. [PMID: 25876530 DOI: 10.1002/jor.22892] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/10/2015] [Accepted: 03/10/2015] [Indexed: 02/04/2023]
Abstract
Abatement of fracture-related pain is important in patient welfare. However, the frequently used non-steroidal anti-inflammatory drugs are considered to impair fracture healing through blockade of cyclooxygenase-2. An alternative for fracture-related pain treatment may be blockade of nerve growth factor (NGF)/neurotrophic tyrosine kinase receptor type 1 (TrkA) signaling. Because the effect of blocking this signal-pathway on bone healing has not been extensively investigated, we addressed this issue by applying neutralizing antibodies that target NGF and TrkA, respectively, in a mouse fracture model. Mice with a knock-in for human TrkA underwent femur osteotomy and were randomly allocated to phosphate-buffered-saline, anti-NGF-antibody, or anti-TrkA-antibody treatment. The analgesic effect of the antibodies was determined from the activity and the ground reaction force of the operated limb. The effect of antibody administration on fracture healing was assessed by histomorphometry, micro-computed tomography, and biomechanics. NGF/TrkA-signaling blockade had no negative effect on fracture healing as callus formation and maturation were not altered. Mice treated with anti-TrkA antibody displayed significantly greater activity on post-operative day 2 compared to PBS treatment indicating effective analgesia. Our data indicate, that blockade of NGF/TrkA signaling via specific neutralizing antibodies for pain reduction during fracture healing does not influence fracture healing.
Collapse
Affiliation(s)
- Anna E Rapp
- Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research Ulm (zmfu), University of Ulm, Ulm, Germany
| | - Jochen Kroner
- Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research Ulm (zmfu), University of Ulm, Ulm, Germany
| | - Stephanie Baur
- Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research Ulm (zmfu), University of Ulm, Ulm, Germany
| | - Fabian Schmid
- Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research Ulm (zmfu), University of Ulm, Ulm, Germany
| | - Adrian Walmsley
- Glenmark Pharmaceuticals Limited, La Chaux-de-Fonds, Switzerland
| | - Harald Mottl
- Glenmark Pharmaceuticals Limited, La Chaux-de-Fonds, Switzerland
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research Ulm (zmfu), University of Ulm, Ulm, Germany
| |
Collapse
|
32
|
Omae T, Nakamura J, Ohtori S, Orita S, Yamauchi K, Miyamoto S, Hagiwara S, Kishida S, Takahashi K. A novel rat model of hip pain by intra-articular injection of nerve growth factor-characteristics of sensory innervation and inflammatory arthritis. Mod Rheumatol 2015; 25:931-6. [PMID: 25736365 DOI: 10.3109/14397595.2015.1023977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To determine the direct effects of intra-articular injection of nerve growth factor (NGF) into normal rat hips and the time course of pain-related mediator appearance. METHODS Using 36 numbers of 8-week-old male Sprague-Dawley rats, 30 μl of 1% Fluoro-Gold solution (FG) (Sham-operated group; n = 12), 30 μl of 1% FG with 50 μg/ml NGF (NGF50 group; n = 12), and 30 μl of 1% FG with 100 μg/ml NGF (NGF100 group; n = 12) were injected into the left hip joints. Neurons in the dorsal root ganglion (DRG) labeled with FG, and FG and calcitonin gene-related peptide-immunoreactivity (CGRP-IR) were counted. The synovia in the left hip joint was examined histologically. RESULTS The NGF50 and NGF100 groups showed evidence of synovitis without cartilage degeneration compared with the Sham-operated group. At 7 days, the proportions of CGRP-IR FG-labeled to total FG-labeled neurons were 12%, 18%, and 36% in the Sham-operated, NGF50, and NGF100 groups, respectively. At 14 days, the proportions were 13%, 22%, and 35% in the Sham-operated, NGF50, and NGF100 groups, respectively. At 7 and 14 days, the NGF50 and NGF100 groups showed a significantly higher proportion of CGRP-IR FG-labeled neurons than the Sham-operated group. CONCLUSIONS Intra-articular administration of NGF into the hip joint produces a novel rat model for hip pain.
Collapse
Affiliation(s)
- Takanori Omae
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Junichi Nakamura
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Seiji Ohtori
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Sumihisa Orita
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Kazuyo Yamauchi
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Shuichi Miyamoto
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Shigeo Hagiwara
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Shunji Kishida
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Kazuhisa Takahashi
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| |
Collapse
|
33
|
BDNF and its TrkB receptor in human fracture healing. Ann Anat 2014; 196:286-95. [DOI: 10.1016/j.aanat.2014.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022]
|
34
|
Hajifathali A, Saba F, Atashi A, Soleimani M, Mortaz E, Rasekhi M. The role of catecholamines in mesenchymal stem cell fate. Cell Tissue Res 2014; 358:651-65. [PMID: 25173883 DOI: 10.1007/s00441-014-1984-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells found in many adult tissues, especially bone marrow (BM) and are capable of differentiation into various lineage cells such as osteoblasts, adipocytes, chondrocytes and myocytes. Moreover, MSCs can be mobilized from connective tissue into circulation and from there to damaged sites to contribute to regeneration processes. MSCs commitment and differentiation are controlled by complex activities involving signal transduction through cytokines and catecholamines. There has been an increasing interest in recent years in the neural system, functioning in the support of stem cells like MSCs. Recent efforts have indicated that the catecholamine released from neural and not neural cells could be affected characteristics of MSCs. However, there have not been review studies of most aspects involved in catecholamines-mediated functions of MSCs. Thus, in this review paper, we will try to describe the current state of catecholamines in MSCs destination and discuss strategies being used for catecholamines for migration of these cells to damaged tissues. Then, the role of the nervous system in the induction of osteogenesis, adipogenesis, chondrogenesis and myogenesis from MSCs is discussed. Recent progress in studies of signaling transduction of catecholamines in determination of the final fate of MSCs is highlighted. Hence, the knowledge of interaction between MSCs with the neural system could be applied towards the development of new diagnostic and treatment alternatives for human diseases.
Collapse
Affiliation(s)
- Abbas Hajifathali
- Bone Marrow Transplantation Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
35
|
Simultaneous inferior alveolar nerve regeneration and osseointegration with a nerve growth factor-supplying implant: a preliminary study. J Oral Maxillofac Surg 2014; 73:410-23. [PMID: 25266595 DOI: 10.1016/j.joms.2014.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/20/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE Although nerve growth factor (NGF) has been proved to enhance inferior alveolar nerve (IAN) regeneration, its clinical application remains a challenging issue. This study investigated the functional regeneration of IAN injury by supplying NGF using an NGF-supplying implant and its effect on the osseointegration. MATERIALS AND METHODS In canine IAN transection-and-repair models (n = 9), NGF-supplying implants connected to osmotic pumps were installed just above the transection site. In the right IAN, NGF 300 μg in phosphate buffered saline (PBS) 2 mL was loaded in the pump and pure PBS 2 mL was loaded in the left IAN. The gross clinical finding was evaluated by wound healing, inflammation, implant exposure, and loss of fixture. To evaluate IAN regeneration, electrophysiologic (amplitude, latency, conduction velocity, and peak voltage) and histomorphometric (axon count and density, myelin thickness, and ratio of axon diameter to fiber diameter) analyses were performed. Implant stability quotient, bone-to-implant contact ratio, and new bone area were measured to assess the osseointegration of the NGF-supplying implant. RESULTS The conduction velocity (2.675 m/second) and peak voltage (1.940 μV) of the NGF group at 6 weeks were considerably higher than those of the PBS group (1.892 m/second and 1.300 μV, respectively). The same results were observed for axon count (NGF vs PBS, 4,576.107 ± 270.413 vs 3,606.972 ± 242.876), axon density (10,707.458 ± 638.835 vs 7,899.781 ± 1,063.625/mm(2)), and myelin thickness (1.670 ± 0.555 vs 1.173 ± 0.388 μm). There were no meaningful differences for the other parameters. CONCLUSIONS Supplying NGF with specially designed dental implants can be a new therapeutic approach to enable IAN regeneration and osseointegration simultaneously.
Collapse
|
36
|
Sousa DM, McDonald MM, Mikulec K, Peacock L, Herzog H, Lamghari M, Little DG, Baldock PA. Neuropeptide Y modulates fracture healing through Y1 receptor signaling. J Orthop Res 2013; 31:1570-8. [PMID: 23733357 DOI: 10.1002/jor.22400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/06/2013] [Indexed: 02/04/2023]
Abstract
Neuropeptide Y acting via it's Y1 receptor represents a powerful pathway in the control of bone mass. The global or osteoblast-specific Y1 receptor deletion induces pronounced bone anabolic effects in mice. However, the contribution of Y1 receptor deletion in bone repair/healing remained to be clarified. Therefore, in this study we characterized the role of Y1 receptor deletion in fracture healing. Closed tibial fractures were generated in germline (Y1 (-/-) ) and osteoblastic-specific Y1 receptor knockout mice. The progression of tibial repair monitored from 1- until 6-weeks post-fracture demonstrated that in Y1 (-/-) mice there is a delay in fracture repair, as seen by a decrease in bone callus volume and callus strength. Moreover, the histological features included elevated avascular and cartilage area and consequently delayed cartilage removal, and hence impaired union. Interestingly, this delay in bone repair was not related directly to Y1 receptors expressed by mature osteoblasts. These findings suggest that the global absence of the Y1 receptor delays fracture healing, through impairing the early phases of fracture repair to achieve bony union. The data acquired on the role of Y1 receptor signaling disruption in bone regeneration is critical for the design of future therapeutic strategies.
Collapse
Affiliation(s)
- Daniela M Sousa
- Instituto de Engenharia Biomédica (INEB), NEWTherapies Group, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
37
|
He H, Yao Y, Wang Y, Wu Y, Yang Y, Gong P. A novel bionic design of dental implant for promoting its long-term success using nerve growth factor (NGF): utilizing nano-springs to construct a stress-cushioning structure inside the implant. Med Sci Monit 2012; 18:HY42-46. [PMID: 22847209 PMCID: PMC3560710 DOI: 10.12659/msm.883253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/01/2012] [Indexed: 12/11/2022] Open
Abstract
The absence of periodontium causes masticatory load in excess of the self-repairing potential of peri-implant bone; peri-implant bone loss caused by occlusal overload is not uncommon in patients and greatly diminishes chances of long-term success. Regenerative treatments may be useful in inducing peri-implant bone regeneration, but are only stopgap solutions to the aftermaths caused by the imperfect biomechanical compatibility of the dental implant. Despite promising success, the tissue-engineered periodontal ligament still needs a period of time to be perfected before being clinically applied. Hence, we propose a novel design of dental implant that utilizes nano-springs to construct a stress-cushioning structure inside the implant. Many studies have shown that NGF, a neurotrophin, is effective for nerve regeneration in both animal and clinical studies. Moreover, NGF has the potential to accelerate bone healing in patients with fracture and fracture nonunion and improve osseointegration of the implant. The key point of the design is to reduce stress concentrated around peri-implant bone by cushioning masticatory forces and distributing them to all the peri-implant bone through nano-springs, and promote osseoperception and osseointegration by NGF-induced nerve regeneration and new bone formation. This design, which transfers the main biomechanical interface of the implant from outside to inside, if proven to be valid, may to some extent compensate for the functions of lost periodontium in stress cushioning and proprioception.
Collapse
Affiliation(s)
- Hao He
- State Key Laboratory of Oral Diseases, Sichuan University, Sichuan, P.R. China
- Department of Oral Implantology, West China College of Stomatology, Sichuan University, Sichuan, P.R. China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, Sichuan University, Sichuan, P.R. China
- Department of Oral Implantology, West China College of Stomatology, Sichuan University, Sichuan, P.R. China
| | - Yanying Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Sichuan, P.R. China
- Department of Oral Implantology, West China College of Stomatology, Sichuan University, Sichuan, P.R. China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Sichuan, P.R. China
- Department of Oral Implantology, West China College of Stomatology, Sichuan University, Sichuan, P.R. China
| | - Yang Yang
- State Key Laboratory of Oral Diseases, Sichuan University, Sichuan, P.R. China
- Department of Oral Implantology, West China College of Stomatology, Sichuan University, Sichuan, P.R. China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, Sichuan University, Sichuan, P.R. China
- Department of Oral Implantology, West China College of Stomatology, Sichuan University, Sichuan, P.R. China
| |
Collapse
|
38
|
Wu CL, Chou YH, Chang YJ, Teng NY, Hsu HL, Chen L. Interplay between cell migration and neurite outgrowth determines SH2B1β-enhanced neurite regeneration of differentiated PC12 cells. PLoS One 2012; 7:e34999. [PMID: 22539954 PMCID: PMC3335126 DOI: 10.1371/journal.pone.0034999] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
The regulation of neurite outgrowth is crucial in developing strategies to promote neurite regeneration after nerve injury and in degenerative diseases. In this study, we demonstrate that overexpression of an adaptor/scaffolding protein SH2B1β promotes neurite re-growth of differentiated PC12 cells, an established neuronal model, using wound healing (scraping) assays. Cell migration and the subsequent remodeling are crucial determinants during neurite regeneration. We provide evidence suggesting that overexpressing SH2B1β enhances protein kinase C (PKC)-dependent cell migration and phosphatidylinositol 3-kinase (PI3K)-AKT-, mitogen activated protein kinase (MAPK)/extracellular signal-regulated protein kinase (ERK) kinase (MEK)-ERK-dependent neurite re-growth. Our results further reveal a cross-talk between pathways involving PKC and ERK1/2 in regulating neurite re-growth and cell migration. We conclude that temporal regulation of cell migration and neurite outgrowth by SH2B1β contributes to the enhanced regeneration of differentiated PC12 cells.
Collapse
Affiliation(s)
- Chia-Ling Wu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Han Chou
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Jung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Nan-Yuan Teng
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Hsin-Ling Hsu
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan, Republic of China
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
39
|
Association of osteonecrosis and peripheral neuropathy in HIV-1-infected patients: possible roles of nerve growth factor and vascular endothelial growth factor. AIDS 2011; 25:2305-6. [PMID: 22067199 DOI: 10.1097/qad.0b013e32834cdadd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
McDonald SJ, Dooley PC, McDonald AC, Djouma E, Schuijers JA, Ward AR, Grills BL. α(1) adrenergic receptor agonist, phenylephrine, actively contracts early rat rib fracture callus ex vivo. J Orthop Res 2011; 29:740-5. [PMID: 21437954 DOI: 10.1002/jor.21302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/08/2010] [Indexed: 02/04/2023]
Abstract
Early, soft fracture callus that links fracture ends together is smooth muscle-like in nature. We aimed to determine if early fracture callus could be induced to contract and relax ex vivo by similar pathways to smooth muscle, that is, contraction via α(1) adrenergic receptor (α(1) AR) activation with phenylephrine (PE) and relaxation via β(2) adrenergic receptor (β(2) AR) stimulation with terbutaline. A sensitive force transducer quantified 7 day rat rib fracture callus responses in modified Krebs-Henseliet (KH) solutions. Unfractured ribs along with 7, 14, and 21 day fracture calluses were analyzed for both α(1) AR and β(2) AR gene expression using qPCR, whilst 7 day fracture callus was examined via immunohistochemistry for both α(1) AR and β(2) AR- immunoreactivity. In 7 day callus, PE (10(-6) M) significantly induced an increase in force that was greater than passive force generated in calcium-free KH (n = 8, mean 51% increase, 95% CI: 26-76%). PE-induced contractions in calluses were attenuated by the α(1) AR antagonist, prazosin (10(-6) M; n = 7, mean 5% increase, 95% CI: 2-11%). Terbutaline did not relax callus. Gene expression of α(1) ARs was constant throughout fracture healing; however, β(2) AR expression was down-regulated at 7 days compared to unfractured rib (p < 0.01). Furthermore, osteoprogenitor cells of early fibrous callus displayed considerable α(1) AR-like immunoreactivity but not β(2) AR-like immunoreactivity. Here, we demonstrate for the first time that early fracture callus can be pharmacologically induced to contract. We propose that increased concentrations of α(1) AR agonists such as noradrenaline may tonically contract callus in vivo to promote osteogenesis.
Collapse
Affiliation(s)
- Stuart J McDonald
- Musculoskeletal Research Centre, School of Human Biosciences, La Trobe University, Victoria 3086, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Local injection of nerve growth factor via a hydrogel enhances bone formation during mandibular distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol 2011; 113:48-53. [PMID: 22677691 DOI: 10.1016/j.tripleo.2011.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/04/2011] [Accepted: 01/12/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the effects of the injectable NGF-carrying collagen/nano-hydroxyapatite/alginate hydrogel on the bone formation in a rabbit mandibular distraction osteogenesis model. STUDY DESIGN Thirty-five New Zealand white rabbits underwent bilateral madibular distraction osteogenesis at a rate of 0.75 mm/12 h for 6 days. The rabbits were divided into 4 groups: group 1 received injections of collagen/nano-hydroxyapatite/alginate hydrogel containing hNGFβ; groups 2, 3, and 4 received injections of hNGFβ, Col/nHA/Alg hydrogel, and saline, respectively. The injections were performed on both sides of the mandible at the end of the lengthening phase. All the animals were killed at a consolidation time of 14 days. RESULTS No difference in regenerate bone dimensions was observed among the 4 groups. Bone mineral density, the maximum load, and the bone volume/total volume of the new bone in the distraction gap in group 1 was significantly greater (P < .05) than in the other 3 groups. CONCLUSIONS Application of the Col/nHA/Alg hydrogel as an NGF delivery during the consolidation phase of distraction osteogenesis increased regeneration and new bone formation.
Collapse
|
42
|
Yan XZ, Ge SH, Sun QF, Guo HM, Yang PS. A Pilot Study Evaluating the Effect of Recombinant Human Bone Morphogenetic Protein-2 and Recombinant Human Beta-Nerve Growth Factor on the Healing of Class III Furcation Defects in Dogs. J Periodontol 2010; 81:1289-98. [DOI: 10.1902/jop.2010.090655] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Wang L, Cao J, Lei DL, Cheng XB, Zhou HZ, Hou R, Zhao YH, Cui FZ. Application of nerve growth factor by gel increases formation of bone in mandibular distraction osteogenesis in rabbits. Br J Oral Maxillofac Surg 2010; 48:515-9. [PMID: 20236741 DOI: 10.1016/j.bjoms.2009.08.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/17/2009] [Indexed: 11/17/2022]
Abstract
The long period of bony consolidation is a concern in mandibular distraction osteogenesis (DO). We have previously shown that repeated local injections of human nerve growth factor beta (NGFβ) can appreciably improve bony consolidation in a rabbit model of DO. The present study was designed to test the effect of a single injection of human NGFβ delivered by collagen/nano-hydroxyapatite/kappa-carrageenan gels to sites of new bony formation in DO. Rabbits underwent mandibular DO at a rate of 0.75 mm/12h for 6 days. At the end of the distraction period, the following injections were given percutaneously into the callus (n=6 in each of the four groups): human NGFβ in the gel; human NGFβ in saline; the gels alone; and saline alone. Fourteen days after the end of distraction, mechanical testing, histological and histomorphometric variables of the new bone were evaluated. Histologically, the NGFβ group had more advanced consolidation than the other three groups. Both maximal load and bone volume/total volume in this group were significantly higher than in the other three (P<0.05). In conclusion, the delivery of human NGFβ in the gels results in better acceleration of new bone formation than when it is given in saline, and may be a possible way to shorten the duration of craniofacial DO.
Collapse
Affiliation(s)
- L Wang
- Department of Oral and Maxillofacial Surgery, Fourth Military Medical University, School of Stomatology, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Anissian L, Kirby M, Stark A. Primary cortical brain cells influence osteoblast activity. Biochem Biophys Res Commun 2009; 390:410-4. [DOI: 10.1016/j.bbrc.2009.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 11/24/2022]
|
45
|
Effects of locally applied nerve growth factor to the inferior alveolar nerve histology in a rabbit model of mandibular distraction osteogenesis. Int J Oral Maxillofac Surg 2009; 38:64-9. [DOI: 10.1016/j.ijom.2008.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 04/30/2008] [Accepted: 11/13/2008] [Indexed: 11/17/2022]
|
46
|
Mammoto T, Seerattan RA, Paulson KD, Leonard CA, Bray RC, Salo PT. Nerve growth factor improves ligament healing. J Orthop Res 2008; 26:957-64. [PMID: 18302239 DOI: 10.1002/jor.20615] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous work has shown that innervation participates in normal ligament healing. The present study was performed to determine if exogenous nerve growth factor (NGF) would improve the healing of injured ligament by promoting reinnervation, blood flow, and angiogenesis. Two groups of 30 Sprague-Dawley rats underwent unilateral medial collateral ligament transection (MCL). One group was given 10 microg NGF and the other was given PBS via osmotic pump over 7 days after injury. After 7, 14, and 42 days, in vivo blood flow was measured using laser speckle perfusion imaging (LSPI). Morphologic assessments of nerve density, vascularity, and angiogenesis inhibitor production were done in three animals at each time point by immunohistochemical staining for the pan-neuronal marker PGP9.5, the endothelial marker vWF, and the angiogenesis inhibitor thrombospondin-2 (TSP-2). Ligament scar material and structural mechanical properties were assessed in seven rats at each time point. Increased nerve density was promoted by NGF at both 14 and 42 days. Exposure to NGF also led to increased ligament vascularity, as measured by histologic assessment of vWF immunohistochemistry, although LSPI-measured blood flow was not significantly different from controls. NGF treatment also led to decreased expression of TSP-2 at 14 days. Mechanical testing revealed that exposure to NGF increased failure load by 40%, ultimate tensile strength by 55%, and stiffness by 30% at 42 days. There were no detectable differences between groups in creep properties. The results suggest that local application of NGF can improve ligament healing by promoting both reinnervation and angiogenesis, and results in scars with enhanced mechanical properties.
Collapse
Affiliation(s)
- Takeo Mammoto
- McCaig Institute for Bone and Joint Health, Department of Surgery, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Koewler NJ, Freeman KT, Buus RJ, Herrera MB, Jimenez-Andrade JM, Ghilardi JR, Peters CM, Sullivan LJ, Kuskowski MA, Lewis JL, Mantyh PW. Effects of a monoclonal antibody raised against nerve growth factor on skeletal pain and bone healing after fracture of the C57BL/6J mouse femur. J Bone Miner Res 2007; 22:1732-42. [PMID: 17638576 DOI: 10.1359/jbmr.070711] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
UNLABELLED A closed femur fracture pain model was developed in the C57BL/6J mouse. One day after fracture, a monoclonal antibody raised against nerve growth factor (anti-NGF) was delivered intraperitoneally and resulted in a reduction in fracture pain-related behaviors of approximately 50%. Anti-NGF therapy did not interfere with bone healing as assessed by mechanical testing and histomorphometric analysis. INTRODUCTION Current therapies to treat skeletal fracture pain are limited. This is because of the side effect profile of available analgesics and the scarcity of animal models that can be used to understand the mechanisms that drive this pain. Whereas previous studies have shown that mineralized bone, marrow, and periosteum are innervated by sensory and sympathetic fibers, it is not understood how skeletal pain is generated and maintained even in common conditions such as osteoarthritis, low back pain, or fracture. MATERIALS AND METHODS In this study, we characterized the pain-related behaviors after a closed femur fracture in the C57BL/6J mouse. Additionally, we assessed the effect of a monoclonal antibody that binds to and sequesters nerve growth factor (anti-NGF) on pain-related behaviors and bone healing (mechanical properties and histomorphometric analysis) after fracture. RESULTS Administration of anti-NGF therapy (10 mg/kg, days 1, 6, and 11 after fracture) resulted in a reduction of fracture pain-related behaviors of approximately 50%. Attenuation of fracture pain was evident as early as 24 h after the initial dosing and remained efficacious throughout the course of fracture pain. Anti-NGF therapy did not modify biomechanical properties of the femur or histomorphometric indices of bone healing. CONCLUSIONS These findings suggest that therapies that target NGF or its cognate receptor(s) may be effective in attenuating nonmalignant fracture pain without interfering with bone healing.
Collapse
Affiliation(s)
- Nathan J Koewler
- Neurosystems Center and Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang L, Zhou S, Liu B, Lei D, Zhao Y, Lu C, Tan A. Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res 2006; 24:2238-45. [PMID: 17001706 DOI: 10.1002/jor.20269] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Distraction osteogenesis is widely used in treating deformities, defects, and fractures of both long bones and craniofacial bones. Demands for acceleration of bone consolidation are increased in distraction osteogenesis. Nerve growth factor (NGF) can enhance innervation and bone regeneration in a fracture model and stimulate differentiation of osteoblastic cells. In this study, we tested the ability of locally applied NGF to enhance bone regeneration in a rabbit model of mandibular distraction osteogenesis. Twenty rabbits underwent bilateral distraction osteogenesis with a rate of 0.5 mm per 12 h. Two times 0.04 mg human NGFbeta (hNGFbeta) in buffer was injected into the callus after distraction. The contralateral side received placebo injections. Rabbits were euthanized at consolidation times of 14 and 28 days. Specimens were subjected to radiography, callus dimensions measurement, mechanical testing, and bone histological and histomorphometric analysis. The maximum load, bone volume/total volume, mineral apposition rate of the 1st to 11th day, and mineralized bone percentage were significantly higher in the hNGFbeta side at 14 and 28 days (p<0.05). The data indicate that locally applied hNGFbeta can accelerate callus maturation and may be an option to shorten the consolidation period in distraction osteogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oral and Maxillofacial Surgery, Fourth Military Medical University, Chang Le Road 145, Xi'an, and No.537 Hospital of PLA, Baoji, P.R. China
| | | | | | | | | | | | | |
Collapse
|
49
|
Smith KG, Yates JM, Robinson PP. The effect of nerve growth factor on functional recovery after injury to the chorda tympani and lingual nerves. Brain Res 2004; 1020:62-72. [PMID: 15312788 DOI: 10.1016/j.brainres.2004.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 01/01/2023]
Abstract
Nerve growth factor (NGF) is known to ameliorate central changes and enhance the regeneration of damaged axons in the early stages after peripheral nerve injury. We have assessed the long-term outcome of placing NGF at a nerve repair site by determining the functional characteristics of several groups of sensory afferent and autonomic efferent fibres in the cat lingual nerve. Six months after entubulation repair, with or without the incorporation of NGF, the recovery of secretomotor and vasomotor efferents was determined by recording salivary flow from the submandibular gland and temperature changes on the tongue surface, each evoked by stimulation of the repaired nerve. Electrophysiological recordings from the lingual and chorda tympani nerves proximal to the repair allowed characterisation of mechanosensitive, thermosensitive and gustatory afferents. When compared with data from uninjured control animals, both repair groups showed changes in spontaneous discharge and persistent reductions in conduction velocity, receptor sensitivity, proportion of gustatory units, and rate of salivary secretion. Comparisons between the outcome of repair with or without NGF revealed few differences. In the NGF group the conduction velocity of afferents in the lingual nerve was lower, and the level of spontaneous activity was higher. However, NGF appeared to preferentially enhance the regeneration of thermosensitive afferents, suggesting that it may play a role in determining the phenotypic profile of the regenerating axonal population. This suggests that future therapeutic enhancement of regeneration after peripheral nerve injury may require a combination of factors to encourage regeneration of specific fibre groups.
Collapse
Affiliation(s)
- Keith G Smith
- Department of Oral and Maxillofacial Surgery, School of Clinical Dentistry, Claremont Crescent, Sheffield S10 2TA, UK
| | | | | |
Collapse
|
50
|
Dooley PC, Howgate ML, Schuijers JA, Grills BL. Early callus of fractured rib of rat contracts and relaxes ex vivo. J Orthop Res 2004; 22:1063-71. [PMID: 15304280 DOI: 10.1016/j.orthres.2003.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/31/2003] [Indexed: 02/04/2023]
Abstract
PURPOSE Wound contraction is an essential process in early soft-tissue repair, yet contraction of callus in fracture repair has not been investigated previously. Fracture callus consists of several cell types, many of which may have the capacity to contract. Accordingly, the purpose of the present study was to (i) determine whether early soft fracture calluses contract and relax ex vivo and (ii) identify and locate the contractile protein, alpha smooth muscle actin (alphaSMA) in callus. METHODS One non-weight-bearing rib was fractured in adult male rats under anaesthesia and 10 calluses were removed 5, 7 and 9 days later for examination. Force production by calluses was measured using a sensitive force transducer when callus preparations were immersed sequentially in solutions known to either contract or relax smooth muscle preparations. Calluses and unfractured rib were analysed for the presence of alphaSMA using Western Blot and immunohistochemical techniques. RESULTS When immersed in normal Krebs-Henseleit solution (K-H; pH 7.4, 22 degrees C) 7 callus preparations contracted and 3 relaxed. The force response was phasic (3 calluses) or tonic (7 calluses). Subsequent immersion in Ca(2+)-free K-H resulted in no change in force in 4 calluses, a decrease in force (relaxation) in 3 calluses, and an increase in force (contraction) in 2 calluses when compared to the force in the preceding solution (K-H). The final incubation in a solution having a high [K+] (64 mM) partially relaxed 6 calluses, contracted 3 and produced no change in force in 1 callus compared to the final force of the callus in the Ca(2+)-free solution. Collagen (in the form of rat Achilles tendon), the major structural protein in soft fracture callus, relaxed in K-H and continued to relax during exposure to Ca(2+)-free K-H and to solutions having a high [K+]. Western Blot and immunohistochemical studies detected the presence of alphaSMA in calluses and (in particular) in osteoprogenitor cells of fibrous callus respectively, as well as its absence from unfractured rib. CONCLUSIONS (i) Early, soft fracture callus is capable of contracting and relaxing, (ii) the responses of callus to K-H, Ca(2+)-free and high [K+] solutions are distinctly different from the responses of smooth muscle preparations reported in the literature, (iii) the cell types in callus, particularly osteoprogenitor cells in uncalcified, collagenous matrix, have an essential contractile protein, alphaSMA, to support the observed contraction and relaxation and (iv) the contraction of soft fracture callus may facilitate fracture repair by creating tension within the callus and drawing the fracture ends together.
Collapse
Affiliation(s)
- Philip C Dooley
- Department of Human Physiology and Anatomy, School of Human Biosciences, La Trobe University, Victoria 3086, Australia
| | | | | | | |
Collapse
|