1
|
Ye Y, Shetye SS, Birk DE, Soslowsky LJ. Regulatory Role of Collagen XI in the Establishment of Mechanical Properties of Tendons and Ligaments in Mice Is Tissue Dependent. J Biomech Eng 2025; 147:011003. [PMID: 39297758 PMCID: PMC11500803 DOI: 10.1115/1.4066570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Collagen XI is ubiquitous in tissues such as joint cartilage, cancellous bone, muscles, and tendons and is an important contributor during a crucial part in fibrillogenesis. The COL11A1 gene encodes one of three alpha chains of collagen XI. The present study elucidates the role of collagen XI in the establishment of mechanical properties of tendons and ligaments. We investigated the mechanical response of three tendons and one ligament tissues from wild type and a targeted mouse model null for collagen XI: Achilles tendon (ACH), the flexor digitorum longus tendon (FDL), the supraspinatus tendon (SST), and the anterior cruciate ligament (ACL). Area was substantially lower in Col11a1ΔTen/ΔTen ACH, FDL, and SST. Maximum load and maximum stress were significantly lower in Col11a1ΔTen/ΔTen ACH and FDL. Stiffness was lower in Col11a1ΔTen/ΔTen ACH, FDL, and SST. Modulus was reduced in Col11a1ΔTen/ΔTen FDL and SST (both insertion site and midsubstance). Collagen fiber distributions were more aligned under load in both wild type group and Col11a1ΔTen/ΔTen groups. Results also revealed that the effect of collagen XI knockout on collagen fiber realignment is tendon-dependent and location-dependent (insertion versus midsubstance). In summary, this study clearly shows that the regulatory role of collagen XI on tendon and ligament is tissue specific and that joint hypermobility in type II Stickler's Syndrome may in part be due to suboptimal mechanical response of the soft tissues surrounding joints.
Collapse
Affiliation(s)
- Yaping Ye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL 33647
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104-6081
| |
Collapse
|
2
|
Sowbhagya R, Muktha H, Ramakrishnaiah TN, Surendra AS, Sushma SM, Tejaswini C, Roopini K, Rajashekara S. Collagen as the extracellular matrix biomaterials in the arena of medical sciences. Tissue Cell 2024; 90:102497. [PMID: 39059131 DOI: 10.1016/j.tice.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Collagen is a multipurpose material that has several applications in the health care, dental care, and pharmaceutical industries. Crosslinked compacted solids or lattice-like gels can be made from collagen. Biocompatibility, biodegradability, and wound-healing properties make collagen a popular scaffold material for cardiovascular, dentistry, and bone tissue engineering. Due to its essential role in the control of several of these processes, collagen has been employed as a wound-healing adjunct. It forms a major component of the extracellular matrix and regulates wound healing in its fibrillar or soluble forms. Collagen supports cardiovascular and other soft tissues. Oral wounds have been dressed with resorbable forms of collagen for closure of graft and extraction sites, and to aid healing. This present review is concentrated on the use of collagen in bone regeneration, wound healing, cardiovascular tissue engineering, and dentistry.
Collapse
Affiliation(s)
- Ramachandregowda Sowbhagya
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Harsha Muktha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Thippenahalli Narasimhaiah Ramakrishnaiah
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Adagur Sudarshan Surendra
- Department of Biochemistry, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Subhas Madinoor Sushma
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Chandrashekar Tejaswini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Karunakaran Roopini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Somashekara Rajashekara
- Department of Studies in Zoology, Centre for Applied Genetics, Bangalore University, Jnana Bharathi Campus, Off Mysuru Road, Bengaluru, Karnataka 560056, India.
| |
Collapse
|
3
|
Fung A, Sun M, Soslowsky LJ, Birk DE. Targeted conditional collagen XII deletion alters tendon function. Matrix Biol Plus 2022; 16:100123. [PMID: 36311462 PMCID: PMC9597098 DOI: 10.1016/j.mbplus.2022.100123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Collagen XII is a fibril-associated collagen with interrupted triple helices (FACIT). This non-fibrillar collagen is a homotrimer composed of three α1(XII) chains assembled into a collagenous molecule with a C terminal collagenous domain and a large N terminal non-collagenous domain. During tendon development and growth, collagen XII is broadly expressed throughout the extracellular matrix and enriched pericellularly around tenocytes. Tendons in a global Col12a1 -/- knockout model demonstrated disrupted fibril and fiber structure and disordered tenocyte organization, highlighting the critical regulatory roles of collagen XII in determining tendon structure and function. However, muscle and bone also are affected in the collagen XII knockout model. Therefore, secondary effects on tendon due to involvement of bone and muscle may occur in the global knockout. The global knockout does not allow the definition of intrinsic mechanisms involving collagen XII in tendon versus extrinsic roles involving muscle and bone. To address this limitation, we created and characterized a conditional Col12a1-null mouse model to permit the spatial and temporal manipulation of Col12a1 expression. Collagen XII knockout was targeted to tendons by breeding conditional Col12a1 flox/flox mice with Scleraxis-Cre (Scx-Cre) mice to yield a tendon-specific Col12a1-null mouse line, Col12a1 Δten/Δten . Both mRNA and protein expression in Col12a1 Δten/Δten mice decreased to near baseline levels in flexor digitorum longus tendons (FDL). Collagen XII immuno-localization revealed an absence of reactivity in the tendon proper, but there was reactivity in the cells of the surrounding peritenon. This supports a targeted knockout in tenocytes while peritenon cells from a non-tendon lineage were not targeted and retained collagen XII expression. The tendon-targeted, Col12a1 Δten/Δten mice had significantly reduced forelimb grip strength, altered gait and a significant decrease in biomechanical properties. While the observed decrease in tendon modulus suggests that differences in tendon material properties in the absence of Col12a1 expression underlie the functional deficiencies. Together, these findings suggest an intrinsic role for collagen XII critical for development of a functional tendon.
Collapse
Affiliation(s)
- Ashley Fung
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Mei Sun
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Louis J. Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - David E. Birk
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
- Corresponding author at: Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
4
|
Ramos-Mucci L, Elsheikh A, Keenan C, Eliasy A, D'Aout K, Bou-Gharios G, Comerford E, Poulet B. The anterior cruciate ligament in murine post-traumatic osteoarthritis: markers and mechanics. Arthritis Res Ther 2022; 24:128. [PMID: 35637500 PMCID: PMC9150328 DOI: 10.1186/s13075-022-02798-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Knee joint injuries, common in athletes, have a high risk of developing post-traumatic osteoarthritis (PTOA). Ligaments, matrix-rich connective tissues, play important mechanical functions stabilising the knee joint, and yet their role post-trauma is not understood. Recent studies have shown that ligament extracellular matrix structure is compromised in the early stages of spontaneous osteoarthritis (OA) and PTOA, but it remains unclear how ligament matrix pathology affects ligament mechanical function. In this study, we aim to investigate both structural and mechanical changes in the anterior cruciate ligament (ACL) in a mouse model of knee trauma. Methods Knee joints were analysed following non-invasive mechanical loading in male C57BL/6 J mice (10-week-old). Knee joints were analysed for joint space mineralisation to evaluate OA progression, and the ACLs were assessed with histology and mechanical testing. Results Joints with PTOA had a 33–46% increase in joint space mineralisation, indicating OA progression. Post-trauma ACLs exhibited extracellular matrix modifications, including COL2 and proteoglycan deposition. Additional changes included cells expressing chondrogenic markers (SOX9 and RUNX2) expanding from the ACL tibial enthesis to the mid-substance. Viscoelastic and mechanical changes in the ACLs from post-trauma knee joints included a 20–21% decrease in tangent modulus at 2 MPa of stress, a decrease in strain rate sensitivity at higher strain rates and an increase in relaxation during stress-relaxation, but no changes to hysteresis and ultimate load to failure were observed. Conclusions These results demonstrate that ACL pathology and viscoelastic function are compromised in the post-trauma knee joint and reveal an important role of viscoelastic mechanical properties for ligament and potentially knee joint health. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02798-7.
Collapse
Affiliation(s)
- Lorenzo Ramos-Mucci
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Craig Keenan
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK.,Faculty of Health, Social Care and Medicine, Edge Hill University, St Helens Road, Ormskirk, Lancashire, L39 4QP, UK
| | - Ashkan Eliasy
- School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK
| | - Kristiaan D'Aout
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK
| | - Eithne Comerford
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK.,School of Veterinary Science, Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Chester High Rd, Neston, CH64 7TE, UK
| | - Blandine Poulet
- Institute of Life Course and Medical Sciences, University of Liverpool, Apex building, West Derby street, Liverpool, L7 8TX, UK.
| |
Collapse
|
5
|
Association of COL5A1 gene polymorphisms and musculoskeletal soft tissue injuries: a meta-analysis based on 21 observational studies. J Orthop Surg Res 2022; 17:129. [PMID: 35241120 PMCID: PMC8895797 DOI: 10.1186/s13018-022-03020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Objective Inconsistent findings existed on the correlation of collagen type V α1 (COL5A1) gene polymorphisms and musculoskeletal soft tissue injuries (MSTIs). The purpose of this study was to collect and combine the current evidences by a meta-analysis approach. Methods Six online databases were searched up to August, 2021. The methodological quality of each individual study was evaluated based upon Newcastle–Ottawa Scale (NOS). The strength of the effect size was presented by odds ratio (OR) with 95% confidence interval (95%CI) in five genetic models. The data were analyzed using Review Manager 5.3. Results Twenty-one studies were eligible to this meta-analysis. The study quality was deemed fair to excellent according to NOS. In the overall analyses, the merged data suggested that rs12722, rs71746744, and rs3196378 polymorphisms were correlated to an increased susceptibility to MSTIs. But the association was not established in rs13946 or rs11103544 polymorphism. For rs12722 polymorphism, stratified analyses by injury type and ethnicity identified the association mainly existed in ligament injury and among Caucasian population. For rs13946 polymorphism, subgroup analysis suggested the association existed in tendon and ligament injuries. Conclusion This study supports that rs12722 is associated with an elevated susceptibility to ligament injury, especially in the Caucasian population. Rs13946 polymorphism appears to increase the risk to tendon and ligament injuries. Rs71746744 and rs3196378 polymorphisms have a tendency to confer an elevated risk to MSTIs. However, no relevance is found between rs11103544 polymorphism and MSTIs.
Collapse
|
6
|
Pedaprolu K, Szczesny S. A Novel, Open Source, Low-Cost Bioreactor for Load-Controlled Cyclic Loading of Tendon Explants. J Biomech Eng 2022; 144:1135618. [PMID: 35147179 DOI: 10.1115/1.4053795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/08/2022]
Abstract
A major risk factor for tendinopathy is tendon overuse (i.e., fatigue loading). Fatigue loading of tendon damages the extracellular matrix and induces tissue degeneration. However, the specific mechanisms linking tendon fatigue damage with tissue degeneration are unclear. While explant models of tendon fatigue loading have been used to address this knowledge gap, they predominantly employ bioreactors that apply cyclic displacements/strains rather than loads/stresses, which are more physiologically relevant. This is because of the technical complexity and cost of building a load-controlled bioreactor, which requires multiple motors, load cells, and computationally intensive feedback loops. Here, we present a novel, low-cost, load-controlled bioreactor that applies cyclic loading to multiple tendon explants by offloading weights from a single motorized stage. Using an optional load cell, we validated that the bioreactor can effectively provide load-controlled fatigue testing of mouse and rat tendon explants while maintaining tissue viability. Furthermore, all the design files, bill of materials, and operating software are available "open source" (https://github.com/Szczesnytendon/Bioreactor) so that anyone can easily manufacture and use the bioreactor for their own research. Therefore, this novel load-controlled bioreactor will enable researchers to study the mechanisms driving fatigue-induced tendon degeneration in a more physiologically relevant and cost-effective manner.
Collapse
Affiliation(s)
- Krishna Pedaprolu
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, Pennsylvania State University, CBE Building Suite 122, University Park, PA 16802
| | - Spencer Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, Pennsylvania, Pennsylvania State University, CBE Building Suite 122, University Park, PA 16802
| |
Collapse
|
7
|
Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:5-43. [PMID: 34807414 DOI: 10.1007/978-3-030-80614-9_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity. The structures and functions of these collagens are discussed in this chapter. Furthermore, collagen synthesis is a multi-step process that includes gene transcription, translation, post-translational modifications within the cell, triple helix formation, extracellular secretion, extracellular modifications, and then fibril assembly, fibril modifications, and fiber formation. Each step of collagen synthesis and fibril assembly is highly dependent upon the biochemical structure of the collagen molecules created and how they are modified in the cases of development and maturation. Likewise, when the biochemical structures of collagens or are compromised or these molecules are deficient in the tissues - in developmental diseases, degenerative conditions, or injuries - then the ultimate form and function of the connective tissues are impaired. In this chapter, we also review how biochemistry plays a role in each of the processes involved in collagen synthesis and assembly, and we describe differences seen by anatomical location and region within tendons. Moreover, we discuss how the structures of the molecules, fibrils, and fibers contribute to connective tissue physiology in health, and in pathology with injury and repair.
Collapse
Affiliation(s)
| | - Nicole L Gonzales
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
8
|
Postmortem detection of COL gene family variants in two aortic dissection cases. Int J Legal Med 2021; 136:85-91. [PMID: 34125279 DOI: 10.1007/s00414-021-02605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Aortic dissection (AD) usually remains undiagnosed, but its manifestation is abrupt and is associated with high morbidity and poor prognosis, leading to sudden cardiac death. Variants in COL family genes are associated with AD. In case 1, a 32-year-old Chinese man was admitted to the hospital with complaints of abdominal pain and died on the next day. In case 2, a 36-year-old Chinese woman was admitted to the hospital because of waist pain and died the next afternoon. According to autopsy findings, the cause of death in both cases was an acute cardiac tamponade, which was attributed to AD rupture. Whole-exome sequencing was performed on the blood collected from the hearts of the two deceased patients. Positive variants in COL family genes were found in both cases, without positive variants in other AD-associated genes. In case 1, a novel, likely pathogenic, missense variant was identified in COL6A1. In case 2, we identified one novel, likely pathogenic, frameshift deletion in COL23A1 and one novel, likely pathogenic, missense mutation in COL1A2. Based on these two cases, physicians should consider the role and significance of COL family gene mutations in AD in young patients. Furthermore, molecular anatomy is clearly necessary and significant in cases of sudden cardiac death attributed to AD, particularly in younger individuals.
Collapse
|
9
|
Sun Y, Yu K, Nie J, Sun M, Fu J, Wang H, He Y. Modeling the printability of photocuring and strength adjustable hydrogel bioink during projection-based 3D bioprinting. Biofabrication 2021; 13. [PMID: 32640425 DOI: 10.1088/1758-5090/aba413] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
As a projection based three-dimensional printing method, digital light processing bioprinting (DLPBP) has higher printing resolution and is suitable for constructing finer structures to mimic tissues when compared to extrusion based bioprinting. However, there is a lack of understanding about printing behavior during DLPBP. Herein, a photo crosslinking theory for ink was established and a specified amount of light absorber was added to control crosslinking depth. Then, a standardized methodology was established to quantitatively evaluate printing resolution using different parameters. Complex biostructures, such as the ear, hand, and heart, were precisely printed after understanding the mechanism. Additionally, the mechanical properties of printed samples were accurately adjusted by changing the hydrogel concentration, as well as the degree of substitution and photocrosslinking time. The tissue types printed were from ultra-soft tissues, such as liver (6-8 kPa) to soft tissue, such as the skin (0.3-0.4 MPa). A branching vessel with cells in a real tensile modulus was printed as a demonstration. After 1 week of culture, proliferation and function of human umbilical vein endothelial cells were characterized. Overall, we made it possible to print a mimic complex tissue with high precision, required physical properties and functionalized living cells.
Collapse
Affiliation(s)
- Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Miao Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, People's Republic of China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, People's Republic of China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Huiming Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, People's Republic of China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, People's Republic of China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.,Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
10
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
11
|
Sun M, Luo EY, Adams SM, Adams T, Ye Y, Shetye SS, Soslowsky LJ, Birk DE. Collagen XI regulates the acquisition of collagen fibril structure, organization and functional properties in tendon. Matrix Biol 2020; 94:77-94. [PMID: 32950601 PMCID: PMC7722227 DOI: 10.1016/j.matbio.2020.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
Collagen XI is a fibril-forming collagen that regulates collagen fibrillogenesis. Collagen XI is normally associated with collagen II-containing tissues such as cartilage, but it also is expressed broadly during development in collagen I-containing tissues, including tendons. The goals of this study are to define the roles of collagen XI in regulation of tendon fibrillar structure and the relationship to function. A conditional Col11a1-null mouse model was created to permit the spatial and temporal manipulation of Col11a1 expression. We hypothesize that collagen XI functions to regulate fibril assembly, organization and, therefore, tendon function. Previous work using cho mice with ablated Col11a1 alleles supported roles for collagen XI in tendon fibril assembly. Homozygous cho/cho mice have a perinatal lethal phenotype that limited the studies. To circumvent this, a conditional Col11a1flox/flox mouse model was created where exon 3 was flanked with loxP sites. Breeding with Scleraxis-Cre (Scx-Cre) mice yielded a tendon-specific Col11a1-null mouse line, Col11a1Δten/Δten. Col11a1flox/flox mice had no phenotype compared to wild type C57BL/6 mice and other control mice, e.g., Col11a1flox/flox and Scx-Cre. Col11a1flox/flox mice expressed Col11a1 mRNA at levels comparable to wild type and Scx-Cre mice. In contrast, in Col11a1Δten/Δten mice, Col11a1 mRNA expression decreased to baseline in flexor digitorum longus tendons (FDL). Collagen XI protein expression was absent in Col11a1Δten/Δten FDLs, and at ~50% in Col11a1+/Δten compared to controls. Phenotypically, Col11a1Δten/Δten mice had significantly decreased body weights (p < 0.001), grip strengths (p < 0.001), and with age developed gait impairment becoming hypomobile. In the absence of Col11a1, the tendon collagen fibrillar matrix was abnormal when analyzed using transmission electron microscopy. Reducing Col11a1 and, therefore collagen XI content, resulted in abnormal fibril structure, loss of normal fibril diameter control with a significant shift to small diameters and disrupted parallel alignment of fibrils. These alterations in matrix structure were observed in developing (day 4), maturing (day 30) and mature (day 60) mice. Altering the time of knockdown using inducible I-Col11a1−/− mice indicated that the primary regulatory foci for collagen XI was in development. In mature Col11a1Δten/Δten FDLs a significant decrease in the biomechanical properties was observed. The decrease in maximum stress and modulus suggest that fundamental differences in the material properties in the absence of Col11a1 expression underlie the mechanical deficiencies. These data demonstrate an essential role for collagen XI in regulation of tendon fibril assembly and organization occurring primarily during development.
Collapse
Affiliation(s)
- Mei Sun
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Eric Y Luo
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Sheila M Adams
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Thomas Adams
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Yaping Ye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Snehal S Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA; McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA.
| |
Collapse
|
12
|
Laguette MJN, Barrow K, Firfirey F, Dlamini S, Saunders CJ, Dandara C, Gamieldien J, Collins M, September AV. Exploring new genetic variants within COL5A1 intron 4-exon 5 region and TGF-β family with risk of anterior cruciate ligament ruptures. J Orthop Res 2020; 38:1856-1865. [PMID: 31922278 DOI: 10.1002/jor.24585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/03/2020] [Indexed: 02/04/2023]
Abstract
Variants within genes encoding structural and regulatory elements of ligaments have been associated with musculoskeletal soft tissue injury risk. The role of intron 4-exon 5 variants within the α1 chain of type V collagen (COL5A1) gene and genes of the transforming growth factor-β (TGF-β) family, TGFBR3 and TGFBI, was investigated on the risk of anterior cruciate ligament (ACL) ruptures. A case-control genetic association study was performed on 210 control (CON) and 249 participants with surgically diagnosed ruptures (ACL), of which 147 reported a noncontact mechanism of injury (NON). Whole-exome sequencing data were used to prioritize variants of potential functional relevance. Genotyping for COL5A1 (rs3922912 G>A, rs4841926 C>T, and rs3124299 C>T), TGFBR3 (rs1805113 G>A and rs1805117 T>C), and TGFBI (rs1442 G>C) was performed using Taqman SNP genotyping assays. Significant overrepresentation of the G allele of TGFBR3 rs1805113 was observed in CON vs ACL (P = .014) and NON groups (P = .021). Similar results were obtained in a female with the G allele (CON vs ACL: P = .029; CON vs NON: P = .016). The TGFBI rs1442 CC genotype was overrepresented in the female ACL vs CON (P = .013). Associations of inferred allele combinations were observed in line with the above results. COL5A1 intron 4-exon 5 genomic interval was not associated with the risk of ACL ruptures. Instead, this novel study is the first to use this approach to identify variants within the TGF-β signaling pathway to be implicated in the risk of ACL ruptures. A genetic susceptibility interval was identified to be explored in the context of extracellular matrix remodeling.
Collapse
Affiliation(s)
- Mary-Jessica N Laguette
- Division of Exercise Science and Sports Medicine (ESSM), University of Cape Town, Cape Town, South Africa.,International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, ESSM, University of Cape Town, Cape Town, South Africa.,Research Centre for Health Through Physical Activity and Sport, University of Cape Town, Cape Town, South Africa
| | - Kelly Barrow
- Department of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - Firzana Firfirey
- Division of Exercise Science and Sports Medicine (ESSM), University of Cape Town, Cape Town, South Africa.,International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, ESSM, University of Cape Town, Cape Town, South Africa.,Research Centre for Health Through Physical Activity and Sport, University of Cape Town, Cape Town, South Africa
| | - Senanile Dlamini
- Division of Exercise Science and Sports Medicine (ESSM), University of Cape Town, Cape Town, South Africa.,International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, ESSM, University of Cape Town, Cape Town, South Africa.,Research Centre for Health Through Physical Activity and Sport, University of Cape Town, Cape Town, South Africa
| | - Colleen J Saunders
- South African National Bioinformatics Institute/MRC Unit for Bioinformatics Capacity, University of the Western Cape, Cape Town, Bellville, South Africa.,Division of Emergency Medicine, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Department of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - Junaid Gamieldien
- South African National Bioinformatics Institute/MRC Unit for Bioinformatics Capacity, University of the Western Cape, Cape Town, Bellville, South Africa
| | - Malcolm Collins
- Division of Exercise Science and Sports Medicine (ESSM), University of Cape Town, Cape Town, South Africa.,International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, ESSM, University of Cape Town, Cape Town, South Africa.,Research Centre for Health Through Physical Activity and Sport, University of Cape Town, Cape Town, South Africa
| | - Alison V September
- Division of Exercise Science and Sports Medicine (ESSM), University of Cape Town, Cape Town, South Africa.,International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, ESSM, University of Cape Town, Cape Town, South Africa.,Research Centre for Health Through Physical Activity and Sport, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Vishwanath N, Monis WJ, Hoffmann GA, Ramachandran B, DiGiacomo V, Wong JY, Smith ML, Layne MD. Mechanisms of aortic carboxypeptidase-like protein secretion and identification of an intracellularly retained variant associated with Ehlers-Danlos syndrome. J Biol Chem 2020; 295:9725-9735. [PMID: 32482891 DOI: 10.1074/jbc.ra120.013902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Indexed: 01/02/2023] Open
Abstract
Aortic carboxypeptidase-like protein (ACLP) is a collagen-binding extracellular matrix protein that has important roles in wound healing and fibrosis. ACLP contains thrombospondin repeats, a collagen-binding discoidin domain, and a catalytically inactive metallocarboxypeptidase domain. Recently, mutations in the ACLP-encoding gene, AE-binding protein 1 (AEBP1), have been discovered, leading to the identification of a new variant of Ehlers-Danlos syndrome causing connective tissue disruptions in multiple organs. Currently, little is known about the mechanisms of ACLP secretion or the role of post-translational modifications in these processes. We show here that the secreted form of ACLP contains N-linked glycosylation and that inhibition of glycosylation results in its intracellular retention. Using site-directed mutagenesis, we determined that glycosylation of Asn-471 and Asn-1030 is necessary for ACLP secretion and identified a specific N-terminal proteolytic ACLP fragment. To determine the contribution of secreted ACLP to extracellular matrix mechanical properties, we generated and mechanically tested wet-spun collagen ACLP composite fibers, finding that ACLP enhances the modulus (or stiffness), toughness, and tensile strength of the fibers. Some AEBP1 mutations were null alleles, whereas others resulted in expressed proteins. We tested the hypothesis that a recently discovered 40-amino acid mutation and insertion in the ACLP discoidin domain regulates collagen binding and assembly. Interestingly, we found that this protein variant is retained intracellularly and induces endoplasmic reticulum stress identified with an XBP1-based endoplasmic reticulum stress reporter. Our findings highlight the importance of N-linked glycosylation of ACLP for its secretion and contribute to our understanding of ACLP-dependent disease pathologies.
Collapse
Affiliation(s)
- Neya Vishwanath
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - William J Monis
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gwendolyn A Hoffmann
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Bhavana Ramachandran
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Michael L Smith
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Influence of genetic factors in elbow tendon pathology: a case-control study. Sci Rep 2020; 10:6503. [PMID: 32300121 PMCID: PMC7162873 DOI: 10.1038/s41598-020-63030-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/18/2020] [Indexed: 11/09/2022] Open
Abstract
Elbow tendinopathy is a common pathology of the upper extremity that impacts both athletes and workers. Some research has examined the genetic component as a risk factor for tendinopathy, mainly in the lower limbs. A case-control study was designed to test for a relationship between certain collagen gene single nucleotide polymorphisms (SNPs) and elbow tendon pathology. A sample of 137 young adult athletes whose sports participation involves loading of the upper limb were examined for the presence of structural abnormalities indicative of pathology in the tendons of the lateral and medial elbow using ultrasound imaging and genotyped for the following SNPs: COL5A1 rs12722, COL11A1 rs3753841, COL11A1 rs1676486, and COL11A2 rs1799907. Anthropometric measurements and data on participants’ elbow pain and dysfunction were collected using the Disabilities of the Arm, Shoulder and Hand and the Mayo Clinic Performance Index for the Elbow questionnaires. Results showed that participants in the structural abnormality group had significantly higher scores in pain and dysfunction. A significant relationship between COL11A1 rs3753841 genotype and elbow tendon pathology was found (p = 0.024), with the CT variant associated with increased risk of pathology.
Collapse
|
15
|
Willard K, Laguette MJN, Alves de Souza Rios L, D'Alton C, Nel M, Prince S, Collins M, September AV. Altered expression of proteoglycan, collagen and growth factor genes in a TGF-β1 stimulated genetic risk model for musculoskeletal soft tissue injuries. J Sci Med Sport 2020; 23:695-700. [PMID: 32061523 DOI: 10.1016/j.jsams.2020.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVES To investigate the functional effect of implicated variants within BGN and COL5A1 on gene expression of components of the extracellular matrix (ECM) in a TGF-β-stimulated risk model for musculoskeletal soft tissue injuries. DESIGN Experimental research, laboratory study. METHODS Skin biopsies were obtained from nine healthy participants with either a combined increased or reduced risk profile for COL5A1 rs12722 C>T and BGN rs1126499 C>T - rs1042103 G>A, and primary fibroblast cell lines were established. Total RNA was extracted at baseline (10% FBS), after serum starvation (1% FBS) and TGF-β1 treatment (1% FBS, 10ng/mL TGF-1β). Relative mRNA levels of BGN, COL5A1, DCN and VEGFA was quantified using Taqman® array pre-spotted plate assays (Applied Biosystems, Foster city, CA, USA). RESULTS At baseline, the reduced risk group had 2.5, 1.9 and 2 fold increases (p<0.001) in relative BGN, COL5A1 and VEGFA mRNA levels respectively. In the serum starved experiments, except for a significant 1.5 fold (p=0.017) increase in relative DCN mRNA expression in the reduced risk group, similar observations were noted for the other three genes. After TGF-1β treatment, the reduced risk group had 1.3 (p=0.011) and 1.4 fold (p=0.001) increases in the relative COL5A1 and VEGFA mRNA levels, respectively. CONCLUSIONS Altered mRNA levels associated with genetic risk profiles for musculoskeletal soft injury risk at baseline (BGN, COL5A1 and VEGFA), with serum starvation (DCN) and after TGF-β1 treatment (COL5A1 and VEGFA) provide additional functional evidence to support the association of implicated genetic loci with several musculoskeletal soft tissue injuries. Implication of altered gene expression profiles underpinning these genetic risk associated loci potentially highlight key therapeutic targets for management of these injuries.
Collapse
Affiliation(s)
- Kyle Willard
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, South Africa; UCT Research Centre for Health through Physical Activity, Lifestyle and Sport, South Africa; International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, South Africa
| | - Mary-Jessica Nancy Laguette
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, South Africa; UCT Research Centre for Health through Physical Activity, Lifestyle and Sport, South Africa; International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, South Africa
| | | | - Caroline D'Alton
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, South Africa; UCT Research Centre for Health through Physical Activity, Lifestyle and Sport, South Africa; International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, South Africa
| | - Melissa Nel
- Division of Cell BiologyDepartment of Human Biology, University of Cape Town, South Africa
| | - Sharon Prince
- Division of Cell BiologyDepartment of Human Biology, University of Cape Town, South Africa
| | - Malcolm Collins
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, South Africa; UCT Research Centre for Health through Physical Activity, Lifestyle and Sport, South Africa; International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, South Africa
| | - Alison Victoria September
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, South Africa; UCT Research Centre for Health through Physical Activity, Lifestyle and Sport, South Africa; International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, South Africa.
| |
Collapse
|
16
|
Zuskov A, Freedman BR, Gordon JA, Sarver JJ, Buckley MR, Soslowsky LJ. Tendon Biomechanics and Crimp Properties Following Fatigue Loading Are Influenced by Tendon Type and Age in Mice. J Orthop Res 2020; 38:36-42. [PMID: 31286548 PMCID: PMC6917867 DOI: 10.1002/jor.24407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/25/2019] [Indexed: 02/04/2023]
Abstract
In tendon, type-I collagen assembles together into fibrils, fibers, and fascicles that exhibit a wavy or crimped pattern that uncrimps with applied tensile loading. This structural property has been observed across multiple tendons throughout aging and may play an important role in tendon viscoelasticity, response to fatigue loading, healing, and development. Previous work has shown that crimp is permanently altered with the application of fatigue loading. This opens the possibility of evaluating tendon crimp as a clinical surrogate of tissue damage. The purpose of this study was to determine how fatigue loading in tendon affects crimp and mechanical properties throughout aging and between tendon types. Mouse patellar tendons (PT) and flexor digitorum longus (FDL) tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties at P150 and P570 days of age to model mature and aged tendon phenotypes (N = 10-11/group). Tendon type, fatigue loading, and aging were found to differentially affect tendon mechanical and crimp properties. FDL tendons had higher modulus and hysteresis, whereas the PT showed more laxity and toe region strain throughout aging. Crimp frequency was consistently higher in FDL compared with PT throughout fatigue loading, whereas the crimp amplitude was cycle dependent. This differential response based on tendon type and age further suggests that the FDL and the PT respond differently to fatigue loading and that this response is age-dependent. Together, our findings suggest that the mechanical and structural effects of fatigue loading are specific to tendon type and age in mice. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:36-42, 2020.
Collapse
Affiliation(s)
- Andrey Zuskov
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Benjamin R Freedman
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Joshua A Gordon
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph J Sarver
- Department of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Connizzo BK, Piet JM, Shefelbine SJ, Grodzinsky AJ. Age-associated changes in the response of tendon explants to stress deprivation is sex-dependent. Connect Tissue Res 2020; 61:48-62. [PMID: 31411079 PMCID: PMC6884684 DOI: 10.1080/03008207.2019.1648444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose of the Study: The incidence of tendon injuries increases dramatically with age, which presents a major clinical burden. While previous studies have sought to identify age-related changes in extracellular matrix structure and function, few have been able to explain fully why aged tissues are more prone to degeneration and injury. In addition, recent studies have also demonstrated that age-related processes in humans may be sex-dependent, which could be responsible for muddled conclusions in changes with age. In this study, we investigate short-term responses through an ex vivo explant culture model of stress deprivation that specifically questions how age and sex differentially affect the ability of tendons to respond to altered mechanical stimulus.Materials and Methods: We subjected murine flexor explants from young (4 months of age) and aged (22-24 months of age) male and female mice to stress-deprived culture conditions for up to 1 week and investigated changes in viability, cell metabolism and proliferation, matrix biosynthesis and composition, gene expression, and inflammatory responses throughout the culture period.Results and Conclusions: We found that aging did have a significant influence on the response to stress deprivation, demonstrating that aged explants have a less robust response overall with reduced metabolic activity, viability, proliferation, and biosynthesis. However, age-related changes appeared to be sex-dependent. Together, this work demonstrates that the aging process and the subsequent effect of age on the ability of tendons to respond to stress-deprivation are inherently different based on sex, where male explants favor increased activity, apoptosis, and matrix remodeling while female explants favor reduced activity and tissue preservation.
Collapse
Affiliation(s)
- Brianne K. Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Correspondence: Brianne K. Connizzo, 70 Massachusetts Avenue, NE47-377, Cambridge, MA 02139, T: 617-253-2469,
| | - Judith M. Piet
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
| | - Sandra J. Shefelbine
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, United States
| | - Alan J. Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
18
|
Shi J, Ren M, Jia J, Tang M, Guo Y, Ni X, Shi T. Genotype-Phenotype Association Analysis Reveals New Pathogenic Factors for Osteogenesis Imperfecta Disease. Front Pharmacol 2019; 10:1200. [PMID: 31680973 PMCID: PMC6803541 DOI: 10.3389/fphar.2019.01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Osteogenesis imperfecta (OI), mainly caused by structural abnormalities of type I collagen, is a hereditary rare disease characterized by increased bone fragility and reduced bone mass. Clinical manifestations of OI mostly include multiple repeated bone fractures, thin skin, blue sclera, hearing loss, cardiovascular and pulmonary system abnormalities, triangular face, dentinogenesis imperfecta (DI), and walking with assistance. Currently, 20 causative genes with 18 subtypes have been identified for OI, of them, variations in COL1A1 and COL1A2 have been demonstrated to be major causative factors to OI. However, the complexity of the bone formation process indicates that there are potential new pathogenic genes associated with OI. To comprehensively explore the underlying mechanism of OI, we conducted association analysis between genotypes and phenotypes of OI diseases and found that mutations in COL1A1 and COL1A2 contributed to a large proportion of the disease phenotypes. We categorized the clinical phenotypes and the genotypes based on the variation types for those 155 OI patients collected from literature, and association study revealed that three phenotypes (bone deformity, DI, walking with assistance) were enriched in two variation types (the Gly-substitution missense and groups of frameshift, nonsense, and splicing variations). We also identified four novel variations (c.G3290A (p.G1097D), c.G3289C (p.G1097R), c.G3289A (p.G1097S), c.G3281A (p.G1094D)) in gene COL1A1 and two novel variations (c.G2332T (p.G778C), c.G2341T (p.G781C)) in gene COL1A2, which could potentially contribute to the disease. In addition, we identified several new potential pathogenic genes (ADAMTS2, COL5A2, COL8A1) based on the integration of protein–protein interaction and pathway enrichment analysis. Our study provides new insights into the association between genotypes and phenotypes of OI and novel information for dissecting the underlying mechanism of the disease.
Collapse
Affiliation(s)
- Jingru Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Meng Ren
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jinmeng Jia
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Muxue Tang
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yongli Guo
- Big Data and Engineering Research Center, Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Xin Ni
- Big Data and Engineering Research Center, Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Big Data and Engineering Research Center, Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Makuszewska M, Bonda T, Cieślińska M, Bialuk I, Winnicka MM, Skotnicka B, Hassmann-Poznańska E. Expression of collagens type I and V in healing rat's tympanic membrane. Int J Pediatr Otorhinolaryngol 2019; 118:79-83. [PMID: 30590281 DOI: 10.1016/j.ijporl.2018.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Our preliminary study performed on perforated rat's tympanic membrane (TM) using Rat Wound Healing RT2 Profiler PCR Array showed significantly increased levels of mRNA for collagens type I and V. Enhanced expression of those genes does not assure that their protein products are indeed present, and in what quantity. Therefore, this study was undertaken to analyze the collagen type I and V content in the healing TM. METHODS Sixty rats were used, of which 10 served as controls and the others had their TM perforated. The experimental animals were divided into five subgroups on the basis of time points (03, 06, 09, 14, 20 day after injury). Videootoscopy and histology were employed to assess the morphology of the healing process. The expression of collagen type I and V was evaluated using Western blot analysis. Tissue localization of collagens was determined by the immunofluorescence method. RESULTS The collagen type I expression was three times higher on the third day after injury and remained on that level for whole period of observation, up to day 20. The increase of the collagen type V expression was gradual, reaching the highest level on day 14 following injury. In comparison to the control TM statistically significant increase in the level of expression was observed starting from day 09 to the end of observation period. In healing TM immunofluorescent labeling of collagen type I and V was seen on the surface of remnants of previous lamina propria and in the loose proliferating fibrous tissue. On day 20 immunofluorescence was present mainly on the surface of thin connective tissue layers forming the scar in the place of previous perforation. CONCLUSION Although the collagens type I and V are present only in subepithelial layer in the normal rat's TM they play significant role in TM healing process.
Collapse
Affiliation(s)
- Maria Makuszewska
- Department of Otolaryngology, Medical University of Warsaw, Banach 1a, 02-097, Warsaw, Poland
| | - Tomasz Bonda
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Magdalena Cieślińska
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Izabela Bialuk
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Maria Małgorzata Winnicka
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Bożena Skotnicka
- Department of Pediatric Otolaryngology, Medical University of Białystok, Waszyngtona 17, 15-274, Białystok, Poland
| | - Elżbieta Hassmann-Poznańska
- Department of Pediatric Otolaryngology, Medical University of Białystok, Waszyngtona 17, 15-274, Białystok, Poland.
| |
Collapse
|
21
|
Eekhoff JD, Fang F, Kahan LG, Espinosa G, Cocciolone AJ, Wagenseil JE, Mecham RP, Lake SP. Functionally Distinct Tendons From Elastin Haploinsufficient Mice Exhibit Mild Stiffening and Tendon-Specific Structural Alteration. J Biomech Eng 2018; 139:2654667. [PMID: 28916838 DOI: 10.1115/1.4037932] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 12/23/2022]
Abstract
Elastic fibers are present in low quantities in tendon, where they are located both within fascicles near tenocytes and more broadly in the interfascicular matrix (IFM). While elastic fibers have long been known to be significant in the mechanics of elastin-rich tissue (i.e., vasculature, skin, lungs), recent studies have suggested a mechanical role for elastic fibers in tendons that is dependent on specific tendon function. However, the exact contribution of elastin to properties of different types of tendons (e.g., positional, energy-storing) remains unknown. Therefore, this study purposed to evaluate the role of elastin in the mechanical properties and collagen alignment of functionally distinct supraspinatus tendons (SSTs) and Achilles tendons (ATs) from elastin haploinsufficient (HET) and wild type (WT) mice. Despite the significant decrease in elastin in HET tendons, a slight increase in linear stiffness of both tendons was the only significant mechanical effect of elastin haploinsufficiency. Additionally, there were significant changes in collagen nanostructure and subtle alteration to collagen alignment in the AT but not the SST. Hence, elastin may play only a minor role in tendon mechanical properties. Alternatively, larger changes to tendon mechanics may have been mitigated by developmental compensation of HET tendons and/or the role of elastic fibers may be less prominent in smaller mouse tendons compared to the larger bovine and human tendons evaluated in previous studies. Further research will be necessary to fully elucidate the influence of various elastic fiber components on structure-function relationships in functionally distinct tendons.
Collapse
Affiliation(s)
- Jeremy D Eekhoff
- Department of Biomedical Engineering, Washington University in St. Louis One Brookings Drive, St. Louis, MO 63130
| | - Fei Fang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Lindsey G Kahan
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Gabriela Espinosa
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Austin J Cocciolone
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130.,Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130.,Department of Orthopaedic Surgery, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 e-mail:
| |
Collapse
|
22
|
Jensen JK, Nygaard RH, Svensson RB, Hove HD, Magnusson SP, Kjær M, Couppé C. Biomechanical properties of the patellar tendon in children with heritable connective tissue disorders. Eur J Appl Physiol 2018; 118:1301-1307. [PMID: 29623400 DOI: 10.1007/s00421-018-3862-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/26/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Hereditary connective tissue disorders (HCTDs), such as classic Ehlers-Danlos syndrome (cEDS) and Marfan syndrome (MS) share overlapping features like hypermobility and tissue fragility. In clinical practice it remains a challenge to distinguish children and adolescents with HCTD from healthy children. The purpose of this study was to investigate the biomechanical properties of the patellar tendon and joint laxity (Beighton score) in children with HCTDs (n = 7) compared to healthy controls (n = 14). METHODS The mechanical properties of the patellar tendon were assessed using simultaneous force and ultrasonographic measurements during isometric ramp contractions. Ultrasonography was also used to measure tendon dimensions. The HCTD children were matched with 2 healthy controls with regard to age, body mass index (BMI), sex and physical activity level. RESULTS The HCTD children had a greater degree of joint laxity (P < 0.01). Although, the patellar tendon dimensions did not differ significantly between the two groups, the HCTD children showed a tendency toward a larger patellar tendon cross-sectional area (CSA) (35%, P = 0.19). Moreover, stiffness did not differ between the two groups, but secant modulus was 27% lower in children with a HCTD (P = 0.05) at common force and 34% lower at maximum force (P = 0.02). CONCLUSIONS The present study demonstrates for the first time that children with HCTDs have lower material properties (modulus) of their patellar tendon, which may be indicative of general impairment of connective tissue mechanics related to their increased joint laxity.
Collapse
Affiliation(s)
- Jacob K Jensen
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark.
| | - Rie H Nygaard
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark
| | - Hanne D Hove
- Section of Rare Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The Raredis Database, Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - S Peter Magnusson
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark
- Department of Occupational and Physical Therapy, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjær
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark
| | - Christian Couppé
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark
- Department of Occupational and Physical Therapy, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Johnston JM, Connizzo BK, Shetye SS, Robinson KA, Huegel J, Rodriguez AB, Sun M, Adams SM, Birk DE, Soslowsky LJ. Collagen V haploinsufficiency in a murine model of classic Ehlers-Danlos syndrome is associated with deficient structural and mechanical healing in tendons. J Orthop Res 2017; 35:2707-2715. [PMID: 28387435 PMCID: PMC5632109 DOI: 10.1002/jor.23571] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023]
Abstract
Classic Ehlers-Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1+/- mouse, a model for classic EDS. These analyses were done comparing tendons from a classic EDS model (Col5a1+/- ) with wild-type controls. Tendons were subjected to mechanical testing, histological, and fibril analysis before injury as well as 3 and 6 weeks after injury. We found that Col5a1+/- tendons demonstrated diminished recovery of mechanical competency after injury as compared to normal wild-type tendons, which recovered their pre-injury values by 6 weeks post injury. Additionally, the Col5a1+/- tendons demonstrated altered fibril morphology and diameter distributions compared to the wild-type tendons. This study indicates that collagen V plays an important role in regulating collagen fibrillogenesis and the associated recovery of mechanical integrity in tendons after injury. In addition, the dysregulation with decreased collagen V expression in EDS is associated with a diminished injury response. The results presented herein have the potential to direct future targeted therapeutics for classic EDS patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2707-2715, 2017.
Collapse
Affiliation(s)
- Jessica M. Johnston
- University Laboratory Animal Resources, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brianne K. Connizzo
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelsey A. Robinson
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julianne Huegel
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ashley B. Rodriguez
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mei Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Sheila M. Adams
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - David E. Birk
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Variants of genes encoding collagens and matrix metalloproteinase system increased the risk of aortic dissection. SCIENCE CHINA-LIFE SCIENCES 2016; 60:57-65. [PMID: 27975164 DOI: 10.1007/s11427-016-0333-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
Aortic dissection (AD) is a devastating, heterogeneous condition of aorta. The homeostasis between collagens and matrix metalloproteases (MMPs)/tissue inhibitors of MMPs (TIMPs) system in the extracellular matrix plays an important role for structure and functions of aorta. However, our knowledge on association between variants of genes in this system and pathogenesis of AD is very limited. We analyzed all yet known coding human genes of collagens (45 genes), MMPs/TIMPs (27 genes) in 702 sporadic AD patients and in 163 matched healthy controls, by using massively targeted next-generation and Sanger sequencing. To define the pathogenesis of potential disease-causing candidate genes, we performed transcriptome sequencing and pedigree co-segregation analysis in some genes and generated Col5a2 knockout rats. We identified 257 pathogenic or likely pathogenic variants which involved 88.89% (64/72) genes in collagens-MMPs/TIMPs system and accounted for 31.05% (218/702) sporadic AD patients. In them, 84.86% patients (185/218) carried one variant, 12.84% two variants and 2.30% more than two variants. Importantly, we identified 52 novel probably pathogenic loss-of-function (LOF) variants (20 nonsense, 16 frameshift, 14 splice sites, one stop-loss, one initiation codon) in 11.06% (50/452) AD patients, which were absent in 163 controls (P=2.5×10-5). Transcriptome sequencing revealed that identified variants induced dyshomeostasis in expression of collagens-TIMPs/MMPs systems. The Col5a2 -/- rats manifested growth retardation and aortic dysplasia. Our study provides a first comprehensive map of genetic alterations in collagens-MMPs/TIMPs system in sporadic AD patients and suggests that variants of these genes contribute largely to AD pathogenesis.
Collapse
|
25
|
Connizzo BK, Adams SM, Adams TH, Birk DE, Soslowsky LJ. Collagen V expression is crucial in regional development of the supraspinatus tendon. J Orthop Res 2016; 34:2154-2161. [PMID: 28005290 PMCID: PMC5189919 DOI: 10.1002/jor.23246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Manipulations in cell culture and mouse models have demonstrated that reduction of collagen V results in altered fibril structure and matrix assembly. A tissue-dependent role for collagen V in determining mechanical function was recently established, but its role in determining regional properties has not been addressed. The objective of this study was to define the role(s) of collagen V expression in establishing the site-specific properties of the supraspinatus tendon. The insertion and midsubstance of tendons from wild type, heterozygous and tendon/ligament-specific null mice were assessed for crimp morphology, fibril morphology, cell morphology, as well as total collagen and pyridinoline cross-link (PYD) content. Fibril morphology was altered at the midsubstance of both groups with larger, but fewer, fibrils and no change in cell morphology or collagen compared to the wild type controls. In contrast, a significant disruption of fibril assembly was observed at the insertion site of the null group with the presence of structurally aberrant fibrils. Alterations were also present in cell density and PYD content. Altogether, these results demonstrate that collagen V plays a crucial role in determining region-specific differences in mouse supraspinatus tendon structure. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2154-2161, 2016.
Collapse
Affiliation(s)
- Brianne K. Connizzo
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA, 19104-6081
| | - Sheila M. Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Thomas H. Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA, 19104-6081
| |
Collapse
|
26
|
Connizzo BK, Han L, Birk DE, Soslowsky LJ. Collagen V-heterozygous and -null supraspinatus tendons exhibit altered dynamic mechanical behaviour at multiple hierarchical scales. Interface Focus 2016; 6:20150043. [PMID: 26855746 DOI: 10.1098/rsfs.2015.0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tendons function using a unique set of mechanical properties governed by the extracellular matrix and its ability to respond to varied multi-axial loads. Reduction of collagen V expression, such as in classic Ehlers-Danlos syndrome, results in altered fibril morphology and altered macroscale mechanical function in both clinical and animal studies, yet the mechanism by which changes at the fibril level lead to macroscale functional changes has not yet been investigated. This study addresses this by defining the multiscale mechanical response of wild-type, collagen V-heterozygous and -null supraspinatus tendons. Tendons were subjected to mechanical testing and analysed for macroscale properties, as well as microscale (fibre re-alignment) and nanoscale (fibril deformation and sliding) responses. In many macroscale parameters, results showed a dose-dependent response with severely decreased properties in the null group. In addition, both heterozygous and null groups responded to load faster than in wild-type tendons via earlier fibre re-alignment and fibril stretch. However, the heterozygous group exhibited increased fibril sliding, while the null group exhibited no fibril sliding. These studies demonstrate that dynamic responses play an important role in determining overall function and that collagen V is a critical regulator in the development of these relationships.
Collapse
Affiliation(s)
- Brianne K Connizzo
- McKay Orthopaedic Research Laboratory , University of Pennsylvania , 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081 , USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street, Philadelphia, PA 19104 , USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology , Morsani College of Medicine, University of South Florida , Tampa, FL 33612 , USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory , University of Pennsylvania , 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081 , USA
| |
Collapse
|
27
|
Abstract
Tendon exhibits anisotropic, inhomogeneous and viscoelastic mechanical properties that are determined by its complicated hierarchical structure and varying amounts/organization of different tissue constituents. Although extensive research has been conducted to use modelling approaches to interpret tendon structure-function relationships in combination with experimental data, many issues remain unclear (i.e. the role of minor components such as decorin, aggrecan and elastin), and the integration of mechanical analysis across different length scales has not been well applied to explore stress or strain transfer from macro- to microscale. This review outlines mathematical and computational models that have been used to understand tendon mechanics at different scales of the hierarchical organization. Model representations at the molecular, fibril and tissue levels are discussed, including formulations that follow phenomenological and microstructural approaches (which include evaluations of crimp, helical structure and the interaction between collagen fibrils and proteoglycans). Multiscale modelling approaches incorporating tendon features are suggested to be an advantageous methodology to understand further the physiological mechanical response of tendon and corresponding adaptation of properties owing to unique in vivo loading environments.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering and Materials Science , Washington University in St Louis , St Louis, MO 63130 , USA
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
28
|
Targeted deletion of collagen V in tendons and ligaments results in a classic Ehlers-Danlos syndrome joint phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1436-47. [PMID: 25797646 DOI: 10.1016/j.ajpath.2015.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/11/2014] [Accepted: 01/02/2015] [Indexed: 01/10/2023]
Abstract
Collagen V mutations underlie classic Ehlers-Danlos syndrome, and joint hypermobility is an important clinical manifestation. We define the function of collagen V in tendons and ligaments, as well as the role of alterations in collagen V expression in the pathobiology in classic Ehlers-Danlos syndrome. A conditional Col5a1(flox/flox) mouse model was bred with Scleraxis-Cre mice to create a targeted tendon and ligament Col5a1-null mouse model, Col5a1(Δten/Δten). Targeting was specific, resulting in collagen V-null tendons and ligaments. Col5a1(Δten/Δten) mice demonstrated decreased body size, grip weakness, abnormal gait, joint laxity, and early-onset osteoarthritis. These gross changes were associated with abnormal fiber organization, as well as altered collagen fibril structure with increased fibril diameters and decreased fibril number that was more severe in a major joint stabilizing ligament, the anterior cruciate ligament (ACL), than in the flexor digitorum longus tendon. The ACL also had a higher collagen V content than did the flexor digitorum longus tendon. The collagen V-null ACL and flexor digitorum longus tendon both had significant alterations in mechanical properties, with ACL exhibiting more severe changes. The data demonstrate critical differential regulatory roles for collagen V in tendon and ligament structure and function and suggest that collagen V regulatory dysfunction is associated with an abnormal joint phenotype, similar to the hypermobility phenotype in classic Ehlers-Danlos syndrome.
Collapse
|