1
|
Ariyoshi W, Takeuchi J, Mitsugi S, Koga A, Nagai-Yoshioka Y, Yamasaki R. Mechanisms Underlying the Stimulation of DUSP10/MKP5 Expression in Chondrocytes by High Molecular Weight Hyaluronic Acid. Biomedicines 2025; 13:376. [PMID: 40002789 PMCID: PMC11852791 DOI: 10.3390/biomedicines13020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Previously, we reported that high molecular weight hyaluronic acid (HMW-HA) exerts chondroprotective effects by enhancing dual specificity protein phosphatase 10/mitogen-activated protein kinase (MAPK) phosphatase 5 (DUSP10/MKP5) expression and suppressing inflammatory cytokine-induced matrix metalloproteinase-13 (MMP13) expression in a human immortalized chondrocyte line (C28/I2 cells) via inhibition of MAPKs. The aim of this study was to elucidate the molecular mechanisms underlying the enhancement of DUSP10/MKP5 expression by HMW-HA in C28/I2 cells. Methods: C28/I2 cells were treated with HMW-HA, and the activation of intracellular signaling molecules was determined using Western blot analysis. The expression levels of mRNAs and microRNAs (miRNAs) were evaluated through real-time quantitative reverse transcription PCR analysis. Results: HMW-HA treatment induced Akt phosphorylation via interaction with CD44, and pretreatment with specific inhibitors of phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling attenuated the HMW-HA-induced expression of DUSP10/MKP5. HMW-HA suppressed the expression of miR-92a, miR-181a, and miR-181d. Loss-of-function and gain-of-function analyses of these miRNAs indicate that miR-92a, miR-181a, and miR-181d negatively regulate DUSP10/MKP5 expression. Moreover, HMW-HA-induced Akt phosphorylation was partially suppressed by miR-181a and miR-181d mimics. Finally, we found that HMW-HA activates RhoA-associated protein kinase (ROK) signaling, which contributes to Akt phosphorylation. Conclusions: These findings suggest that the induction of DUSP10/MKP5 expression by HMW-HA binding to CD44, leading to MMP13 suppression, involves multiple regulatory mechanisms, including PI3K/Akt and RhoA-activated ROK signaling, in addition to miRNA-mediated regulation. Elucidating these detailed molecular mechanisms may reveal novel biological activities that contribute to the therapeutic efficacy of HMW-HA against osteoarthritis.
Collapse
Affiliation(s)
- Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
| | - Jun Takeuchi
- Medical Affairs, Seikagaku Corporation, Tokyo 100-0005, Japan;
| | - Sho Mitsugi
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka 540-0008, Japan;
| | - Ayaka Koga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Fukuoka 803-8580, Japan
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
| |
Collapse
|
2
|
Shirai M, Hara T, Kaji T, Yamamoto C. Cadmium promotes hyaluronan synthesis by inducing hyaluronan synthase 3 expression in cultured vascular endothelial cells via the c-Jun N-terminal kinase-c-Jun pathway. Toxicology 2025; 511:154062. [PMID: 39837363 DOI: 10.1016/j.tox.2025.154062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Cadmium is a heavy metal risk factor for various cardiovascular diseases, such as atherosclerosis. In atherosclerotic lesions, hyaluronan, a glycosaminoglycan consisting of β4-glucuronic acid-β3-N-acetylglucosamine disaccharides repeats, is highly accumulated, regulating signal transduction, cell migration, and angiogenesis. Hyaluronan is synthesized by hyaluronan synthase (HAS)1-3 in the plasma membrane and secreted into the extracellular space. Hyaluronan derived from HAS3 promotes inflammatory responses. Recently, we found that cadmium elongates chondroitin/dermatan sulfate chains in vascular endothelial cells and that glycosaminoglycan sugar chains are potential targets for the vascular toxicity of cadmium. Therefore, hyaluronan, a glycosaminoglycan sugar chain, may also affected by cadmium; however, this has not yet been clarified. In this study, we aimed to analyze the effect of cadmium on hyaluronan synthesis using cultured aortic endothelial cells. Cadmium at a concentration of 2 µM upregulated hyaluronan synthesis in the medium and specifically induced HAS3 mRNA and protein expression. However, cadmium-mediated HAS3 induction was abolished by the inhibition of the c-Jun N-terminal kinase (JNK)-c-Jun pathway. Moreover, JNK inhibition prevented the increase in hyaluronan levels in the medium. These results revealed that the JNK-c-Jun pathway was involved in HAS3-mediated hyaluronan synthesis by cadmium in vascular endothelial cells, suggesting that endothelial HAS3 induction contributes to atherosclerotic lesion formation by promoting inflammatory responses.
Collapse
Affiliation(s)
- Misaki Shirai
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Takato Hara
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chika Yamamoto
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
3
|
Costa FR, Santos MDS, Martins RA, Costa CB, Hamdan PC, Da Silva MB, Azzini GOM, Pires L, Menegassi Z, Santos GS, Lana JF. The Synergistic Effects of Hyaluronic Acid and Platelet-Rich Plasma for Patellar Chondropathy. Biomedicines 2023; 12:6. [PMID: 38275367 PMCID: PMC10813186 DOI: 10.3390/biomedicines12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Musculoskeletal disorders are increasingly prevalent worldwide, causing significant socioeconomic burdens and diminished quality of life. Notably, patellar chondropathy (PC) is among the most widespread conditions affecting joint structures, resulting in profound pain and disability. Hyaluronic acid (HA) and platelet-rich plasma (PRP) have emerged as reliable, effective, and minimally invasive alternatives. Continuous research spanning from laboratory settings to clinical applications demonstrates the numerous advantages of both products. These encompass lubrication, anti-inflammation, and stimulation of cellular behaviors linked to proliferation, differentiation, migration, and the release of essential growth factors. Cumulatively, these benefits support the rejuvenation of bone and cartilaginous tissues, which are otherwise compromised due to the prevailing degenerative and inflammatory responses characteristic of tissue damage. While existing literature delves into the physical, mechanical, and biological facets of these products, as well as their commercial variants and distinct clinical uses, there is limited discussion on their interconnected roles. We explore basic science concepts, product variations, and clinical strategies. This comprehensive examination provides physicians with an alternative insight into the pathophysiology of PC as well as biological mechanisms stimulated by both HA and PRP that contribute to tissue restoration.
Collapse
Affiliation(s)
- Fábio Ramos Costa
- Department of Orthopedics, FC Sports Traumatology Clinic, Salvador 40296-210, Brazil; (F.R.C.); (C.B.C.)
| | | | | | - Cláudia Bruno Costa
- Department of Orthopedics, FC Sports Traumatology Clinic, Salvador 40296-210, Brazil; (F.R.C.); (C.B.C.)
| | - Paulo César Hamdan
- Department of Orthopedics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-630, Brazil; (P.C.H.); (M.B.D.S.); (Z.M.)
| | - Marcos Britto Da Silva
- Department of Orthopedics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-630, Brazil; (P.C.H.); (M.B.D.S.); (Z.M.)
| | - Gabriel Ohana Marques Azzini
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
| | - Zartur Menegassi
- Department of Orthopedics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-630, Brazil; (P.C.H.); (M.B.D.S.); (Z.M.)
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
| | - José Fábio Lana
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, Brazil
| |
Collapse
|
4
|
Bonet IJM, Araldi D, Green PG, Levine JD. Topical coapplication of hyaluronan with transdermal drug delivery enhancers attenuates inflammatory and neuropathic pain. Pain 2023; 164:2653-2664. [PMID: 37467181 PMCID: PMC10794581 DOI: 10.1097/j.pain.0000000000002993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 07/21/2023]
Abstract
ABSTRACT We have previously shown that intradermal injection of high-molecular-weight hyaluronan (500-1200 kDa) produces localized antihyperalgesia in preclinical models of inflammatory and neuropathic pain. In the present experiments, we studied the therapeutic effect of topical hyaluronan, when combined with each of 3 transdermal drug delivery enhancers (dimethyl sulfoxide [DMSO], protamine or terpene), in preclinical models of inflammatory and neuropathic pain. Topical application of 500 to 1200 kDa hyaluronan (the molecular weight range used in our previous studies employing intradermal administration), dissolved in 75% DMSO in saline, markedly reduced prostaglandin E 2 (PGE 2 ) hyperalgesia, in male and female rats. Although topical 500- to 1200-kDa hyaluronan in DMSO vehicle dose dependently, also markedly, attenuated oxaliplatin chemotherapy-and paclitaxel chemotherapy-induced painful peripheral neuropathy (CIPN) in male rats, it lacked efficacy in female rats. However, following ovariectomy or intrathecal administration of an oligodeoxynucleotide antisense to G-protein-coupled estrogen receptor (GPR30) mRNA, CIPN in female rats was now attenuated by topical hyaluronan. Although topical coadministration of 150 to 300, 300 to 500, or 1500 to 1750 kDa hyaluronan with DMSO also attenuated CIPN, a slightly lower-molecular-weight hyaluronan (70-120 kDa) did not. The topical administration of a combination of hyaluronan with 2 other transdermal drug delivery enhancers, protamine and terpene, also attenuated CIPN hyperalgesia, an effect that was more prolonged than with DMSO vehicle. Repeated administration of topical hyaluronan prolonged the duration of antihyperalgesia. Our results support the use of topical hyaluronan, combined with chemically diverse nontoxic skin penetration enhancers, to induce marked antihyperalgesia in preclinical models of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Queme LF. A novel potential strategy for the treatment of inflammatory and neuropathic pain. Pain 2023; 164:2625-2626. [PMID: 37967243 PMCID: PMC10652025 DOI: 10.1097/j.pain.0000000000003007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 11/17/2023]
Affiliation(s)
- Luis F Queme
- Department of Biomedical Sciences. University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME 04005, USA
| |
Collapse
|
6
|
Bernetti A, Agostini F, Paoloni M, Raele MV, Farì G, Megna M, Mangone M. Could Hyaluronic Acid Be Considered as a Senomorphic Agent in Knee Osteoarthritis? A Systematic Review. Biomedicines 2023; 11:2858. [PMID: 37893231 PMCID: PMC10604344 DOI: 10.3390/biomedicines11102858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is one of the most common causes of disability in elderly patients and tends to be a major burden on social and health care spending. Despite its severe socioeconomic impact, KOA remains, to date, an incurable disease. Due to its proper characteristics, KOA represents a favorable disease model for experimenting with senotherapeutics, a group of treatments that counteract the development of age-related disorders and chronic diseases. In recent years, the use of intra-articular hyaluronic acid (IAHA) in the treatment of diseases related to the wear and tear of the articular cartilage has been gaining popularity. Given its ability in joint lubrification, shock absorption, and cell signaling, our aim is to investigate, through the existing scientific literature, its potential role as a senomorphic agent, emphasizing its crucial function in KOA patients. Indeed, senomorphics are a particular group of senotherapeutics capable of modulating the functions and morphology of senescent cells to those of young cells or delaying the progression of young cells to senescent cells in tissues. METHODS A search in the scientific literature (PubMed, Cochrane Library, and Google Scholar) was carried out from 2019 to 2023, thus the last 5 years. RESULTS One hundred thirty-eight articles were found concerning the role of hyaluronic acid injections in KOA patients. In these studies, its therapeutic efficacy, its anti-inflammatory properties, and its low risk of side effects emerged. CONCLUSION IAHA injections are a valuable treatment option for KOA while they can provide pain relief, improve joint function, and slow the progression of joint degeneration. The inhibitory effect of HA on MMP13 and its action as a senomorphic agent suggests that it may have additional benefits beyond its lubricating and shock-absorbing properties. In order to clarify its mechanisms of action and to optimize its clinical use, further studies are definitely needed.
Collapse
Affiliation(s)
- Andrea Bernetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, 73100 Lecce, Italy;
| | - Francesco Agostini
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00189 Rome, Italy; (F.A.); (M.P.); (M.M.)
| | - Marco Paoloni
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00189 Rome, Italy; (F.A.); (M.P.); (M.M.)
| | - Maria Vittoria Raele
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70121 Bari, Italy; (M.V.R.); (M.M.)
| | - Giacomo Farì
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, 73100 Lecce, Italy;
| | - Marisa Megna
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70121 Bari, Italy; (M.V.R.); (M.M.)
| | - Massimiliano Mangone
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00189 Rome, Italy; (F.A.); (M.P.); (M.M.)
| |
Collapse
|
7
|
Jabbari F, Babaeipour V, Saharkhiz S. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications. Int J Biol Macromol 2023; 240:124484. [PMID: 37068534 DOI: 10.1016/j.ijbiomac.2023.124484] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Hyaluronic acid (HA), an anionic and nonsulfated glycosaminoglycan, is the main structural component of various tissues and plays an important role in various biological processes. Given the promising properties of HA, such as high cellular compatibility, moisture retention, antiaging, proper interaction with cells, and CD44 targeting, HA can be widely used extensively in drug delivery, tissue engineering, wound healing, and cancer therapy. HA can obtain from animal tissues and microbial fermentation, but its applications depend on its molecular weight. Microbial fermentation is a common method for HA production on an industrial scale and S. zooepidemicus is the most frequently used strain in HA production. Culture conditions including pH, temperature, agitation rate, aeration speed, shear stress, dissolved oxygen, and bioreactor type significantly affect HA biosynthesis properties. In this review all the HA production methods and purification techniques to improve its physicochemical and biological properties for various biomedical applications are discussed in details. In addition, we showed that how HA molecular weight can significantly affect its properties and applications.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Iran.
| | - Saeed Saharkhiz
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Iran
| |
Collapse
|
8
|
Bonet IJM, Staurengo-Ferrari L, Araldi D, Green PG, Levine JD. Second messengers mediating high-molecular-weight hyaluronan-induced antihyperalgesia in rats with chemotherapy-induced peripheral neuropathy. Pain 2022; 163:1728-1739. [PMID: 34913881 PMCID: PMC9167889 DOI: 10.1097/j.pain.0000000000002558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT High-molecular-weight hyaluronan (HMWH) is an agonist at cluster of differentiation (CD)44, the cognate hyaluronan receptor, on nociceptors, where it acts to induce antihyperalgesia in preclinical models of inflammatory and neuropathic pain. In the present experiments, we studied the CD44 second messengers that mediate HMWH-induced attenuation of pain associated with oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy (CIPN). While HMWH attenuated CIPN only in male rats, after ovariectomy or intrathecal administration of an oligodeoxynucleotide (ODN) antisense to G protein-coupled estrogen receptor (GPR30) mRNA, female rats were also sensitive to HMWH. Intrathecal administration of an ODN antisense to CD44 mRNA markedly attenuated HMWH-induced antihyperalgesia in male rats with CIPN induced by oxaliplatin or paclitaxel. Intradermal administration of inhibitors of CD44 second messengers, RhoA (member of the Rho family of GTPases), phospholipase C, and phosphatidylinositol (PI) 3-kinase gamma (PI3Kγ), attenuated HMWH-induced antihyperalgesia as does intrathecal administration of an ODN antisense to PI3Kγ. Our results demonstrated that HMWH induced antihyperalgesia in CIPN, mediated by its action at CD44 and downstream signaling by RhoA, phospholipase C, and PI3Kγ.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Larissa Staurengo-Ferrari
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Ma X, Zhang Y, Gou D, Ma J, Du J, Wang C, Li S, Cui H. Metabolic Reprogramming of Microglia Enhances Proinflammatory Cytokine Release through EphA2/p38 MAPK Pathway in Alzheimer’s Disease. J Alzheimers Dis 2022; 88:771-785. [DOI: 10.3233/jad-220227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: The activation of microglia and neuroinflammation has been implicated in the pathogenesis of Alzheimer’s disease (AD), but the exact roles of microglia and the underlying mechanisms remain unclear. Objective: To clarify how the metabolic reprogramming of microglia induce by amyloid-β (Aβ)1-42 to affect the release of proinflammatory cytokines in AD. Methods: MTS assay was used to detect the viability of BV2 cells treated with different concentrations of Aβ1-42 for different periods of time. The expression levels of proinflammatory cytokines were determined by qRT-PCR and western blot assay in BV2 cells and hippocampus of mice. RNA sequencing was applied to evaluate the gene expression profiles in response to HK2 knockdown in BV2 cells treated with Aβ1-42. Results: Low concentrations of Aβ1-42 increased the viability of BV2 cells and promoted the release of proinflammatory cytokines, and this process is accompanied by increased glycolysis. Inhibition of glycolysis significantly downregulated the release of proinflammatory cytokines in BV2 cells and hippocampus of mice treated with Aβ1-42. The results of RNA sequencing revealed the expression of chemokine ligand 2 (Cxcl2) and ephrin receptor tyrosine kinase A2 (EphA2) were significantly downregulated when knocked down HK2 in BV2 cells. Subsequently, the expression of proinflammatory cytokines was downregulated in BV2 cell after knocking down EphA2. Conclusion: This study demonstrated that EphA2/p38 MAPK pathway is involved the release of proinflammatory cytokines in microglia induced by Aβ1-42 in AD, which is accompanied by metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis.
Collapse
Affiliation(s)
- Xiaowei Ma
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
| | - Dongyun Gou
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Jingle Ma
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
| | - Juan Du
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
| |
Collapse
|
10
|
Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 2022; 10:10. [PMID: 35091552 PMCID: PMC8799702 DOI: 10.1038/s41413-021-00181-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal development and homeostasis in mammals are modulated by finely coordinated processes of migration, proliferation, differentiation, and death of skeletogenic cells originating from the mesoderm and neural crest. Numerous molecular mechanisms are involved in these regulatory processes, one of which is protein posttranslational modifications, particularly protein tyrosine phosphorylation (PYP). PYP occurs mainly through the action of protein tyrosine kinases (PTKs), modifying protein enzymatic activity, changing its cellular localization, and aiding in the assembly or disassembly of protein signaling complexes. Under physiological conditions, PYP is balanced by the coordinated action of PTKs and protein tyrosine phosphatases (PTPs). Dysregulation of PYP can cause genetic, metabolic, developmental, and oncogenic skeletal diseases. Although PYP is a reversible biochemical process, in contrast to PTKs, little is known about how this equilibrium is modulated by PTPs in the skeletal system. Whole-genome sequencing has revealed a large and diverse superfamily of PTP genes (over 100 members) in humans, which can be further divided into cysteine (Cys)-, aspartic acid (Asp)-, and histidine (His)-based PTPs. Here, we review current knowledge about the functions and regulatory mechanisms of 28 PTPs involved in skeletal development and diseases; 27 of them belong to class I and II Cys-based PTPs, and the other is an Asp-based PTP. Recent progress in analyzing animal models that harbor various mutations in these PTPs and future research directions are also discussed. Our literature review indicates that PTPs are as crucial as PTKs in supporting skeletal development and homeostasis.
Collapse
|
11
|
PI3Kγ/AKT Signaling in High Molecular Weight Hyaluronan (HMWH)-Induced Anti-Hyperalgesia and Reversal of Nociceptor Sensitization. J Neurosci 2021; 41:8414-8426. [PMID: 34417329 DOI: 10.1523/jneurosci.1189-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
High molecular weight hyaluronan (HMWH), a well-established treatment for osteoarthritis pain, is anti-hyperalgesic in preclinical models of inflammatory and neuropathic pain. HMWH-induced anti-hyperalgesia is mediated by its action at cluster of differentiation 44 (CD44), the cognate hyaluronan receptor, which can signal via phosphoinositide 3-kinase (PI3K), a large family of kinases involved in diverse cell functions. We demonstrate that intrathecal administration of an oligodeoxynucleotide (ODN) antisense to mRNA for PI3Kγ (a Class I PI3K isoform) expressed in dorsal root ganglia (DRGs), and intradermal administration of a PI3Kγ-selective inhibitor (AS605240), markedly attenuates HMWH-induced anti-prostaglandin E2 (PGE2) hyperalgesia, in male and female rats. Intradermal administration of inhibitors of mammalian target of rapamycin (mTOR; rapamycin) and protein kinase B (AKT; AKT Inhibitor IV), signaling molecules downstream of PI3Kγ, also attenuates HMWH-induced anti-hyperalgesia. In vitro patch-clamp electrophysiology experiments on cultured nociceptors from male rats demonstrate that some HMWH-induced changes in generation of action potentials (APs) in nociceptors sensitized by PGE2 are PI3Kγ dependent (reduction in AP firing rate, increase in latency to first AP and increase in slope of current ramp required to induce AP) and some are PI3Kγ independent [reduction in recovery rate of AP afterhyperpolarization (AHP)]. Our demonstration of a role of PI3Kγ in HMWH-induced anti-hyperalgesia and reversal of nociceptor sensitization opens a novel line of research into molecular targets for the treatment of diverse pain syndromes.SIGNIFICANCE STATEMENT We have previously demonstrated that high molecular weight hyaluronan (HMWH) attenuates inflammatory hyperalgesia, an effect mediated by its action at cluster of differentiation 44 (CD44), the cognate hyaluronan receptor, and activation of its downstream signaling pathway, in nociceptors. In the present study, we demonstrate that phosphoinositide 3-kinase (PI3K)γ and downstream signaling pathway, protein kinase B (AKT) and mammalian target of rapamycin (mTOR), are crucial for HMWH to induce anti-hyperalgesia.
Collapse
|
12
|
Yamamoto T, Suzuki S, Fujii T, Mima Y, Watanabe K, Matsumoto M, Nakamura M, Fujita N. Efficacy of hyaluronic acid on intervertebral disc inflammation: An in vitro study using notochordal cell lines and human disc cells. J Orthop Res 2021; 39:2197-2208. [PMID: 33251629 DOI: 10.1002/jor.24933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 02/04/2023]
Abstract
Hyaluronic acid (HA) is widely recognized as a therapeutic target and currently used in medicine. However, HA metabolism during intervertebral disc degeneration (IVDD) has not been completely elucidated. This study aimed to evaluate the efficacy of HA on intervertebral disc (IVD) inflammation and identify the main molecules modulating HA degradation in IVDs. To assess HA function in IVD cells in vitro, we treated human disc cells and U-CH1-N cells, a notochordal nucleus pulposus cell line, with HA or hyaluronidase. Real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis showed that tumor necrosis factor alpha (TNF-α)-mediated induction of the expression of TNF-α and cyclooxygenase-2 (COX2) was clearly neutralized by HA treatment, and the expression of TNF-α and COX2 was significantly induced by hyaluronidase treatment in both cell types. Additionally, Western blot analysis showed that hyaluronidase-induced phosphorylation of p38 and Erk1/2, and that TNF-α-mediated phosphorylation of p38 and Erk1/2 was clearly reduced by HA addition. In degenerating human IVD samples, immunohistochemistry for hyaluronidase showed that the expression of hyaluronidases including HYAL1, HYAL2, and cell migration-inducing protein (CEMIP) tended to increase in accordance with IVDD. In particular, HYAL1 showed statistically significant differences. In vitro study also confirmed a similar phenomenon that TNF-α treatment increased both messenger RNA and protein expression in both cell types. Our results demonstrated that HA could potentially suppress IVDD by regulating p38 and Erk1/2 pathways, and that the expression of HYAL1 was correlated with IVDD progression. These findings indicated that HYAL1 would be a potential molecular target for suppressing IVDD by controlling HA metabolism.
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Fujii
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan.,Department of Orthopaedic Surgery, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Yuichiro Mima
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan.,Department of Orthopaedic Surgery, Kawasaki Municipal Hospital, Kanagawa, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan.,Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
13
|
Bonet IJM, Araldi D, Green PG, Levine JD. Sexually Dimorphic Role of Toll-like Receptor 4 (TLR4) in High Molecular Weight Hyaluronan (HMWH)-induced Anti-hyperalgesia. THE JOURNAL OF PAIN 2021; 22:1273-1282. [PMID: 33892155 PMCID: PMC8500912 DOI: 10.1016/j.jpain.2021.03.152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
High molecular weight hyaluronan (HMWH), a prominent component of the extracellular matrix binds to and signals via multiple receptors, including cluster of differentiation 44 (CD44) and toll-like receptor 4 (TLR4). We tested the hypothesis that, in the setting of inflammation, HMWH acts at TLR4 to attenuate hyperalgesia. We found that the attenuation of prostaglandin E2 (PGE2)-induced hyperalgesia by HMWH was attenuated by a TLR4 antagonist (NBP2-26245), but only in male and ovariectomized female rats. In this study we sought to evaluated the role of the TLR4 signaling pathway in anti-hyperalgesia induced by HMWH in male rats. Decreasing expression of TLR4 in nociceptors, by intrathecal administration of an oligodeoxynucleotide (ODN) antisense to TLR4 mRNA, also attenuated HMWH-induced anti-hyperalgesia, in male and ovariectomized female rats. Estrogen replacement in ovariectomized females reconstituted the gonad-intact phenotype. The administration of an inhibitor of myeloid differentiation factor 88 (MyD88), a TLR4 second messenger, attenuated HMWH-induced anti-hyperalgesia, while an inhibitor of the MyD88-independent TLR4 signaling pathway did not. Since it has previously been shown that HMWH-induced anti-hyperalgesia is also mediated, in part by CD44 we evaluated the effect of the combination of ODN antisense to TLR4 and CD44 mRNA. This treatment completely reversed HMWH-induced anti-hyperalgesia in male rats. Our results demonstrate a sex hormone-dependent, sexually dimorphic involvement of TLR4 in HMWH-induced anti-hyperalgesia, that is MyD88 dependent. PERSPECTIVE: The role of TLR4 in anti-hyperalgesia induced by HMWH is a sexually dimorphic, TLR4 dependent inhibition of inflammatory hyperalgesia that provides a novel molecular target for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Ivan J M Bonet
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco
| | - Dionéia Araldi
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco
| | - Paul G Green
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco; Departments of Preventative and Restorative Dental Sciences, University of California at San Francisco, San Francisco
| | - Jon D Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco; Departments of Medicine, University of California at San Francisco, San Francisco.
| |
Collapse
|
14
|
Cai SS, Li T, Akinade T, Zhu Y, Leong KW. Drug delivery carriers with therapeutic functions. Adv Drug Deliv Rev 2021; 176:113884. [PMID: 34302897 PMCID: PMC8440421 DOI: 10.1016/j.addr.2021.113884] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Design of micro- or nanocarriers for drug delivery has primarily been focused on properties such as hydrophobicity, biodegradability, size, shape, surface charge, and toxicity, so that they can achieve optimal delivery with respect to drug loading, release kinetics, biodistribution, cellular uptake, and biocompatibility. Incorporation of stimulus-sensitive moieties into the carriers would lead to "smart" delivery systems. A further evolution would be to endow the carrier with a therapeutic function such that it no longer serves as a mere passive entity to release the drug at the target tissue but can be viewed as a therapeutic agent in itself. In this review, we will discuss recent and ongoing efforts over the past decade to design therapeutic drug carriers that confer a biological benefit, including ROS scavenging or generating, pro- or anti-inflammatory, and immuno-evasive properties, to enhance the overall therapeutic efficacy of the delivery systems.
Collapse
Affiliation(s)
- Shuting S. Cai
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tolulope Akinade
- Graduate Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York 10027, New York, United States
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States,Department of Systems Biology, Columbia University, New York 10027, New York, United States,Corresponding author , Mailing address: 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027
| |
Collapse
|
15
|
Mahmoudian RA, Gharaie ML, Abbaszadegan MR, Alasti A, Forghanifard MM, Mansouri A, Gholamin M. Crosstalk between MMP-13, CD44, and TWIST1 and its role in regulation of EMT in patients with esophageal squamous cell carcinoma. Mol Cell Biochem 2021; 476:2465-2478. [PMID: 33604811 DOI: 10.1007/s11010-021-04089-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) play key roles in epithelial-mesenchymal transition (EMT) for the development of cancer cell invasion and metastasis. MMP-13 is an extracellular matrix (ECM)-degrading enzyme that plays crucial roles in angiogenesis, cell cycle regulation, niche maintenance, and transforming squamous epithelial cells in various tissues. CD44, a transmembrane glycoprotein expressed on esophageal tumor cells, is required for EMT induction and invasion in esophageal squamous cell carcinoma (ESCC). The transcription factor TWIST1, as EMT and stemness marker, regulates MMPs expression and is identified as the downstream target of CD44. In this study, we aimed to investigate the probable interplay between the expression of key genes contributing to ESCC development, including MMP-13, TWIST1, and CD44 with clinical features for introducing novel diagnostic and therapeutic targets in the disease. The gene expression profiling of MMP-13, TWIST1, and CD44 was performed using quantitative real-time PCR in tumor tissues from 50 ESCC patients compared to corresponding margin non-tumoral tissues. Significant overexpression of MMP-13, CD44S, CD44V3, CD44V6, and TWIST1 were observed in 74%, 36%, 44%, 44%, and 52% of ESCC tumor samples, respectively. Overexpression of MMP-13 was associated with stage of tumor progression, metastasis, and tumor location (P < 0.05). There was a significant correlation between TWIST1 overexpression and grade (P < 0.05). Furthermore, overexpression of CD44 variants was associated with stage of tumor progression, grade, tumor invasion, and location (P < 0.05). The results indicated the significant correlation between concomitant expression of MMP-13/TWIST1, TWIST1/CD44, and CD44/MMP-13 with each other in a variety of clinicopathological traits, including depth of tumor invasion, tumor location, stage of tumor, and lymph node involvement in ESCC tissue samples (P < 0.05). Collectively, our results indicate that the TWIST1-CD44-MMP-13 axis is involved in tumor aggressiveness, proposing these genes as regulators of EMT, diagnostic markers, and therapeutic targets in ESCC.
Collapse
Affiliation(s)
| | - Maryam Lotfi Gharaie
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Physiology, Department of Basic Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ali Alasti
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Atena Mansouri
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Innovated Medical Research Center and Department of Immunology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Gholamin
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, P.O.Box 345-91357, Mashhad, Iran.
| |
Collapse
|
16
|
Mechanisms Mediating High-Molecular-Weight Hyaluronan-Induced Antihyperalgesia. J Neurosci 2020; 40:6477-6488. [PMID: 32665406 DOI: 10.1523/jneurosci.0166-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 11/21/2022] Open
Abstract
We evaluated the mechanism by which high-molecular-weight hyaluronan (HMWH) attenuates nociceptor sensitization, in the setting of inflammation. HMWH attenuated mechanical hyperalgesia induced by the inflammatory mediator prostaglandin E2 (PGE2) in male and female rats. Intrathecal administration of an oligodeoxynucleotide antisense (AS-ODN) to mRNA for cluster of differentiation 44 (CD44), the cognate hyaluronan receptor, and intradermal administration of A5G27, a CD44 receptor antagonist, both attenuated antihyperalgesia induced by HMWH. In male rats, HMWH also signals via Toll-like receptor 4 (TLR4), and AS-ODN for TLR4 mRNA administered intrathecally, attenuated HMWH-induced antihyperalgesia. Since HMWH signaling is dependent on CD44 clustering in lipid rafts, we pretreated animals with methyl-β-cyclodextrin (MβCD), which disrupts lipid rafts. MβCD markedly attenuated HMWH-induced antihyperalgesia. Inhibitors for components of intracellular signaling pathways activated by CD44, including phospholipase C and phosphoinositide 3-kinase (PI3K), also attenuated HMWH-induced antihyperalgesia. Furthermore, in vitro application of HMWH attenuated PGE2-induced sensitization of tetrodotoxin-resistant sodium current, in small-diameter dorsal root ganglion neurons, an effect that was attenuated by a PI3K inhibitor. Our results indicate a central role of CD44 signaling in HMWH-induced antihyperalgesia and suggest novel therapeutic targets, downstream of CD44, for the treatment of pain generated by nociceptor sensitization.SIGNIFICANCE STATEMENT High-molecular-weight-hyaluronan (HMWH) is used to treat osteoarthritis and other pain syndromes. In this study we demonstrate that attenuation of inflammatory hyperalgesia by HMWH is mediated by its action at cluster of differentiation 44 (CD44) and activation of its downstream signaling pathways, including RhoGTPases (RhoA and Rac1), phospholipases (phospholipases Cε and Cγ1), and phosphoinositide 3-kinase, in nociceptors. These findings contribute to our understanding of the antihyperalgesic effect of HMWH and support the hypothesis that CD44 and its downstream signaling pathways represent novel therapeutic targets for the treatment of inflammatory pain.
Collapse
|
17
|
Xu Y, Wang YQ, Wang AT, Yu CY, Luo Y, Liu RM, Zhao YJ, Xiao JH. Effect of CD44 on differentiation of human amniotic mesenchymal stem cells into chondrocytes via Smad and ERK signaling pathways. Mol Med Rep 2020; 21:2357-2366. [PMID: 32236637 PMCID: PMC7185282 DOI: 10.3892/mmr.2020.11044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/28/2020] [Indexed: 01/22/2023] Open
Abstract
CD44 antigen (CD44) is a transmembrane protein found in cell adhesion molecules and is involved in the regulation of various physiological processes in cells. It was hypothesized that CD44 directly affected the chondrogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs). In the present study, the expression of chondrocyte-associated factors was detected in the absence and presence of the antibody blocker anti-CD44 antibody during the chondrogenic differentiation of hAMSCs. Following inhibition of CD44 expression, the transcriptional levels of chondrocyte-associated genes SRY-box transcription factor 9, aggrecan and collagen type II α 1 chain, as well as the production of chondrocyte markers type II collagen and aggrecan were significantly decreased in hAMSCs. Further investigation indicated that there was no significant change in total ERK1/2 expression following inhibition of CD44 expression; however, phosphorylated (p)-ERK1/2 expression was decreased. The expression of p-Smad2/3 was also upregulated following CD44 inhibition. These data indicated that CD44 may affect the differentiation of hAMSCs into chondrocytes by regulating the Smad2/3 and ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yan Xu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yi-Qing Wang
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ai-Tong Wang
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Chang-Yin Yu
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ru-Ming Liu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yu-Jie Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
18
|
Ishizuka S, Tsuchiya S, Ohashi Y, Terabe K, Askew EB, Ishizuka N, Knudson CB, Knudson W. Hyaluronan synthase 2 (HAS2) overexpression diminishes the procatabolic activity of chondrocytes by a mechanism independent of extracellular hyaluronan. J Biol Chem 2019; 294:13562-13579. [PMID: 31270213 DOI: 10.1074/jbc.ra119.008567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/25/2019] [Indexed: 02/03/2023] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease of the joints caused in part by a change in the phenotype of resident chondrocytes within affected joints. This altered phenotype, often termed proinflammatory or procatabolic, features enhanced production of endoproteinases and matrix metallo-proteinases (MMPs) as well as secretion of endogenous inflammatory mediators. Degradation and reduced retention of the proteoglycan aggrecan is an early event in OA. Enhanced turnover of hyaluronan (HA) is closely associated with changes in aggrecan. Here, to determine whether experimentally increased HA production promotes aggrecan retention and generates a positive feedback response, we overexpressed HA synthase-2 (HAS2) in chondrocytes via an inducible adenovirus construct (HA synthase-2 viral overexpression; HAS2-OE). HAS2-OE incrementally increased high-molecular-mass HA >100-fold within the cell-associated and growth medium pools. More importantly, our results indicated that the HAS2-OE expression system inhibits MMP3, MMP13, and other markers of the procatabolic phenotype (such as TNF-stimulated gene 6 protein (TSG6)) and also enhances aggrecan retention. These markers were inhibited in OA-associated chondrocytes and in chondrocytes activated by interleukin-1β (IL1β), but also chondrocytes activated by lipopolysaccharide (LPS), tumor necrosis factor α (TNFα), or HA oligosaccharides. However, the enhanced extracellular HA resulting from HAS2-OE did not reduce the procatabolic phenotype of neighboring nontransduced chondrocytes as we had expected. Rather, HA-mediated inhibition of the phenotype occurred only in transduced cells. In addition, high HA biosynthesis rates, especially in transduced procatabolic chondrocytes, resulted in marked changes in chondrocyte dependence on glycolysis versus oxidative phosphorylation for their metabolic energy needs.
Collapse
Affiliation(s)
- Shinya Ishizuka
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Saho Tsuchiya
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Yoshifumi Ohashi
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Kenya Terabe
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Emily B Askew
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Naoko Ishizuka
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Cheryl B Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
19
|
The Dual-Specificity Phosphatase 10 (DUSP10): Its Role in Cancer, Inflammation, and Immunity. Int J Mol Sci 2019; 20:ijms20071626. [PMID: 30939861 PMCID: PMC6480380 DOI: 10.3390/ijms20071626] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the most diagnosed diseases in developed countries. Inflammation is a common response to different stress situations including cancer and infection. In those processes, the family of mitogen-activated protein kinases (MAPKs) has an important role regulating cytokine secretion, proliferation, survival, and apoptosis, among others. MAPKs regulate a large number of extracellular signals upon a variety of physiological as well as pathological conditions. MAPKs activation is tightly regulated by phosphorylation/dephosphorylation events. In this regard, the dual-specificity phosphatase 10 (DUSP10) has been described as a MAPK phosphatase that negatively regulates p38 MAPK and c-Jun N-terminal kinase (JNK) in several cellular types and tissues. Several studies have proposed that extracellular signal-regulated kinase (ERK) can be also modulated by DUSP10. This suggests a complex role of DUSP10 on MAPKs regulation and, in consequence, its impact in a wide variety of responses involved in both cancer and inflammation. Here, we review DUSP10 function in cancerous and immune cells and studies in both mouse models and patients that establish a clear role of DUSP10 in different processes such as inflammation, immunity, and cancer.
Collapse
|
20
|
Murakami T, Otsuki S, Okamoto Y, Nakagawa K, Wakama H, Okuno N, Neo M. Hyaluronic acid promotes proliferation and migration of human meniscus cells via a CD44-dependent mechanism. Connect Tissue Res 2019; 60:117-127. [PMID: 29658360 DOI: 10.1080/03008207.2018.1465053] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Treatment of meniscal injury is important for osteoarthritis (OA) prevention. Meniscus cells are divided between inner and outer cells, which have different characteristics and vascularity. We evaluated the effects of hyaluronic acid (HA) on the proliferation and migration of human inner and outer meniscus cells, and investigated the underlying healing mechanisms. MATERIALS AND METHODS Lateral menisci from 18 patients who underwent total knee arthroplasty were used. Meniscus cells were harvested from the outer and inner menisci and evaluated using migration and proliferation assays after treatment with HA or chondroitin sulfate (CS). The effects of HA on prostaglandin E2 (PGE2)-induced apoptosis and gene expression were evaluated. RESULTS Cell migration and proliferation were increased by HA in a concentration-dependent manner, in both inner and outer meniscus cells. PGE2-induced apoptosis and caspase-3/7 activity were suppressed by HA in both inner and outer meniscus cells, and these effects were blocked by an anti-CD44 antibody. COL2A1 and ACAN mRNA levels were upregulated following HA treatment of inner meniscus cells. MMP13 mRNA was downregulated following CS stimulation of both inner and outer meniscus cells. These results suggest that CS treatment suppresses the inflammatory reaction rather than providing meniscal restoration. The phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways were activated by HA in both types of meniscus cells; these effects were blocked by treatment with an anti-CD44 antibody. CONCLUSIONS HA promoted human meniscus regeneration by inhibiting apoptosis, promoting cell migration, and accelerating cell proliferation, potentially through the PI3K/MAPK pathway via the CD44 receptor.
Collapse
Affiliation(s)
| | - Shuhei Otsuki
- a Orthopedic Surgery , Osaka Medical College , Osaka , Japan
| | | | - Kosuke Nakagawa
- a Orthopedic Surgery , Osaka Medical College , Osaka , Japan
| | - Hitoshi Wakama
- a Orthopedic Surgery , Osaka Medical College , Osaka , Japan
| | - Nobuhiro Okuno
- a Orthopedic Surgery , Osaka Medical College , Osaka , Japan
| | - Masashi Neo
- a Orthopedic Surgery , Osaka Medical College , Osaka , Japan
| |
Collapse
|
21
|
The pericellular hyaluronan of articular chondrocytes. Matrix Biol 2018; 78-79:32-46. [PMID: 29425696 DOI: 10.1016/j.matbio.2018.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/01/2023]
Abstract
The story of hyaluronan in articular cartilage, pericellular hyaluronan in particular, essentially is also the story of aggrecan. Without properly tethered aggrecan, the load bearing function of cartilage is compromised. The anchorage of aggrecan to the cell surface only occurs due to the binding of aggrecan to hyaluronan-with hyaluronan tethered either to a hyaluronan synthase or by multivalent binding to CD44. In this review, details of hyaluronan synthesis are discussed including how HAS2 production of hyaluronan is necessary for normal chondrocyte development and matrix assembly, how an abundance or deficit of pericellular hyaluronan alters chondrocyte metabolism, and whether hyaluronan size matters or changes with aging or disease. The biomechanical role and matrix assembly function of hyaluronan in addition to the functions of hyaluronidases are discussed. The turnover of hyaluronan is considered including mechanisms by which its turnover, at least in part, is mediated by endocytosis by chondrocytes and regulated by aggrecan degradation. Differences between turnover and clearance of newly synthesized hyaluronan and aggrecan versus the half-life of hyaluronan remaining within the inter-territorial matrix of cartilage are discussed. The release of neutral pH-acting hyaluronidase activity remains one unanswered question concerning the loss of cartilage hyaluronan in osteoarthritis. Signaling events driven by changes in hyaluronan-chondrocyte interactions may involve a chaperone function of CD44 with other receptors/cofactors as well as the changes in hyaluronan production functioning as a metabolic rheostat.
Collapse
|
22
|
Avenoso A, D'Ascola A, Scuruchi M, Mandraffino G, Calatroni A, Saitta A, Campo S, Campo GM. Hyaluronan in the experimental injury of the cartilage: biochemical action and protective effects. Inflamm Res 2018; 67:5-20. [PMID: 28803264 DOI: 10.1007/s00011-017-1084-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Our knowledge of extracellular matrix (ECM) structure and function has increased enormously over the last decade or so. There is evidence demonstrating that ECM provides signals affecting cell adhesion, shape, migration, proliferation, survival, and differentiation. ECM presents many domains that become active after proteolytic cleavage. These active ECM fragments are called matrikines which play different roles; in particular, they may act as potent inflammatory mediators during cartilage injury. FINDINGS A major component of the ECM that undergoes dynamic regulation during cartilage damage and inflammation is the non-sulphated glycosaminoglycan (GAG) hyaluronan (HA). In this contest, HA is the most studied because of its different activity due to the different polymerization state. In vivo evidences have shown that low molecular weight HA exerts pro-inflammatory action, while high molecular weight HA possesses anti-inflammatory properties. Therefore, the beneficial HA effects on arthritis are not only limited to its viscosity and lubricant action on the joints, but it is especially due to a specific and effective anti-inflammatory activity. Several in vitro experimental investigations demonstrated that HA treatment may regulate different biochemical pathways involved during the cartilage damage. Emerging reports are suggesting that the ability to recognize receptors both for the HA degraded fragments, whether for the high-polymerized native HA involve interaction with integrins, toll-like receptors (TLRs), and the cluster determinant (CD44). The activation of these receptors induced by small HA fragments, via the nuclear factor kappa-light-chain enhancer of activated B cell (NF-kB) mediation, directly or other different pathways, produces the transcription of a large number of damaging intermediates that lead to cartilage erosion. CONCLUSIONS This review briefly summarizes a number of findings of the recent studies focused on the protective effects of HA, at the different polymerization states, on experimental arthritis in vitro both in animal and human cultured chondrocytes.
Collapse
Affiliation(s)
- Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy
| | - Alberto Calatroni
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy.
| |
Collapse
|
23
|
Abstract
Objective Summarize the biologic effects of Supartz FX for knee osteoarthritis (OA), the first worldwide clinically approved intra-articular (IA) hyaluronic acid (HA) product. Design To determine the mechanism of action from preclinical and clinical studies, a literature search was conducted of Supartz FX using academic databases from 1987 to 2016. Articles on Supartz FX that deal with its mechanisms of action were extracted, categorized, and reviewed. Results Supartz FX has 2 potential mechanisms of action: (1) biomechanical: IA Supartz FX directly improves the viscoelasticity and lubrication of synovial fluid; (2) physiologic: IA Supartz FX penetrates synovium and cartilage tissues to reach HA receptors on the surface of synoviocytes and chondrocytes. In synovium, suppression of gene expression in inflammatory mediators results in improved endogenous HA production, improved properties of synovial fluid, and reduction in pain. In cartilage, suppression of gene expression of collagenases and aggrecanases suppresses cartilage degeneration. Conclusion The net results of basic and clinical studies is that IA Supartz FX provides a more favorable biomechanical and functional environment in the knee joint. Hence, it is not only a lubricant but is also physiologically active. These actions may help explain both short- and long-term improvement in pain and function often achieved from IA Supartz FX in knee OA.
Collapse
Affiliation(s)
- Roy D. Altman
- Department of Medicine, Division of Rheumatology and Immunology, David Geffen School of Medicine, University of California Los Angeles, CA, USA,Roy D. Altman, Division of Rheumatology and Immunology, David Geffen School of Medicine, University of California at Los Angeles, 1000 Veterans Ave, Los Angeles 90024, CA, USA.
| | - Vinod Dasa
- Department of Orthopaedics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jun Takeuchi
- Pharmaceuticals Information Group, Seikagaku Corporation, Tokyo, Japan
| |
Collapse
|
24
|
CD44 Signaling Mediates High Molecular Weight Hyaluronan-Induced Antihyperalgesia. J Neurosci 2017; 38:308-321. [PMID: 29175954 DOI: 10.1523/jneurosci.2695-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023] Open
Abstract
We studied, in male Sprague Dawley rats, the role of the cognate hyaluronan receptor, CD44 signaling in the antihyperalgesia induced by high molecular weight hyaluronan (HMWH). Low molecular weight hyaluronan (LMWH) acts at both peptidergic and nonpeptidergic nociceptors to induce mechanical hyperalgesia that is prevented by intrathecal oligodeoxynucleotide antisense to CD44 mRNA, which also prevents hyperalgesia induced by a CD44 receptor agonist, A6. Ongoing LMWH and A6 hyperalgesia are reversed by HMWH. HMWH also reverses the hyperalgesia induced by diverse pronociceptive mediators, prostaglandin E2, epinephrine, TNFα, and interleukin-6, and the neuropathic pain induced by the cancer chemotherapy paclitaxel. Although CD44 antisense has no effect on the hyperalgesia induced by inflammatory mediators or paclitaxel, it eliminates the antihyperalgesic effect of HMWH. HMWH also reverses the hyperalgesia induced by activation of intracellular second messengers, PKA and PKCε, indicating that HMWH-induced antihyperalgesia, although dependent on CD44, is mediated by an intracellular signaling pathway rather than as a competitive receptor antagonist. Sensitization of cultured small-diameter DRG neurons by prostaglandin E2 is also prevented and reversed by HMWH. These results demonstrate the central role of CD44 signaling in HMWH-induced antihyperalgesia, and establish it as a therapeutic target against inflammatory and neuropathic pain.SIGNIFICANCE STATEMENT We demonstrate that hyaluronan (HA) with different molecular weights produces opposing nociceptive effects. While low molecular weight HA increases sensitivity to mechanical stimulation, high molecular weight HA reduces sensitization, attenuating inflammatory and neuropathic hyperalgesia. Both pronociceptive and antinociceptive effects of HA are mediated by activation of signaling pathways downstream CD44, the cognate HA receptor, in nociceptors. These results contribute to our understanding of the role of the extracellular matrix in pain, and indicate CD44 as a potential therapeutic target to alleviate inflammatory and neuropathic pain.
Collapse
|