1
|
Tomé I, Alves-Pimenta S, Sargo R, Pereira J, Colaço B, Brancal H, Costa L, Ginja M. Mechanical osteoarthritis of the hip in a one medicine concept: a narrative review. BMC Vet Res 2023; 19:222. [PMID: 37875898 PMCID: PMC10599070 DOI: 10.1186/s12917-023-03777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Human and veterinary medicine have historically presented many medical areas of potential synergy and convergence. Mechanical osteoarthritis (MOA) is characterized by a gradual complex imbalance between cartilage production, loss, and derangement. Any joint instability that results in an abnormal overload of the joint surface can trigger MOA. As MOA has a prevailing mechanical aetiology, treatment effectiveness can only be accomplished if altered joint mechanics and mechanosensitive pathways are normalized and restored. Otherwise, the inflammatory cascade of osteoarthritis will be initiated, and the changes may become irreversible. The management of the disease using non-steroidal anti-inflammatory drugs, analgesics, physical therapy, diet changes, or nutraceuticals is conservative and less effective. MOA is a determinant factor for the development of hip dysplasia in both humans and dogs. Hip dysplasia is a hereditary disease with a high incidence and, therefore, of great clinical importance due to the associated discomfort and significant functional limitations. Furthermore, on account of analogous human and canine hip dysplasia disease and under the One Medicine concept, unifying veterinary and human research could improve the well-being and health of both species, increasing the acknowledgement of shared diseases. Great success has been accomplished in humans regarding preventive conservative management of hip dysplasia and following One Medicine concept, similar measures would benefit dogs. Moreover, animal models have long been used to better understand the different diseases' mechanisms. Current research in animal models was addressed and the role of rabbit models in pathophysiologic studies and of the dog as a spontaneous animal model were highlighted, denoting the inexistence of rabbit functional models to investigate therapeutic approaches in hip MOA.
Collapse
Affiliation(s)
- I Tomé
- Department of Veterinary Sciences, University of Trás-Os-Montes E Alto Douro, Vila Real, 5000-801, Portugal.
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal.
| | - S Alves-Pimenta
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
- Department of Animal Science, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| | - R Sargo
- Department of Veterinary Sciences, University of Trás-Os-Montes E Alto Douro, Vila Real, 5000-801, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| | - J Pereira
- Department of Veterinary Sciences, University of Trás-Os-Montes E Alto Douro, Vila Real, 5000-801, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| | - B Colaço
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
- Department of Animal Science, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| | - H Brancal
- Clínica Veterinária da Covilhã, Covilhã, 6200-289, Portugal
| | - L Costa
- Department of Veterinary Sciences, University of Trás-Os-Montes E Alto Douro, Vila Real, 5000-801, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| | - M Ginja
- Department of Veterinary Sciences, University of Trás-Os-Montes E Alto Douro, Vila Real, 5000-801, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| |
Collapse
|
2
|
Gao L, Beninatto R, Oláh T, Goebel L, Tao K, Roels R, Schrenker S, Glomm J, Venkatesan JK, Schmitt G, Sahin E, Dahhan O, Pavan M, Barbera C, Lucia AD, Menger MD, Laschke MW, Cucchiarini M, Galesso D, Madry H. A Photopolymerizable Biocompatible Hyaluronic Acid Hydrogel Promotes Early Articular Cartilage Repair in a Minipig Model In Vivo. Adv Healthc Mater 2023; 12:e2300931. [PMID: 37567219 PMCID: PMC11468502 DOI: 10.1002/adhm.202300931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Articular cartilage defects represent an unsolved clinical challenge. Photopolymerizable hydrogels are attractive candidates supporting repair. This study investigates the short-term safety and efficacy of two novel hyaluronic acid (HA)-triethylene glycol (TEG)-coumarin hydrogels photocrosslinked in situ in a clinically relevant large animal model. It is hypothesized that HA-hydrogel-augmented microfracture (MFX) is superior to MFX in enhancing early cartilage repair, and that the molar degree of substitution and concentration of HA affects repair. Chondral full-thickness defects in the knees of adult minipigs are treated with either 1) debridement (No MFX), 2) debridement and MFX, 3) debridement, MFX, and HA hydrogel (30% molar derivatization, 30 mg mL-1 HA; F3) (MFX+F3), and 4) debridement, MFX, and HA hydrogel (40% molar derivatization, 20 mg mL-1 HA; F4) (MFX+F4). After 8 weeks postoperatively, MFX+F3 significantly improves total macroscopic and histological scores compared with all other groups without negative effects, besides significantly enhancing the individual repair parameters "defect architecture," "repair tissue surface" (compared with No MFX, MFX), and "subchondral bone" (compared with MFX). These data indicate that photopolymerizable HA hydrogels enable a favorable metastable microenvironment promoting early chondrogenesis in vivo. This work also uncovers a mechanism for effective HA-augmented cartilage repair by combining lower molar derivatization with higher concentrations.
Collapse
Affiliation(s)
- Liang Gao
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Riccardo Beninatto
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Tamás Oláh
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Lars Goebel
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ke Tao
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Rebecca Roels
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Steffen Schrenker
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Julianne Glomm
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Gertrud Schmitt
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ebrar Sahin
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ola Dahhan
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Mauro Pavan
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Alba Di Lucia
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Michael D. Menger
- Institute for Clinical and Experimental SurgerySaarland UniversityKirrberger Straße 100, Building 65 and 66D‐66421HomburgGermany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland UniversityKirrberger Straße 100, Building 65 and 66D‐66421HomburgGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Devis Galesso
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| |
Collapse
|
3
|
Geary MB, Orner CA, Shammas H, Reuter JM, Loiselle AE, Giordano BD, Wu CL. The surgical destabilization of the abductor muscle leads to development of instability-associated hip osteoarthritis in mice. J Hip Preserv Surg 2023; 10:158-165. [PMID: 38162262 PMCID: PMC10757407 DOI: 10.1093/jhps/hnad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 01/03/2024] Open
Abstract
Osteoarthritis (OA) of the hip is a common and debilitating painful joint disease. However, there is paucity of surgically induced hip OA models in small animals that allow scientists to study the onset and progression of the disease. A growing body of evidence indicates a positive association between periarticular myotendinous pathology and the development of hip OA. Thus, in the current study, we aimed to establish a novel mouse instability-associated hip OA model via selective injury of the abductor complex around the hip joint. C57BL6/J mice were randomized to sham surgery or abductor injury, in which the myotendinous insertion at the third trochanter and greater trochanter were surgically detached. Mice were allowed free active movement until they were sacrificed at either 3 weeks or 20 weeks post-injury. Histologic analyses and immunohistochemical staining of the femoral head articular cartilage were performed, along with microCT (µCT) analysis to assess subchondral bone remodeling. We observed that mice receiving abductor injury exhibited significantly increased instability-associated OA severity with loss of proteoglycan and type II collagen staining compared to sham control mice at 20 weeks post-surgery, while comparable matrix metalloproteinase 13 expression was observed between injury and sham groups. No significant differences in subchondral bone remodeling were found after 3 or 20 weeks following injury. Our study further supports the link between abductor dysfunction and the development of instability-associated hip OA. Importantly, this novel surgically induced hip OA mouse model may provide a valuable tool for future investigations into the pathogenesis and treatment of hip OA.
Collapse
Affiliation(s)
- Michael B Geary
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood, Avenue, Box 665, Rochester, NY 14642, USA
| | - Caitlin A Orner
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood, Avenue, Box 665, Rochester, NY 14642, USA
| | - Helen Shammas
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood, Avenue, Box 665, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | - John M Reuter
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood, Avenue, Box 665, Rochester, NY 14642, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood, Avenue, Box 665, Rochester, NY 14642, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | - Brian D Giordano
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood, Avenue, Box 665, Rochester, NY 14642, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood, Avenue, Box 665, Rochester, NY 14642, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| |
Collapse
|
4
|
Wolfe PN, Stoker AM, Crist BD, Leary E, Bozynski CC, Cook JL. Evaluation of mechanistic serum and urine biomarkers for secondary osteoarthritis associated with developmental dysplasia of the hip. J Orthop 2023; 42:24-29. [PMID: 37601815 PMCID: PMC10435905 DOI: 10.1016/j.jor.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/22/2023] Open
Abstract
Objective Determine measurable differences for mechanistic urine and serum biomarkers in patients with developmental dysplasia of the hip (DDH) prior to, and following, secondary hip osteoarthritis (OA) when compared to controls. Design Urine and serum were collected from individuals with developmental dysplasia of the hip (n = 39), prior to (Pre-OA DDH, n = 32) and following diagnosis of secondary hip OA (Post-OA DDH, n = 7), age-matched Pre-OA controls (n = 35), and age-matched Post-OA controls (n = 12). Samples were analyzed for protein biomarkers with potential for differentiation of hip status through a Mann-Whitney U test with a Benjamini-Hochberg correction. Results Several interleukin and degradation related proteins were found to be differentially expressed when comparing DDH-related hip status prior to and following diagnosis of hip OA. In addition, MCP-1 and TIMP-1 were significantly different between younger and older patients in the control cohorts. Conclusion These results provide initial evidence for serum and urine protein biomarkers that define clinically relevant stages of symptomatic DDH and its progression to secondary hip osteoarthritis categorized by known mechanisms of disease. Level of evidence III.
Collapse
Affiliation(s)
- Preston N. Wolfe
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, United States
- Arthrex, Inc, Naples, FL, United States
| | - Aaron M. Stoker
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, United States
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, United States
| | - Brett D. Crist
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, United States
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, United States
| | - Emily Leary
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, United States
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, United States
| | - Chantelle C. Bozynski
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, United States
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, United States
| | - James L. Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, United States
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
6
|
Wang X, Ma Y, Lu F, Chang Q. The diversified hydrogels for biomedical applications and their imperative roles in tissue regeneration. Biomater Sci 2023; 11:2639-2660. [PMID: 36790251 DOI: 10.1039/d2bm01486f] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Repair and regeneration of tissues after injury are complex pathophysiological processes. Microbial infection, malnutrition, and an ischemic and hypoxic microenvironment in the injured area can impede the typical healing cascade. Distinguished by biomimicry of the extracellular matrix, high aqueous content, and diverse functions, hydrogels have revolutionized clinical practices in tissue regeneration owing to their outstanding hydrophilicity, biocompatibility, and biodegradability. Various hydrogels such as smart hydrogels, nanocomposite hydrogels, and acellular matrix hydrogels are widely used for applications ranging from bench-scale to an industrial scale. In this review, some emerging hydrogels in the biomedical field are briefly discussed. The protective roles of hydrogels in wound dressings and their diverse biological effects on multiple tissues such as bone, cartilage, nerve, muscle, and adipose tissue are also discussed. The vehicle functions of hydrogels for chemicals and cell payloads are detailed. Additionally, this review emphasizes the particular characteristics of hydrogel products that promote tissue repair and reconstruction such as anti-infection, inflammation regulation, and angiogenesis.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Yuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| |
Collapse
|
7
|
Pilli M, Seyrek Intas D, Etikan I, Yigitgor P, Kramer M, Tellhelm B, von Puckler K. The Role of Femoral Head Size and Femoral Head Coverage in Dogs with and without Hip Dysplasia. Vet Sci 2023; 10:vetsci10020120. [PMID: 36851424 PMCID: PMC9961810 DOI: 10.3390/vetsci10020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The subject of hip dysplasia in dogs is still current and preoccupies both animal owners and veterinarians. Major factors affecting the development of the disorder are hip laxity and incongruent joints. Many studies on etiology, pathogenesis, and early diagnosis have been performed to reduce prevalence and select healthy dogs for breeding. The purpose of the present study was to investigate a possible relationship between dysplasia and femoral head area (FHA), femoral coverage by the acetabulum (CFH) and cranio-caudal distance of the dorsal acetabular rim (CrCdAR). Radiographs of a total of 264 skeletally mature dogs with similar physical characteristics (German wirehaired pointers (GWP), German shepherd dogs (GSD) and Labrador retrievers (LAB)) presented for routine hip dysplasia screening were recruited for the study. FHA, CFH and CrCdAR were measured and related to dysplasia status. Evaluations of FHA (p = 0.011), CFH (p < 0.001) and CrCdAR length (p = 0.003) measurements revealed significant interactions between breed, sex and FCI scores, so they had to be assessed separately. The results revealed that FHA tends to decrease as the hip dysplasia score worsens. There was no significant relationship between FHA and dysplasia assessment. FHA is breed-specific and is larger in normal and near-normal male (p = 0.001, p = 0.020) and female (p = 0.001, p = 0.013) GWP compared to GSD, respectively. FHA is greater in normal male GWP (p = 0.011) and GSD (p = 0.040) compared to females. There was a significant and strong positive correlation between FHA and CrCdAR in all breeds and sexes. Additionally, FCI scoring had a medium (GWP, GSD) to strong (LAB) negative correlation with CFH.
Collapse
Affiliation(s)
- Mehmet Pilli
- Department of Surgery, Faculty of Veterinary Medicine, Near East University, Near East Avenue, Nicosia 99010, Turkey
| | - Deniz Seyrek Intas
- Department of Surgery, Faculty of Veterinary Medicine, Near East University, Near East Avenue, Nicosia 99010, Turkey
- Correspondence: or ; Tel.: +90-392-6751000 (ext. 3155) or +90-533-8564912
| | - Ilker Etikan
- Department of Biostatistics, Faculty of Medicine, Near East University, Near East Avenue, Nicosia 99010, Turkey
| | - Pelin Yigitgor
- Department of Surgery, Faculty of Veterinary Medicine, Bursa Uludag University, Gorukle Campus, Nilufer, Bursa 16059, Turkey
| | - Martin Kramer
- Small Animal Clinic, Faculty of Veterinary Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - Bernd Tellhelm
- Small Animal Clinic, Faculty of Veterinary Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - Kerstin von Puckler
- Small Animal Clinic, Faculty of Veterinary Medicine, Justus-Liebig University, 35392 Giessen, Germany
| |
Collapse
|
8
|
Aghapour M, Bockstahler B, Kneissl S, Vezzoni A, Gumpenberger M, Hechinger H, Tichy A, Vidoni B. Radiographic Diagnosis of Hip Laxity in Rottweilers: Interobserver Agreement at Eight- and Twelve-Months of Age. Animals (Basel) 2023; 13:ani13020231. [PMID: 36670771 PMCID: PMC9855059 DOI: 10.3390/ani13020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Hip laxity is one of the predisposing factors of canine hip dysplasia. The early diagnosis of hip laxity allows veterinarians to prevent the participation of dysplastic dogs in breeding programs, which could lower the disease's prevalence due to its genetic background. Furthermore, it allows them to plan preventive/therapeutic procedures for mild/near-normal hips to reduce the symptoms of the disease at older ages. A reliable screening program must be repeatable and reproducible, and intra- and inter-observer studies can help us to determine the best methods. In this study, we aimed to evaluate the radiographic parameters used for the early diagnosis of hip dysplasia in Rottweilers at 8 and 12 months of age with five observers to assess the interobserver agreements. According to our findings, there were high interobserver agreements at both ages for the quantitative values, such as the center edge angle (CEA), dorsal acetabular rim slope (DARS), distraction index (DI), and Norberg angle (NA), whereas we recorded from poor to moderate agreements for the qualitative values, such as the grading of the dorsal acetabular rim (GDAR), grading of the degenerative joint disease (GDJD), location of the center of the femoral head (LCFH), and sclerosis of the cranial acetabular rim (SCAR).
Collapse
Affiliation(s)
- Masoud Aghapour
- Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
- Section of Physical Therapy, Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
- Correspondence:
| | - Barbara Bockstahler
- Section of Physical Therapy, Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sibylle Kneissl
- Diagnostic Imaging, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Aldo Vezzoni
- Clinica Veterinaria Vezzoni S.R.L., 26100 Cremona, Italy
| | - Michaela Gumpenberger
- Diagnostic Imaging, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Harald Hechinger
- Diagnostic Imaging, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Alexander Tichy
- Platform Bioinformatics and Biostatistics, Department for Biomedical Services, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Britta Vidoni
- Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
9
|
Whole exome sequencing of 28 families of Danish descent reveals novel candidate genes and pathways in developmental dysplasia of the hip. Mol Genet Genomics 2023; 298:329-342. [PMID: 36454308 PMCID: PMC9938029 DOI: 10.1007/s00438-022-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Developmental dysplasia of the hip (DDH) is a common condition involving instability of the hip with multifactorial etiology. Early diagnosis and treatment are critical as undetected DDH is an important cause of long-term hip complications. Better diagnostics may be achieved through genetic methods, especially for patients with positive family history. Several candidate genes have been reported but the exact molecular etiology of the disease is yet unknown. In the present study, we performed whole exome sequencing of DDH patients from 28 families with at least two affected first-degree relatives. Four genes previously not associated with DDH (METTL21B, DIS3L2, PPP6R2, and TM4SF19) were identified with the same variants shared among affected family members, in more than two families. Among known association genes, we found damaging variants in DACH1, MYH10, NOTCH2, TBX4, EVC2, OTOG, and SHC3. Mutational burden analysis across the families identified 322 candidate genes, and enriched pathways include the extracellular matrix, cytoskeleton, ion-binding, and detection of mechanical stimulus. Taken altogether, our data suggest a polygenic mode of inheritance for DDH, and we propose that an impaired transduction of the mechanical stimulus is involved in the etiopathological mechanism. Our findings refine our current understanding of candidate causal genes in DDH, and provide a foundation for downstream functional studies.
Collapse
|
10
|
O'Connell CD, Duchi S, Onofrillo C, Caballero‐Aguilar LM, Trengove A, Doyle SE, Zywicki WJ, Pirogova E, Di Bella C. Within or Without You? A Perspective Comparing In Situ and Ex Situ Tissue Engineering Strategies for Articular Cartilage Repair. Adv Healthc Mater 2022; 11:e2201305. [PMID: 36541723 PMCID: PMC11468013 DOI: 10.1002/adhm.202201305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/21/2022] [Indexed: 11/23/2022]
Abstract
Human articular cartilage has a poor ability to self-repair, meaning small injuries often lead to osteoarthritis, a painful and debilitating condition which is a major contributor to the global burden of disease. Existing clinical strategies generally do not regenerate hyaline type cartilage, motivating research toward tissue engineering solutions. Prospective cartilage tissue engineering therapies can be placed into two broad categories: i) Ex situ strategies, where cartilage tissue constructs are engineered in the lab prior to implantation and ii) in situ strategies, where cells and/or a bioscaffold are delivered to the defect site to stimulate chondral repair directly. While commonalities exist between these two approaches, the core point of distinction-whether chondrogenesis primarily occurs "within" or "without" (outside) the body-can dictate many aspects of the treatment. This difference influences decisions around cell selection, the biomaterials formulation and the surgical implantation procedure, the processes of tissue integration and maturation, as well as, the prospects for regulatory clearance and clinical translation. Here, ex situ and in situ cartilage engineering strategies are compared: Highlighting their respective challenges, opportunities, and prospects on their translational pathways toward long term human cartilage repair.
Collapse
Affiliation(s)
- Cathal D. O'Connell
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Lilith M. Caballero‐Aguilar
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- School of ScienceComputing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVictoria3122Australia
| | - Anna Trengove
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Stephanie E. Doyle
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Wiktor J. Zywicki
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Elena Pirogova
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
- Department of MedicineSt Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| |
Collapse
|
11
|
Ye T, Xue F, Hu H, He Z, Wang M, Yu Z, Zhao B, Chu L. Early Emergent and Progressive Aberrant Subchondral Bone Remodeling Coupled with Aggravated Cartilage Degeneration in Developmental Dysplasia of the Hip. Cartilage 2022; 13:19476035221098165. [PMID: 35549743 PMCID: PMC9251826 DOI: 10.1177/19476035221098165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Developmental dysplasia of the hip (DDH) is the most common skeletal development in children and could result in secondary osteoarthritis. This study aims to clarify the alternations of subchondral trabecular bone remodeling and microstructural properties during the development of DDH, and the potential influence of these alternations on the overlying cartilage degeneration and DDH progression. DESIGN Traditional straight-leg swaddling method was adopted to establish DDH model in newborn Sprague Dawley rats. Hip joint specimens from normal or DDH rats were used. Typical features of DDH in radiological examination were observed by x-ray analysis. Micro-computed tomography analysis was applied to evaluate the microstructural properties of subchondral bone at postnatal weeks 2, 4, and 6. Histological and immunohistochemical analyses were adopted to appraise subchondral bone remodeling activity and cartilage degeneration. The associations among subchondral bone, articular cartilage, and DDH severity were analyzed via multiple linear regression analysis. RESULTS Compared with control group, the subchondral bone in DDH group displayed a gradual trend of deteriorated microstructure and worsening biomechanical properties along with aberrant bone remodeling, which might be responsible for the inhibition of stress transmission from the articular cartilage to the subchondral bone and thus leading to the cartilage degeneration and accelerated DDH progression. CONCLUSIONS Our findings indicate that alternations of subchondral trabecular bone in a time-dependent manner could contribute to the DDH progression and the amelioration on subchondral bone might be a favorable therapeutic candidate for DDH.
Collapse
Affiliation(s)
- Teng Ye
- Department of Orthopedic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Feng Xue
- Department of Orthopedic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Hai Hu
- Department of Orthopedic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Zihao He
- Shanghai Key Laboratory of Orthopedic
Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minqi Wang
- Department of Bone and Joint Surgery,
Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai,
China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic
Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bizeng Zhao
- Department of Orthopedic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Linyang Chu
- Department of Orthopedic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai,
China,Linyang Chu, Department of Orthopedic
Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600#
Yishan Road, Shanghai 200233, China.
| |
Collapse
|
12
|
Willemsen K, Tryfonidou M, Sakkers R, Castelein RM, Zadpoor AA, Seevinck P, Weinans H, Meij B, van der Wal BCH. Patient-specific 3D-printed shelf implant for the treatment of hip dysplasia: Anatomical and biomechanical outcomes in a canine model. J Orthop Res 2022; 40:1154-1162. [PMID: 34191341 PMCID: PMC9291530 DOI: 10.1002/jor.25133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 02/04/2023]
Abstract
A solution for challenging hip dysplasia surgery could be a patient-specific 3D-printed shelf implant that is positioned extra-articular and restores the dysplastic acetabular rim to normal anatomical dimensions. The anatomical correction and biomechanical stability of this concept were tested in a canine model that, like humans, also suffers from hip dysplasia. Using 3D reconstructed computed tomography images the 3D shelf implant was designed to restore the radiological dysplastic hip parameters to healthy parameters. It was tested ex vivo on three dog cadavers (six hips) with hip dysplasia. Each hip was subjected to a biomechanical subluxation test, first without and then with the 3D shelf implant in place. Subsequently, an implant failure test was performed to test the primary implant fixation. At baseline, the dysplastic hips had an average Norberg angle of 88 ± 3° and acetabular coverage of 47 ± 2% and subluxated at an average of 83 ± 2° of femoral adduction. After adding the patient-specific shelf implants the dysplastic hips had an average Norberg angle of 122 ± 2° and acetabular coverage of 67 ± 3% and subluxated at an average of 117 ± 2° of femoral adduction. Implant failure after primary implant fixation occurred at an average of 1330 ± 320 Newton. This showed that the patient-specific shelf implants significantly improved the coverage and stability of dysplastic hips in a canine model with naturally occurring hip dysplasia. The 3D shelf is a promising concept for treating residual hip dysplasia with a straightforward technology-driven approach; however, the clinical safety needs to be further investigated in an experimental proof-of-concept animal study.
Collapse
Affiliation(s)
- Koen Willemsen
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Marianna Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Ralph Sakkers
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - René M. Castelein
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical EngineeringDelft University of TechnologyDelftThe Netherlands
| | - Peter Seevinck
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Harrie Weinans
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtThe Netherlands,Department of Biomechanical EngineeringDelft University of TechnologyDelftThe Netherlands
| | - Björn Meij
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
13
|
Alves JC, Santos A, Jorge P, Lavrador C, Carreira LM. Effect of a single intra-articular administration of stanozolol in a naturally occurring canine osteoarthritis model: a randomised trial. Sci Rep 2022; 12:5887. [PMID: 35393497 PMCID: PMC8989994 DOI: 10.1038/s41598-022-09934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is a disease with a high negative impact on patient's quality of life and a high financial burden. It is a source of chronic pain and affects all mammals, including humans and dogs. As the dog is a common model for translation research of human OA, and exploring spontaneous dog OA can improve the health and well-being of both humans and dogs. To describe the effect of the intra-articular administration of stanozolol in a naturally occurring canine OA model, forty canine (N = 40) hip joints were randomly assigned to receive stanozolol or saline (control). On treatment day and at 8, 15, 30, 90, and 180 days post-treatment, several evaluations were conducted: weight distribution, joint range of motion, thigh girth, digital thermography, and radiographic signs. Also, synovial fluid C-reactive protein and interleukin-1 levels were evaluated. Results from four Clinical Metrology Instruments was also gathered. Results were compared with Repeated Measures ANOVA, with a Huynh-Feldt correction, paired-samples t-test, or Wilcoxon signed-rank test, with p < 0.05. OA was graded as mild (90%), moderate (5%), and severe (5%), including both sexes. They had a mean age of 6.5 ± 2.4 years and a bodyweight of 26.7 ± 5.2 kg. No differences were found between groups at treatment day in all considered evaluations. Weight distribution showed significant improvements with stanozolol from 15 days (p < 0.05) up to 180 days (p < 0.01). Lower values during thermographic evaluation in both views taken and improved joint extension at 90 (p = 0.02) and 180 days (p < 0.01) were observed. Pain and function scores improved up to 180 days. In the control group, radiographic signs progressed, in contrast with stanozolol. The use of stanozolol was safe and produced significant improvements in weight-bearing, pain score, and clinical evaluations in a naturally occurring canine OA model.
Collapse
Affiliation(s)
- J C Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal.
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - A Santos
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal
| | - P Jorge
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal
| | - C Lavrador
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - L Miguel Carreira
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Interdisciplinary Centre for Research in Animal Health (CIISA), University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| |
Collapse
|
14
|
Patient-specific 3D-printed shelf implant for the treatment of hip dysplasia tested in an experimental animal pilot in canines. Sci Rep 2022; 12:3032. [PMID: 35194117 PMCID: PMC8863847 DOI: 10.1038/s41598-022-06989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
The concept of a novel patient-specific 3D-printed shelf implant should be evaluated in a relevant large animal model with hip dysplasia. Therefore, three dogs with radiographic bilateral hip dysplasia and a positive subluxation test underwent unilateral acetabular augmentation with a 3D-printed dog-specific titanium implant. The contralateral side served as control. The implants were designed on CT-based pelvic bone segmentations and extended the dysplastic acetabular rim to increase the weight bearing surface without impairing the range of motion. Outcome was assessed by clinical observation, manual subluxation testing, radiography, CT, and gait analysis from 6 weeks preoperatively until termination at 26 weeks postoperatively. Thereafter, all hip joints underwent histopathological examination. The implantation and recovery from surgery was uneventful. Clinical subluxation tests at the intervention side became negative. Imaging showed medialization of the femoral head at the intervention side and the mean (range) CE-angle increased from 94° (84°-99°) preoperative to 119° (117°-120°) postoperative. Gait analysis parameters returned to pre-operative levels after an average follow-up of 6 weeks. Histology showed a thickened synovial capsule between the implant and the femoral head without any evidence of additional damage to the articular cartilage compared to the control side. The surgical implantation of the 3D shelf was safe and feasible. The patient-specific 3D-printed shelf implants restored the femoral head coverage and stability of dysplastic hips without complications. The presented approach holds promise to treat residual hip dysplasia justifying future veterinary clinical trials to establish clinical effectiveness in a larger cohort to prepare for translation to human clinic.
Collapse
|
15
|
Sauerland K, Wolf A, Schudok M, Steinmeyer J. A novel model of a biomechanically induced osteoarthritis-like cartilage for pharmacological in vitro studies. J Cell Mol Med 2021; 25:11221-11231. [PMID: 34766430 PMCID: PMC8650028 DOI: 10.1111/jcmm.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022] Open
Abstract
Excessive pressure or overload induces and aggravates osteoarthritic changes in articular cartilage, but the underlying biomechanical forces are largely ignored in existing pharmacological in vitro models that are used to investigate drugs against osteoarthritis (OA). Here, we introduce a novel in vitro model to perform pathophysiological and pharmacological investigations, in which cartilage explants are subjected to intermittent cyclic pressure, and characterize its ability to mimic OA‐like tissue reactivity. Mechanical loading time‐dependently increased the biosynthesis, content and retention of fibronectin (Fn), whereas collagen metabolism remained unchanged. This protocol upregulated the production and release of proteoglycans (PGs). The release of PGs from explants was significantly inhibited by a matrix metalloproteinase (MMP) inhibitor, suggesting the involvement of such proteinases in the destruction of the model tissue, similar to what is observed in human OA cartilage. In conclusion, the metabolic alterations in our new biomechanical in vitro model are similar to those of early human OA cartilage, and our pharmacological prevalidation with an MMP‐inhibitor supports its value for further in vitro drug studies.
Collapse
Affiliation(s)
- Katrin Sauerland
- Institute for Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Amela Wolf
- Institute for Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Manfred Schudok
- R&D, Drug Metabolism & Pharmacokinetics, Sanofi-Aventis Deutschand GmbH, Frankfurt, Germany
| | - Juergen Steinmeyer
- Institute for Pharmacology and Toxicology, University of Bonn, Bonn, Germany.,Laboratory for Experimental Orthopaedics, Department of Orthopaedics, University of Giessen, Giessen, Germany
| |
Collapse
|
16
|
Golafshan N, Willemsen K, Kadumudi FB, Vorndran E, Dolatshahi‐Pirouz A, Weinans H, van der Wal BCH, Malda J, Castilho M. 3D-Printed Regenerative Magnesium Phosphate Implant Ensures Stability and Restoration of Hip Dysplasia. Adv Healthc Mater 2021; 10:e2101051. [PMID: 34561956 PMCID: PMC11468606 DOI: 10.1002/adhm.202101051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/06/2021] [Indexed: 11/10/2022]
Abstract
Osteoarthritis of the hip is a painful and debilitating condition commonly occurring in humans and dogs. One of the main causes that leads to hip osteoarthritis is hip dysplasia. Although the current surgical methods to correct dysplasia work satisfactorily in many circumstances, these are associated with serious complications, tissue resorption, and degeneration. In this study, a one-step fabrication of a regenerative hip implant with a patient-specific design and load-bearing properties is reported. The regenerative hip implant is fabricated based on patient imaging files and by an extrusion assisted 3D printing process using a flexible, bone-inducing biomaterial. The novel implant can be fixed with metallic screws to host bone and can be loaded up to physiological loads without signs of critical permanent deformation or failure. Moreover, after exposing the hip implant to accelerated in vitro degradation, it is confirmed that it is still able to support physiological loads even after losing ≈40% of its initial mass. In addition, the osteopromotive properties of the novel hip implant is demonstrated as shown by an increased expression of osteonectin and osteocalcin by cultured human mesenchymal stem cells after 21 days. Overall, the proposed hip implant provides an innovative regenerative and mechanically stable solution for hip dysplasia treatment.
Collapse
Affiliation(s)
- Nasim Golafshan
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
- Regenerative Medicine UtrechtUtrecht UniversityUtrecht3584 CTThe Netherlands
| | - Koen Willemsen
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Firoz Babu Kadumudi
- Department of Health TechnologyTechnical University of DenmarkLyngby2800Denmark
| | - Elke Vorndran
- Department for Functional Materials in Medicine and DentistryUniversity of WürzburgWürzburg97070Germany
| | | | - Harrie Weinans
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
- Department of Biomechanical EngineeringTU DelftDelft2628 CDThe Netherlands
| | - Bart C. H. van der Wal
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Jos Malda
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
- Regenerative Medicine UtrechtUtrecht UniversityUtrecht3584 CTThe Netherlands
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CLThe Netherlands
| | - Miguel Castilho
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
- Regenerative Medicine UtrechtUtrecht UniversityUtrecht3584 CTThe Netherlands
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 AZThe Netherlands
| |
Collapse
|
17
|
Estes BT, Enomoto M, Moutos FT, Carson MA, Toth JM, Eggert P, Stallrich J, Willard VP, Veis DJ, Little D, Guilak F, Lascelles BDX. Biological resurfacing in a canine model of hip osteoarthritis. SCIENCE ADVANCES 2021; 7:eabi5918. [PMID: 34524840 PMCID: PMC8443182 DOI: 10.1126/sciadv.abi5918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/22/2021] [Indexed: 05/31/2023]
Abstract
Articular cartilage has unique load-bearing properties but has minimal capacity for intrinsic repair. Here, we used three-dimensional weaving, additive manufacturing, and autologous mesenchymal stem cells to create a tissue-engineered, bicomponent implant to restore hip function in a canine hip osteoarthritis model. This resorbable implant was specifically designed to function mechanically from the time of repair and to biologically integrate with native tissues for long-term restoration. A massive osteochondral lesion was created in the hip of skeletally mature hounds and repaired with the implant or left empty (control). Longitudinal outcome measures over 6 months demonstrated that the implant dogs returned to normal preoperative values of pain and function. Anatomical structure and functional biomechanical properties were also restored in the implanted dogs. Control animals never returned to normal and exhibited structurally deficient repair. This study provides clinically relevant evidence that the bicomponent implant may be a potential therapy for moderate hip osteoarthritis.
Collapse
Affiliation(s)
| | - Masataka Enomoto
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Megan A. Carson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Peter Eggert
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jonathan Stallrich
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | | | - Deborah J. Veis
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children—St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dianne Little
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Farshid Guilak
- Cytex Therapeutics Inc., Durham, NC, USA
- Shriners Hospitals for Children—St. Louis, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - B. Duncan X. Lascelles
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, USA
- Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, USA
| |
Collapse
|
18
|
Qiu S, Lin H, Xu M, Liu C, Wang H, Cao Q, Liu J. Effect of acetabular morphological parameters applied in proximal femoral varus osteotomy on the treatment of developmental dysplasia of the hip in children. Transl Pediatr 2021; 10:1361-1368. [PMID: 34189095 PMCID: PMC8193007 DOI: 10.21037/tp-21-200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The study was carried out based on the background that though proximal femoral varus osteotomy is one of the most effective methods in treating developmental dysplasia of the hip (DDH), its surgical efficiency and effect need to be improved. METHODS The neck shaft angle and acetabular morphological parameters were measured before and after operation and during clinical follow-up. The Severin criteria and McKay criteria were both adopted to score the measurements. The distance from the center of the femoral head to the medial cutting bone (expressed as C value) and the shortened lengths of the proximal femur (expressed as Δ S) calculated by formula and obtained by actual measurement were compared. RESULTS The neck shaft angle and acetabular morphological parameters after operation and during clinical follow-up were significantly lower than those before operation (P<0.05). The proportion of children with McKay scores of I, II, III, and IV after operation was 50.00%, 41.67%, 8.33%, and 0.00%, respectively; while the proportion of children with Severin scores of I, II, III, and IV was 55.00%, 38.33%, 6.67%, and 0.00%, respectively. There were no significant differences in the C value and Δ S obtained after formula calculation and actual measurement (P>0.05). CONCLUSIONS The acetabular morphological parameters applied in proximal femoral varus osteotomy are of great value for the treatment of DDH in children.
Collapse
Affiliation(s)
- Shenghua Qiu
- Department of Pediatric Surgery, Linyi Central Hospital, Linyi, China
| | - Haiwei Lin
- Department of Pediatric Surgery, Linyi Central Hospital, Linyi, China
| | - Meng Xu
- Department of Pediatric Surgery, Linyi Central Hospital, Linyi, China
| | - Chengliang Liu
- Department of Pediatric Surgery, Linyi Central Hospital, Linyi, China
| | - Haifeng Wang
- Department of Pediatric Surgery, Linyi Central Hospital, Linyi, China
| | - Qingwei Cao
- Department of Pediatric Surgery, Linyi Central Hospital, Linyi, China
| | - Jinxiang Liu
- Department of Pediatric Surgery, Linyi Central Hospital, Linyi, China
| |
Collapse
|
19
|
Alves JC, Santos A, Jorge P, Lavrador C, Carreira LM. Intraarticular triamcinolone hexacetonide, stanozolol, Hylan G-F 20 and platelet concentrate in a naturally occurring canine osteoarthritis model. Sci Rep 2021; 11:3118. [PMID: 33542412 PMCID: PMC7862601 DOI: 10.1038/s41598-021-82795-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Osteoarthritis (OA) is a disease transversal to all mammals, a source of chronic pain and disability, a huge burden to societies, with a significant toll in healthcare cost, while reducing productivity and quality of life. The dog is considered a useful model for the translational study of the disease, closely matching human OA, with the advantage of a faster disease progression while maintaining the same life stages. In a prospective, longitudinal, double-blinded, negative controlled study, one hundred (N = 100) hip joints were selected and randomly assigned to five groups: control group (CG, n = 20, receiving a saline injection), triamcinolone hexacetonide group (THG, n = 20), platelet concentrate group (PCG, n = 20), stanozolol group (SG, n = 20) and hylan G-F 20 group (HG). Evaluations were conducted on days 0 (T0, treatment day), 8, 15, 30, 60, 90, 120, 150 and 180 days post-treatment, consisting of weight distribution analysis and data from four Clinical Metrology Instruments (CMI). Kaplan-Meier estimators were generated and compared with the Breslow test. Cox proportional hazard regression analysis was used to investigate the influence of variables of interest on treatment survival. All results were analyzed with IBM SPSS Statistics version 20 and a significance level of p < 0.05 was set. Sample included joints of 100 pelvic limbs (of patients with a mean age of 6.5 ± 2.4 years and body weight of 26.7 ± 5.2 kg. Joints were graded as mild (n = 70), moderate (n = 20) and severe (n = 10) OA. No differences were found between groups at T0. Kaplan-Meier analysis showed that all treatments produced longer periods with better results in the various evaluations compared to CG. Patients in HG and PCG took longer to return to baseline values and scores. A higher impact on pain interference was observed in THG, with a 95% improvement over CG. PCG and HG experienced 57-81% improvements in functional evaluation and impairments due to OA, and may be a better options for these cases. This study documented the efficacy of several approaches to relieve OA clinical signs. These approaches varied in intensity and duration. HG and PCG where the groups were more significant improvements were observed throughout the follow-up periods, with lower variation in results.
Collapse
Affiliation(s)
- J C Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal.
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - A Santos
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal
| | - P Jorge
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal
| | - C Lavrador
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - L Miguel Carreira
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Interdisciplinary Centre for Research in Animal Health (CIISA) - University of Lisbon, (FMV/ULisboa), Lisbon, Portugal
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| |
Collapse
|
20
|
Alves JC, Santos A, Jorge P, Lavrador C, Carreira LM. The intra-articular administration of triamcinolone hexacetonide in the treatment of osteoarthritis. Its effects in a naturally occurring canine osteoarthritis model. PLoS One 2021; 16:e0245553. [PMID: 33471857 PMCID: PMC7816979 DOI: 10.1371/journal.pone.0245553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/03/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To evaluate the effect of an intra-articular (IA) administration of triamcinolone hexacetonide, compared with saline. PATIENTS AND METHODS Forty (N = 40) hip joints were randomly assigned to a treatment group (THG, n = 20, receiving IA triamcinolone hexacetonide) and a control group (CG, n = 20, receiving IA saline). On treatment day (T0), and at 8, 15, 30, 90 and 180 days post-treatment, weight distribution, joint range of motion, thigh girth, digital thermography, radiographic signs, synovial fluid interleukin-1 and C-reactive protein levels were evaluated. Data from four Clinical Metrology Instruments was also gathered. Results were compared Repeated Measures ANOVA, with a Huynh-Feldt correction, Paired Samples T-Test or Wilcoxon Signed Ranks Test. A Kaplan-Meier test was performed to compare both groups, with p<0.05. RESULTS Joints were graded as mild (65%), moderate (20%) and severe (15%). Patients of both sexes, with a mean age of 6.5±2.4 years and bodyweight of 26.7±5.2kg, were included. No differences were found between groups at T0. Comparing THG to CG, weight distribution showed significant improvements in THG from 8 (p = 0.05) up to 90 days (p = 0.01). THG showed lower values during thermographic evaluation in the Lt view (p<0.01). Pain and function scores also improved from 30 to 180 days. Increasing body weight, age, and presence of caudolateral curvilinear osteophyte corresponded to worse response to treatment. Results of the Kaplan Meier test showed significant differences between groups, with THG performing better considering several evaluations and scores. CONCLUSION THG recorded significant improvements in weight-bearing and in with the considered CMIs, particularly pain scores. Lower thermographic values were registered in THG up to the last evaluation day. Age, sex, and radiographic findings did significantly influenced response to treatment.
Collapse
Affiliation(s)
- João C. Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Lisbon, Portugal
- MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Ana Santos
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Lisbon, Portugal
| | - Patrícia Jorge
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Lisbon, Portugal
| | - Catarina Lavrador
- MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - L. Miguel Carreira
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Interdisciplinary Centre for Research in Animal Health (CIISA) – University of Lisbon, (FMV/ULisboa), Lisbon, Portugal
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| |
Collapse
|
21
|
DeJulius CR, Gulati S, Hasty KA, Crofford LJ, Duvall CL. Recent Advances in Clinical Translation of Intra-Articular Osteoarthritis Drug Delivery Systems. ADVANCED THERAPEUTICS 2021; 4:2000088. [PMID: 33709019 PMCID: PMC7941755 DOI: 10.1002/adtp.202000088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints and a leading cause of physical disability in adults. Intra-articular (IA) therapy is a popular treatment strategy for localized, single-joint OA; however, small-molecule drugs such as corticosteroids do not provide prolonged relief. One possible reason for their lack of efficacy is high clearance rates from the joint through constant lymphatic drainage of the synovial tissues and synovial fluid and also by their exchange via the synovial vasculature. Advanced drug delivery strategies for extended release of therapeutic agents in the joint space is a promising approach to improve outcomes for OA patients. Broadly, the basic principle behind this strategy is to encapsulate therapeutic agents in a polymeric drug delivery system (DDS) for diffusion- and/or degradation-controlled release, whereby degradation can occur by hydrolysis or tied to relevant microenvironmental cues such as pH, reactive oxygen species (ROS), and protease activity. In this review, we highlight the development of clinically tested IA therapies for OA and highlight recent systems which have been investigated preclinically. DDS strategies including hydrogels, liposomes, polymeric microparticles (MPs) and nanoparticles (NPs), drug conjugates, and combination systems are introduced and evaluated for clinical translational potential.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| | - Shubham Gulati
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| | - Karen A Hasty
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, 1211 Union Ave. Suite 520, Memphis, TN 38104, United States
| | - Leslie J Crofford
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, 1161 21 Ave. S., Nashville, TN 37232, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| |
Collapse
|
22
|
Kang MH, Park HM. Challenges of stem cell therapies in companion animal practice. J Vet Sci 2020; 21:e42. [PMID: 32476316 PMCID: PMC7263915 DOI: 10.4142/jvs.2020.21.e42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine using stem cells from various sources are emerging treatment modality in several refractory diseases in veterinary medicine. It is well-known that stem cells can differentiate into specific cell types, self-renew, and regenerate. In addition, the unique immunomodulatory effects of stem cells have made stem cell transplantation a promising option for treating a wide range of disease and injuries. Recently, the medical demands for companion animals have been rapidly increasing, and certain disease conditions require alternative treatment options. In this review, we focused on stem cell application research in companion animals including experimental models, case reports and clinical trials in dogs and cats. The clinical studies and therapeutic protocols were categorized, evaluated and summarized according to the organ systems involved. The results indicate that evidence for the effectiveness of cell-based treatment in specific diseases or organ systems is not yet conclusive. Nonetheless, stem cell therapy may be a realistic treatment option in the near future, therefore, considerable efforts are needed to find optimized cell sources, cell numbers and delivery methods in order to standardize treatment methods and evaluation processes.
Collapse
Affiliation(s)
- Min Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hee Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
23
|
Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. NATURE REVIEWS. MATERIALS 2020; 5:539-551. [PMID: 32953138 PMCID: PMC7500703 DOI: 10.1038/s41578-020-0199-8] [Citation(s) in RCA: 456] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 05/19/2023]
Abstract
Matrigel, a basement-membrane matrix extracted from Engelbreth-Holm-Swarm mouse sarcomas, has been used for more than four decades for a myriad of cell culture applications. However, Matrigel is limited in its applicability to cellular biology, therapeutic cell manufacturing and drug discovery owing to its complex, ill-defined and variable composition. Variations in the mechanical and biochemical properties within a single batch of Matrigel - and between batches - have led to uncertainty in cell culture experiments and a lack of reproducibility. Moreover, Matrigel is not conducive to physical or biochemical manipulation, making it difficult to fine-tune the matrix to promote intended cell behaviours and achieve specific biological outcomes. Recent advances in synthetic scaffolds have led to the development of xenogenic-free, chemically defined, highly tunable and reproducible alternatives. In this Review, we assess the applications of Matrigel in cell culture, regenerative medicine and organoid assembly, detailing the limitations of Matrigel and highlighting synthetic scaffold alternatives that have shown equivalent or superior results. Additionally, we discuss the hurdles that are limiting a full transition from Matrigel to synthetic scaffolds and provide a brief perspective on the future directions of synthetic scaffolds for cell culture applications.
Collapse
Affiliation(s)
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin–Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
24
|
Florkow MC, Zijlstra F, Willemsen K, Maspero M, van den Berg CAT, Kerkmeijer LGW, Castelein RM, Weinans H, Viergever MA, van Stralen M, Seevinck PR. Deep learning-based MR-to-CT synthesis: The influence of varying gradient echo-based MR images as input channels. Magn Reson Med 2020; 83:1429-1441. [PMID: 31593328 PMCID: PMC6972695 DOI: 10.1002/mrm.28008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 01/15/2023]
Abstract
PURPOSE To study the influence of gradient echo-based contrasts as input channels to a 3D patch-based neural network trained for synthetic CT (sCT) generation in canine and human populations. METHODS Magnetic resonance images and CT scans of human and canine pelvic regions were acquired and paired using nonrigid registration. Magnitude MR images and Dixon reconstructed water, fat, in-phase and opposed-phase images were obtained from a single T1 -weighted multi-echo gradient-echo acquisition. From this set, 6 input configurations were defined, each containing 1 to 4 MR images regarded as input channels. For each configuration, a UNet-derived deep learning model was trained for synthetic CT generation. Reconstructed Hounsfield unit maps were evaluated with peak SNR, mean absolute error, and mean error. Dice similarity coefficient and surface distance maps assessed the geometric fidelity of bones. Repeatability was estimated by replicating the training up to 10 times. RESULTS Seventeen canines and 23 human subjects were included in the study. Performance and repeatability of single-channel models were dependent on the TE-related water-fat interference with variations of up to 17% in mean absolute error, and variations of up to 28% specifically in bones. Repeatability, Dice similarity coefficient, and mean absolute error were statistically significantly better in multichannel models with mean absolute error ranging from 33 to 40 Hounsfield units in humans and from 35 to 47 Hounsfield units in canines. CONCLUSION Significant differences in performance and robustness of deep learning models for synthetic CT generation were observed depending on the input. In-phase images outperformed opposed-phase images, and Dixon reconstructed multichannel inputs outperformed single-channel inputs.
Collapse
Affiliation(s)
- Mateusz C. Florkow
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtNetherlands
| | - Frank Zijlstra
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtNetherlands
| | - Koen Willemsen
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtNetherlands
| | - Matteo Maspero
- Department of RadiotherapyDivision of Imaging & OncologyUniversity Medical Center UtrechtUtrechtNetherlands
- Computational Imaging Group for MR diagnostics & TherapyCenter for Image SciencesUniversity Medical Center UtrechtUtrechtNetherlands
| | - Cornelis A. T. van den Berg
- Department of RadiotherapyDivision of Imaging & OncologyUniversity Medical Center UtrechtUtrechtNetherlands
- Computational Imaging Group for MR diagnostics & TherapyCenter for Image SciencesUniversity Medical Center UtrechtUtrechtNetherlands
| | - Linda G. W. Kerkmeijer
- Department of RadiotherapyDivision of Imaging & OncologyUniversity Medical Center UtrechtUtrechtNetherlands
| | - René M. Castelein
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtNetherlands
| | - Harrie Weinans
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtNetherlands
| | - Max A. Viergever
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtNetherlands
| | - Marijn van Stralen
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtNetherlands
- MRIguidance B.VUtrechtNetherlands
| | - Peter R. Seevinck
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtNetherlands
- MRIguidance B.VUtrechtNetherlands
| |
Collapse
|
25
|
Meeson RL, Todhunter RJ, Blunn G, Nuki G, Pitsillides AA. Spontaneous dog osteoarthritis - a One Medicine vision. Nat Rev Rheumatol 2020; 15:273-287. [PMID: 30953036 PMCID: PMC7097182 DOI: 10.1038/s41584-019-0202-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a global disease that, despite extensive research, has limited treatment options. Pet dogs share both an environment and lifestyle attributes with their owners, and a growing awareness is developing in the public and among researchers that One Medicine, the mutual co-study of animals and humans, could be beneficial for both humans and dogs. To that end, this Review highlights research opportunities afforded by studying dogs with spontaneous OA, with a view to sharing this active area of veterinary research with new audiences. Similarities and differences between dog and human OA are examined, and the proposition is made that suitably aligned studies of spontaneous OA in dogs and humans, in particular hip and knee OA, could highlight new avenues of discovery. Developing cross-species collaborations will provide a wealth of research material and knowledge that is relevant to human OA and that cannot currently be obtained from rodent models or experimentally induced dog models of OA. Ultimately, this Review aims to raise awareness of spontaneous dog OA and to stimulate discussion regarding its exploration under the One Medicine initiative to improve the health and well-being of both species. Osteoarthritis occurs spontaneously in pet dogs, which often share environmental and lifestyle risk-factors with their owners. This Review aims to stimulate cooperation between medical and veterinary research under the One Medicine initiative to improve the welfare of dogs and humans. Dogs have many analogous spontaneous diseases that result in end-stage osteoarthritis (OA). Inbreeding and the predisposition of certain dog breeds for OA enable easier identification of candidate genetic associations than in outbred humans. Dog OA subtypes offer a potential stratification rationale for aetiological differences and alignment to analogous human OA phenotypes. The relatively compressed time course of spontaneous dog OA offers longitudinal research opportunities. Collaboration with veterinary researchers can provide tissue samples from early-stage OA and opportunities to evaluate new therapeutics in a spontaneous disease model. Awareness of the limitations and benefits of using clinical veterinary patients in research is important.
Collapse
Affiliation(s)
- Richard L Meeson
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.,Department of Clinical Services and Sciences, Royal Veterinary College, University of London, London, UK.,Institute of Orthopaedics and Musculoskeletal Science, University College London, London, UK
| | - Rory J Todhunter
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA.,Cornell Veterinary Biobank, Cornell University, Ithaca, NY, USA
| | - Gordon Blunn
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, UK.,School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - George Nuki
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
26
|
Ritter S, Zadik-Weiss L, Almogi-Hazan O, Or R. Cannabis, One Health, and Veterinary Medicine: Cannabinoids' Role in Public Health, Food Safety, and Translational Medicine. Rambam Maimonides Med J 2020; 11:RMMJ.10388. [PMID: 32017686 PMCID: PMC7000163 DOI: 10.5041/rmmj.10388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Public health is connected to cannabis with regard to food, animal feed (feed), and pharmaceuticals. Therefore, the use of phytocannabinoids should be examined from a One Health perspective. Current knowledge on medical cannabis treatment (MCT) does not address sufficiently diseases which are of epidemiological and of zoonotic concern. The use of cannabinoids in veterinary medicine is illegal in most countries, mostly due to lack of evidence-based medicine. To answer the growing need of scientific evidence-based applicable medicine in both human and veterinary medicine, a new approach for the investigation of the therapeutic potential of cannabinoids must be adopted. A model that offers direct study of a specific disease in human and veterinary patients may facilitate development of novel therapies. Therefore, we urge the regulatory authorities-the ministries of health and agriculture (in Israel and worldwide)-to publish guidelines for veterinary use due to its importance to public health, as well as to promote One Health-related preclinical translational medicine studies for the general public health.
Collapse
Affiliation(s)
| | | | - Osnat Almogi-Hazan
- Laboratory of Immunotherapy and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Reuven Or
- Laboratory of Immunotherapy and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
27
|
Boyer C, Réthoré G, Weiss P, d’Arros C, Lesoeur J, Vinatier C, Halgand B, Geffroy O, Fusellier M, Vaillant G, Roy P, Gauthier O, Guicheux J. A Self-Setting Hydrogel of Silylated Chitosan and Cellulose for the Repair of Osteochondral Defects: From in vitro Characterization to Preclinical Evaluation in Dogs. Front Bioeng Biotechnol 2020; 8:23. [PMID: 32117912 PMCID: PMC7025592 DOI: 10.3389/fbioe.2020.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage (AC) may be affected by many injuries including traumatic lesions that predispose to osteoarthritis. Currently there is no efficient cure for cartilage lesions. In that respect, new strategies for regenerating AC are contemplated with interest. In this context, we aim to develop and characterize an injectable, self-hardening, mechanically reinforced hydrogel (Si-HPCH) composed of silanised hydroxypropymethyl cellulose (Si-HPMC) mixed with silanised chitosan. The in vitro cytocompatibility of Si-HPCH was tested using human adipose stromal cells (hASC). In vivo, we first mixed Si-HPCH with hASC to observe cell viability after implantation in nude mice subcutis. Si-HPCH associated or not with canine ASC (cASC), was then tested for the repair of osteochondral defects in canine femoral condyles. Our data demonstrated that Si-HPCH supports hASC viability in culture. Moreover, Si-HPCH allows the transplantation of hASC in the subcutis of nude mice while maintaining their viability and secretory activity. In the canine osteochondral defect model, while the empty defects were only partially filled with a fibrous tissue, defects filled with Si-HPCH with or without cASC, revealed a significant osteochondral regeneration. To conclude, Si-HPCH is an injectable, self-setting and cytocompatible hydrogel able to support the in vitro and in vivo viability and activity of hASC as well as the regeneration of osteochondral defects in dogs when implanted alone or with ASC.
Collapse
Affiliation(s)
- Cécile Boyer
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Gildas Réthoré
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- CHU Nantes, Service d’Odontologie Restauratrice et Chirurgicale, PHU4 OTONN, Nantes, France
| | - Pierre Weiss
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- CHU Nantes, Service d’Odontologie Restauratrice et Chirurgicale, PHU4 OTONN, Nantes, France
| | - Cyril d’Arros
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Julie Lesoeur
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- SC3M – “Electron Microscopy, Microcharacterization and Functional Morphohistology Imaging” Core Facility, Structure Fédérative de Recherche Franc̨ois Bonamy, INSERM – UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, France
| | - Claire Vinatier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- SC3M – “Electron Microscopy, Microcharacterization and Functional Morphohistology Imaging” Core Facility, Structure Fédérative de Recherche Franc̨ois Bonamy, INSERM – UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, France
| | - Boris Halgand
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- CHU Nantes, PHU4 OTONN, Nantes, France
| | - Olivier Geffroy
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- Centre of Research and Preclinical Investigation (C.R.I.P.), ONIRIS, Nantes, France
| | - Marion Fusellier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- Centre of Research and Preclinical Investigation (C.R.I.P.), ONIRIS, Nantes, France
| | - Gildas Vaillant
- CHU Nantes, PHU4 OTONN, Nantes, France
- Centre of Research and Preclinical Investigation (C.R.I.P.), ONIRIS, Nantes, France
| | - Patrice Roy
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- Centre of Research and Preclinical Investigation (C.R.I.P.), ONIRIS, Nantes, France
| | - Olivier Gauthier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- Centre of Research and Preclinical Investigation (C.R.I.P.), ONIRIS, Nantes, France
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- SC3M – “Electron Microscopy, Microcharacterization and Functional Morphohistology Imaging” Core Facility, Structure Fédérative de Recherche Franc̨ois Bonamy, INSERM – UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, France
- CHU Nantes, PHU4 OTONN, Nantes, France
| |
Collapse
|
28
|
Mesenchymal stem cell-based bone tissue engineering for veterinary practice. Heliyon 2019; 5:e02808. [PMID: 31844733 PMCID: PMC6895744 DOI: 10.1016/j.heliyon.2019.e02808] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023] Open
Abstract
Bone tissue engineering has been widely studied and proposed as a promising platform for correcting the bone defects. The applications of mesenchymal stem cell (MSC)-based bone tissue engineering have been investigated in various in vitro and in vivo models. In this regard, the promising animal bone defect models have been employed for illustrating the bone regenerative capacity of MSC-based bone tissue engineering. However, most studies aimed for clinical applications in human. These evidences suggest a knowledge gap to fulfill the accomplishment for veterinary implementation. In this review, the fundamental concept, knowledge, and technology of MSC-based bone tissue engineering focusing on veterinary applications are summarized. In addition, the potential canine MSCs resources for veterinary bone tissue engineering are reviewed, including canine bone marrow-derived MSCs, canine adipose-derived MSCs, and canine dental tissue-derived MSCs. This review will provide a basic and current information for studies aiming for the utilization of MSC-based bone tissue engineering in veterinary practice.
Collapse
|
29
|
Yu Y, Rodriguez-Fontan F, Eckstein K, Muralidharan A, Uzcategui AC, Fuchs JR, Weatherford S, Erickson CB, Bryant SJ, Ferguson VL, Hadley Miller N, Li G, Payne KA. Rabbit Model of Physeal Injury for the Evaluation of Regenerative Medicine Approaches. Tissue Eng Part C Methods 2019; 25:701-710. [PMID: 31552802 DOI: 10.1089/ten.tec.2019.0180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Physeal injuries can lead to bony repair tissue formation, known as a bony bar. This can result in growth arrest or angular deformity, which is devastating for children who have not yet reached their full height. Current clinical treatment involves resecting the bony bar and replacing it with a fat graft to prevent further bone formation and growth disturbance, but these treatments frequently fail to do so and require additional interventions. Novel treatments that could prevent bone formation but also regenerate the injured physeal cartilage and restore normal bone elongation are warranted. To test the efficacy of these treatments, animal models that emulate human physeal injury are necessary. The rabbit model of physeal injury quickly establishes a bony bar, which can then be resected to test new treatments. Although numerous rabbit models have been reported, they vary in terms of size and location of the injury, tools used to create the injury, and methods to assess the repair tissue, making comparisons between studies difficult. The study presented here provides a detailed method to create a rabbit model of proximal tibia physeal injury using a two-stage procedure. The first procedure involves unilateral removal of 25% of the physis in a 6-week-old New Zealand white rabbit. This consistently leads to a bony bar, significant limb length discrepancy, and angular deformity within 3 weeks. The second surgical procedure involves bony bar resection and treatment. In this study, we tested the implantation of a fat graft and a photopolymerizable hydrogel as a proof of concept that injectable materials could be delivered into this type of injury. At 8 weeks post-treatment, we measured limb length, tibial angle, and performed imaging and histology of the repair tissue. By providing a detailed, easy to reproduce methodology to perform the physeal injury and test novel treatments after bony bar resection, comparisons between studies can be made and facilitate translation of promising therapies toward clinical use. Impact Statement This study provides details to create a rabbit model of physeal injury that can facilitate comparisons between studies and test novel regenerative medicine approaches. Furthermore, this model mimics the human, clinical situation that requires a bony bar resection followed by treatment. In addition, identification of a suitable treatment can be seen in the correction of the growth deformity, allowing this model to facilitate the development of novel physeal cartilage regenerative medicine approaches.
Collapse
Affiliation(s)
- Yangyi Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Kevin Eckstein
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Archish Muralidharan
- Material Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado
| | - Asais Camila Uzcategui
- Material Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado
| | - Joseph R Fuchs
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shane Weatherford
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christopher B Erickson
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephanie J Bryant
- Material Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado.,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado.,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado.,Material Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado.,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Nancy Hadley Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Guangheng Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Karin A Payne
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
30
|
Todhunter RJ, Garrison SJ, Jordan J, Hunter L, Castelhano MG, Ash K, Meyers-Wallen V, Krotscheck U, Hayward JJ, Grenier J. Gene expression in hip soft tissues in incipient canine hip dysplasia and osteoarthritis. J Orthop Res 2019; 37:313-324. [PMID: 30450639 DOI: 10.1002/jor.24178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/30/2018] [Indexed: 02/04/2023]
Abstract
Canine hip dysplasia and developmental dysplasia of the human hip share demographic, phenotypic, and clinical features including the predisposition to develop osteoarthritis in affected joints. To support the results of genetic mapping studies for CHD and its concomitant osteoarthritis with functional information, we performed RNA-seq on hip capsule and teres ligament of affected and unaffected dogs. RNA seq showed that expressed genes segregated according age, capsule or ligament, and hip phenotype. Expression of HHIP, DACT2, and WIF1 was significantly higher in capsule from control hips than dysplastic hips indicating a disruption of the hedgehog signaling pathway. Expression of SPON 1, a key component of the WNT pathway, was increased significantly in both dysplastic capsule and ligament while FBN2 and EMILIN3 were significantly increased in dysplastic capsule. Of genes associated with human hip osteoarthritis, expression of ACAN, IGF1, CILP2, COL11A1, COL8A1, and HAPLN was increased significantly in dysplastic capsule. The significant increase in expression of PLA2F, TNFRSF, TMEM, and IGFBP in dysplastic capsule indicated an injury response. Gene set enrichment analysis revealed that genes involved in extracellular matrix structure, epithelial to mesenchymal transition, myogenesis, growth factor signaling, cancer and immune pathways were enriched in dysplastic capsule. For teres ligament from dysplastic joints, genes in retinoic signaling pathways and those encoding extracellular matrix molecules, but not proteoglycans, were enriched. Hip tissues respond to abnormal mechanics early in dysplastic hip development and these pathways present targets for intervention in the early synovitis and capsulitis secondary to canine and human hip dysplasia. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:313-324, 2019.
Collapse
Affiliation(s)
- Rory J Todhunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853.,Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853
| | - Susan J Garrison
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853.,Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853
| | - Julie Jordan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853.,Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853
| | - Linda Hunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853
| | - Marta G Castelhano
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853.,Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853
| | - Kristian Ash
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853
| | - Vicki Meyers-Wallen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853
| | - Ursula Krotscheck
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853
| | - Jessica J Hayward
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853.,Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853
| | - Jennifer Grenier
- RNA Sequencing Core, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853
| |
Collapse
|
31
|
Patella tendinopathy Zoobiquity - What can we learn from dogs? Knee 2019; 26:115-123. [PMID: 30554911 DOI: 10.1016/j.knee.2018.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/10/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Patella tendinopathy is an overuse condition. Pathogenesis and identification of intrinsic risk factors have largely eluded the orthopaedic world. The cranial cruciate ligament (CrCL) in dogs is the equivalent to the human anterior cruciate ligament (ACL). We report the effect of two canine proximal tibial osteotomy procedures in the veterinary literature on patella tendon moment arm and describe the biomechanical rationale for a tibial tubercle osteotomy for treatment of patella tendinopathy in the human. METHODS A literature review of studies reporting clinical complications of TTA and TPLO to form an observational animal cohort study in dogs. RESULTS The veterinary literature reports an overall clinical complication rate of up to 61% for TTA and up to 50% for TPLO respectively. Complications associated with the extensor mechanism of the knee are <1% for TTA compared to 1.9-19% for TPLO. Radiographic thickening of the patella tendon and tendinopathy is seen in one to 80% of TPLO cases. The TPLO decreases the moment arm of the extensor mechanism meaning increased force is required in the patella tendon to achieve the same torque when compared to the TTA which increases the efficiency of the extensor mechanism. This difference may account, in part, for the post-operative complications reported to the patella and patella tendon following TPLO. CONCLUSION This observational animal cohort study demonstrates a biomechanical rationale for investigating diagnostic and potential treatment options, including a tibial tubercle osteotomy, for patella tendinopathy in humans based on this principle.
Collapse
|
32
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|