1
|
Scholp AJ, Jensen JA, Fowler TP, Petersen E, Fredericks D, Salem AK, Seol D, Coleman M, Lake SP, Martin JA, Sander EA. Capsule release surgery temporarily reduces contracture in a rat elbow model of arthrofibrosis. J Orthop Res 2025; 43:23-36. [PMID: 39279043 PMCID: PMC11615420 DOI: 10.1002/jor.25967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024]
Abstract
Elbow trauma can lead to joint contracture and reduced range of motion (ROM). Nonsurgical interventions can improve ROM, but in some cases capsule release surgery is required. Although surgery can improve ROM, it often does not restore full ROM. Thus, alternatives are needed. One approach is to target activated myofibroblasts, which are commonly associated with fibrotic tissue. Mechanical and biochemical cues drive a feedback loop that can result in normal or pathological healing. We hypothesize that this feedback loop exists in joint contracture and can be manipulated so that myofibroblast activity is reduced, normal healing is achieved, and ROM is improved. We previously demonstrated that blebbistatin can inhibit myofibroblast contractile forces and reduce collagen synthesis in vitro. Thus, the purpose of this study was to assess the use of blebbistatin in an animal model of elbow contracture, which was induced in 7 groups of 4 rats each (n = 28). All elbows were mechanically and histologically tested. The uninjured contralateral elbows of each rat were used as a control group. Capsule release surgery significantly improved (p < 0.01) outcomes 1 week after surgery compared to injury alone and was not significantly different from uninjured elbows. Three weeks after surgery, outcomes worsened, indicating joint stiffening consistent with what is observed clinically. The addition of blebbistatin did not significantly improve outcomes. Future work will investigate relationships among treatment, fibrotic tissue deposition, myofibroblast activity, and biomechanics to determine if blebbistatin is a useful adjunctive therapy for treating joint contracture.
Collapse
Affiliation(s)
- Austin J. Scholp
- Roy J. Carver Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Jordan A. Jensen
- Roy J. Carver Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Timothy P. Fowler
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Emily Petersen
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Douglas Fredericks
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Aliasger K. Salem
- Department of Pharmaceutical ScienceUniversity of IowaIowa CityIowaUSA
| | - Dongrim Seol
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Mitchell Coleman
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Spencer P. Lake
- Department of Mechanical Engineering & Materials ScienceWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - James A. Martin
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Edward A. Sander
- Roy J. Carver Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
2
|
Palacios-Díaz L, González-Garcia ÁA, Sánchez Urgellés P, Antuña S, Barco R. Biomechanical outcomes of pharmacological therapies for post-traumatic arthrofibrosis in preclinical animal models: a systematic review and meta-analysis. Connect Tissue Res 2024; 65:265-278. [PMID: 38814178 DOI: 10.1080/03008207.2024.2358351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE/AIM OF THE STUDY There is still no evidence of which drug has the greatest therapeutic potential for post-traumatic arthrofibrosis. The aim of this study is to systematically review the literature for quality evidence and perform a meta-analysis about the pharmacological therapies of post-traumatic arthrofibrosis in preclinical models. MATERIALS AND METHODS A comprehensive and systematic search strategy was performed in three databases (MEDLINE, EMBASE and Web of Science) retrieving studies on the effectiveness of pharmacological therapies in the management of post-traumatic arthrofibrosis using preclinical models in terms of biomechanical outcomes. Risk of bias assessment was performed using the SYRCLE's risk of bias tool. A meta-analysis using a random-effects model was conducted if a minimum of three studies reported homogeneous outcomes for drugs with the same action mechanism. RESULTS Forty-six studies were included in the systematic review and evaluated for risk of bias. Drugs from 6 different action mechanisms of 21 studies were included in the meta-analysis. Overall, the methodological quality of the studies was poor. Statistically significant overall effect in favor of reducing contracture was present for anti-histamines (Chi2 p = 0.75, I2 = 0%; SMD (Standardized Mean Difference) = -1.30, 95%CI: -1.64 to -0.95, p < 0.00001) and NSAIDs (Chi2 p = 0.01, I2 = 63%; SMD= -0.93, 95%CI: -1.58 to -0.28, p = 0.005). CONCLUSIONS Anti-histamines, particularly ketotifen, have the strongest evidence of efficacy for prevention of post-traumatic arthrofibrosis. Some studies suggest a potential role for NSAIDs, particularly celecoxib, although heterogeneity among the included studies is significant.
Collapse
Affiliation(s)
- Luis Palacios-Díaz
- Upper Limb Surgery Unit, Orthopaedics and Traumatology Department, La Paz University Hospital, Madrid, Spain
| | | | - Pablo Sánchez Urgellés
- Upper Limb Surgery Unit, Orthopaedics and Traumatology Department, La Paz University Hospital, Madrid, Spain
| | - Samuel Antuña
- Upper Limb Surgery Unit, Orthopaedics and Traumatology Department, La Paz University Hospital, Madrid, Spain
| | - Raúl Barco
- Upper Limb Surgery Unit, Orthopaedics and Traumatology Department, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
3
|
Fan Y, Yuh J, Lekkala S, Asik MD, Thomson A, McCanne M, Randolph MA, Chen AF, Oral E. The efficacy of vitamin E in preventing arthrofibrosis after joint replacement. Animal Model Exp Med 2024; 7:145-155. [PMID: 38525803 PMCID: PMC11079150 DOI: 10.1002/ame2.12388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/10/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Arthrofibrosis is a joint disorder characterized by excessive scar formation in the joint tissues. Vitamin E is an antioxidant with potential anti-fibroblastic effect. The aim of this study was to establish an arthrofibrosis rat model after joint replacement and assess the effects of vitamin E supplementation on joint fibrosis. METHODS We simulated knee replacement in 16 male Sprague-Dawley rats. We immobilized the surgical leg with a suture in full flexion. The control groups were killed at 2 and 12 weeks (n = 5 per group), and the test group was supplemented daily with vitamin E (0.2 mg/mL) in their drinking water for 12 weeks (n = 6). We performed histological staining to investigate the presence and severity of arthrofibrosis. Immunofluorescent staining and α2-macroglobulin (α2M) enzyme-linked immunosorbent assay (ELISA) were used to assess local and systemic inflammation. Static weight bearing (total internal reflection) and range of motion (ROM) were collected for functional assessment. RESULTS The ROM and weight-bearing symmetry decreased after the procedure and recovered slowly with still significant deficit at the end of the study for both groups. Histological analysis confirmed fibrosis in both lateral and posterior periarticular tissue. Vitamin E supplementation showed a moderate anti-inflammatory effect on the local and systemic levels. The vitamin E group exhibited significant improvement in ROM and weight-bearing symmetry at day 84 compared to the control group. CONCLUSIONS This model is viable for simulating arthrofibrosis after joint replacement. Vitamin E may benefit postsurgical arthrofibrosis, and further studies are needed for dosing requirements.
Collapse
Affiliation(s)
- Yingfang Fan
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
- Department of Orthopaedic SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| | - Jean Yuh
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Sashank Lekkala
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Mehmet D. Asik
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
- Department of Orthopaedic SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| | - Andrew Thomson
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Mark A. Randolph
- Department of Orthopaedic SurgeryHarvard Medical SchoolBostonMassachusettsUSA
- Department of SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| | - Antonia F. Chen
- Department of Orthopaedic SurgeryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Department of Orthopaedic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
- Department of Orthopaedic SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Dudakovic A, Limberg AK, Bothun CE, Dilger OB, Bayram B, Bettencourt JW, Salmons HI, Thaler R, Karczewski DC, Owen AR, Iyer VG, Payne AN, Carstens MF, van Wijnen AJ, Berry DJ, Sanchez-Sotelo J, Morrey ME, Abdel MP. AdipoRon reduces TGFβ1-mediated collagen deposition in vitro and alleviates knee stiffness in vivo. J Cell Physiol 2024; 239:e31168. [PMID: 38149794 PMCID: PMC10922972 DOI: 10.1002/jcp.31168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Arthrofibrosis, which causes joint motion restrictions, is a common complication following total knee arthroplasty (TKA). Key features associated with arthrofibrosis include myofibroblast activation, knee stiffness, and excessive scar tissue formation. We previously demonstrated that adiponectin levels are suppressed within the knee tissues of patients affected by arthrofibrosis and showed that AdipoRon, an adiponectin receptor agonist, exhibited anti-fibrotic properties in human mesenchymal stem cells. In this study, the therapeutic potential of AdipoRon was evaluated on TGFβ1-mediated myofibroblast differentiation of primary human knee fibroblasts and in a mouse model of knee stiffness. Picrosirius red staining revealed that AdipoRon reduced TGFβ1-induced collagen deposition in primary knee fibroblasts derived from patients undergoing primary TKA and revision TKA for arthrofibrosis. AdipoRon also reduced mRNA and protein levels of ACTA2, a key myofibroblast marker. RNA-seq analysis corroborated the anti-myofibrogenic effects of AdipoRon. In our knee stiffness mouse model, 6 weeks of knee immobilization, to induce a knee contracture, in conjunction with daily vehicle (DMSO) or AdipoRon (1, 5, and 25 mg/kg) via intraperitoneal injections were well tolerated based on animal behavior and weight measurements. Biomechanical testing demonstrated that passive extension angles (PEAs) of experimental knees were similar between vehicle and AdipoRon treatment groups in mice evaluated immediately following immobilization. Interestingly, relative to vehicle-treated mice, 5 mg/kg AdipoRon therapy improved the PEA of the experimental knees in mice that underwent 4 weeks of knee remobilization following the immobilization and therapy. Together, these studies revealed that AdipoRon may be an effective therapeutic modality for arthrofibrosis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Afton K. Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Cole E. Bothun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oliver B. Dilger
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Aaron R. Owen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Varun G. Iyer
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ashley N. Payne
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Ramos MS, Pasqualini I, Surace PA, Molloy RM, Deren ME, Piuzzi NS. Arthrofibrosis After Total Knee Arthroplasty: A Critical Analysis Review. JBJS Rev 2023; 11:01874474-202312000-00001. [PMID: 38079496 DOI: 10.2106/jbjs.rvw.23.00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
» Arthrofibrosis after total knee arthroplasty (TKA) is the new formation of excessive scar tissue that results in limited ROM, pain, and functional deficits.» The diagnosis of arthrofibrosis is based on the patient's history, clinical examination, absence of alternative diagnoses from diagnostic testing, and operative findings. Imaging is helpful in ruling out specific causes of stiffness after TKA. A biopsy is not indicated, and no biomarkers of arthrofibrosis exist.» Arthrofibrosis pathophysiology is multifactorial and related to aberrant activation and proliferation of myofibroblasts that primarily deposit type I collagen in response to a proinflammatory environment. Transforming growth factor-beta signaling is the best established pathway involved in arthrofibrosis after TKA.» Management includes both nonoperative and operative modalities. Physical therapy is most used while revision arthroplasty is typically reserved as a last resort. Additional investigation into specific pathophysiologic mechanisms can better inform targeted therapeutics.
Collapse
Affiliation(s)
- Michael S Ramos
- Department of Orthopaedic Surgery, Orthopaedic and Rheumatologic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|
6
|
Nakahara R, Ito A, Nakahata A, Nagai-Tanima M, Kawai H, Uchiyama K, Nishitani K, Wang T, Aoyama T, Kuroki H. Development of a novel model for intraarticular adhesion in rat knee joint. PLoS One 2023; 18:e0292000. [PMID: 37733702 PMCID: PMC10513256 DOI: 10.1371/journal.pone.0292000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
In this study, a novel rat model of knee joint adhesion was developed, and its formation was analyzed quantitatively over time. Thirty-nine Wistar rats were randomly divided into intact control (n = 3) and experimental (n = 36) groups. The latter was equally divided into three groups according to the experimental intervention: fixed with deep bending of the knee joint (group I), fixed after incision of the capsule (group II), and fixed after exposure of the patellofemoral joint to artificial patellar subluxation (group III). All rats were subdivided according to their joint immobilization period (1, 2, or 4 weeks). Thereafter, the limited range of motion of the knee joint with (limited knee range of motion) and without (limited knee joint intrinsic range of motion) skin and muscles were measured. The lengths of adhesions of the anterior knee joint and posterior capsules were evaluated histologically. The limited intrinsic range of motion of the knee joint was found to be increased in groups II and III compared to that in group I 4 weeks after immobilization. Adhesions were confirmed within 1 week after immobilization in groups II and III. The length of the adhesions in group III was significantly longer than in other groups at 2 weeks and remained longer than in group I at 4 weeks. This model may contribute to the assessment of the adhesion process and development of new therapeutic avenues following trauma or surgical invasion.
Collapse
Affiliation(s)
- Ryo Nakahara
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Nakahata
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Nagai-Tanima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kisara Uchiyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tianshu Wang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Zhu Z, Gao S, Zhu H, Chen Y, Wu D, Chen Z, Huang Y, Wu X, Hu N, Chen D, Huang W, Chen H. Metformin improves fibroblast metabolism and ameliorates arthrofibrosis in rats. J Orthop Translat 2023; 40:92-103. [PMID: 37457314 PMCID: PMC10338908 DOI: 10.1016/j.jot.2023.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Background Emerging studies have suggested an essential role of fibroblast metabolic reprogramming in the pathogenesis of arthrofibrosis. The metabolic modulator metformin appears to be a therapeutic candidate for fibrotic disorders. However, whether metformin could alleviate arthrofibrosis has not been defined. In this study we have determined if treatment with metformin has beneficial effect on arthrofibrosis and its underlying mechanism. Methods Articular capsule samples were collected from patients with/without arthrofibrosis to perform gene and protein expression analysis. Arthrofibrosis animal model was established to examine the anti-fibrotic effect of metformin. Cell culture experiments were conducted to determine the mechanism by which metformin inhibits fibroblast activation. Results We found that glycolysis was upregulated in human fibrotic articular capsules. In an arthrofibrosis animal model, intra-articular injection of metformin mitigated inflammatory reactions, downregulated expression of both fibrotic and glycolytic markers, improved range of motion (ROM) of the joint, and reduced capsular fibrosis and thickening. At the cellular level, metformin inhibited the activation of fibroblasts and mitigated the abundant influx of glucose into activated fibroblasts. Interestingly, metformin prompted a metabolic shift from oxidative phosphorylation to aerobic glycolysis in activated fibroblasts, resulting in the anti-fibrotic effect of metformin. Conclusion Metformin decreased glycolysis, causing a metabolic shift toward aerobic glycolysis in activated fibroblasts and has beneficial effect on the treatment of arthrofibrosis.The translational potential of this article: The findings of this study demonstrated the therapeutic effect of metformin on arthrofibrosis and defined novel targets for the treatment of articular fibrotic disorders.
Collapse
Affiliation(s)
- Zhenglin Zhu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Shengqiang Gao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Hui Zhu
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandong Wu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Xiangdong Wu
- Department of Orthopaedic Surgery, Peking University Fourth School of Clinical Medicine/Beijing Jishuitan Hospital, Beijing, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institue of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Dudakovic A, Bayram B, Bettencourt JW, Limberg AK, Galvan ML, Carrasco ME, Stans B, Thaler R, Morrey ME, Sanchez-Sotelo J, Berry DJ, van Wijnen AJ, Abdel MP. The epigenetic regulator BRD4 is required for myofibroblast differentiation of knee fibroblasts. J Cell Biochem 2023; 124:320-334. [PMID: 36648754 PMCID: PMC9990907 DOI: 10.1002/jcb.30368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023]
Abstract
Arthrofibrosis, which is characterized by excessive scar tissue and limited motion, can complicate the daily functioning of patients after total knee arthroplasty (TKA). Molecular hallmarks of arthrofibrosis include pathologic accumulation of myofibroblasts and disproportionate collagen deposition. Epigenetic mechanisms, including posttranslation modification of histones, control gene expression and may regulate fibrotic events. This study assessed the role of the bromodomain and extra-terminal (BET) proteins on myofibroblast differentiation. This group of epigenetic regulators recognize acetylated lysines and are targeted by a class of drugs known as BET inhibitors. RNA-seq analysis revealed robust mRNA expression of three BET members (BRD2, BRD3, and BRD4) while the fourth member (BRDT) is not expressed in primary TKA knee outgrowth fibroblasts. RT-qPCR and western blot analyses revealed that BET inhibition with the small molecule JQ1 impairs TGFβ1-induced expression of ACTA2, a key myofibroblast marker, in primary outgrowth knee fibroblasts. Similarly, JQ1 administration also reduced COL3A1 mRNA levels and collagen deposition as monitored by picrosirius red staining. Interestingly, the inhibitory effects of JQ1 on ACTA2 mRNA and protein expression, as well as COL3A1 expression and collagen deposition, were paralleled by siRNA-mediated depletion of BRD4. Together, these data reveal that BRD4-mediated epigenetic events support TGFβ1-mediated myofibroblast differentiation and collagen deposition as seen in arthrofibrosis. To our knowledge, these are the first studies that assess epigenetic regulators and their downstream events in the context of arthrofibrosis. Future studies may reveal clinical utility for drugs that target epigenetic pathways, specifically BET proteins, in the prevention and treatment of arthrofibrosis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Afton K. Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - M. Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Britta Stans
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Dagneaux L, Limberg AK, Owen AR, Bettencourt JW, Dudakovic A, Bayram B, Gades NM, Sanchez-Sotelo J, Berry DJ, van Wijnen A, Morrey ME, Abdel MP. Knee immobilization reproduces key arthrofibrotic phenotypes in mice. Bone Joint Res 2023; 12:58-71. [PMID: 36647696 PMCID: PMC9872038 DOI: 10.1302/2046-3758.121.bjr-2022-0250.r2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). METHODS Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections. RESULTS Experimental knees immobilized for four weeks demonstrated mean PEAs of 141°, 72°, and 79° after zero, two, and four weeks of remobilization (n = 6 per group), respectively. Experimental knees demonstrated reduced PEAs after two weeks (p < 0.001) and four weeks (p < 0.0001) of remobilization compared to controls. Following eight weeks of immobilization, experimental knees exhibited mean PEAs of 82°, 73°, and 72° after zero, two, and four weeks of remobilization, respectively. Histological analysis demonstrated no cartilage degeneration. Similar trends in biomechanical and histological properties were observed when intra-articular violation was introduced. CONCLUSION This study established a novel mouse model of robust knee contracture without evidence of OA. This was appreciated consistently after eight weeks of immobilization and was irrespective of length of remobilization. As such, this arthrofibrotic model provides opportunities to investigate molecular pathways and therapeutic strategies.Cite this article: Bone Joint Res 2023;12(1):58-71.
Collapse
Affiliation(s)
- Louis Dagneaux
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Afton K. Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron R. Owen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Naomi M. Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA,Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA, Matthew P. Abdel. E-mail:
| |
Collapse
|
10
|
Wyatt PB, Satalich J, Cyrus J, O'Neill C, O'Connell R. Biochemical markers of postsurgical knee arthrofibrosis: A systematic review. J Orthop 2023; 35:1-6. [PMID: 36325249 PMCID: PMC9619298 DOI: 10.1016/j.jor.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Postsurgical knee arthrofibrosis is a common complication associated with pain and limited range of motion. Although the mechanism is unclear, many biochemical and genetic markers have been identified within arthrofibrotic knees. The purpose of this systematic review is to synthesize the many biochemical and genetic markers that have been associated with surgery-induced knee arthrofibrosis in order to better guide future therapeutic endeavors. Methods A thorough search of literature was conducted on April 27, 2022. Seventeen studies met inclusion criteria for this systematic review. Inclusion criteria for this study were as follows: title or abstract discussed biochemical and genetic markers associated with postoperative knee arthrofibrosis, study design included human and/or animal subjects. Results A wide variety of genetic biomarkers (mRNA), proteins/enzymes, and cytokines were identified in both animal models and human subjects with postsurgical knee arthrofibrosis. These included various extracellular matrix-encoding mRNA sequences, matrix metalloproteinases, proteins and mRNA sequences involved in Transforming Growth Factor-β signaling, and interleukin-family cytokines to name just a few. Conclusion There are many biomarkers found in postsurgical arthrofibrotic knees. TGF-β, and mRNA/proteins that participate in TGF-β signaling (i.e., LOX, SERPINE1, PAI-1/Akt/mTOR, BMP-2), appear to be particularly common. Future comparative studies should aim to determine which of these are most relevant, and therefore, worthwhile therapeutic targets.
Collapse
Affiliation(s)
- Phillip B. Wyatt
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James Satalich
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - John Cyrus
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Conor O'Neill
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Robert O'Connell
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
11
|
Bayram B, Thaler R, Bettencourt JW, Limberg AK, Sheehan KP, Owen AR, Berry DJ, Morrey ME, Sanchez-Sotelo J, van Wijnen AJ, Dudakovic A, Abdel MP. Human outgrowth knee fibroblasts from patients undergoing total knee arthroplasty exhibit a unique gene expression profile and undergo myofibroblastogenesis upon TGFβ1 stimulation. J Cell Biochem 2022; 123:878-892. [PMID: 35224764 PMCID: PMC9133128 DOI: 10.1002/jcb.30230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
Abstract
Arthrofibrosis is characterized by excessive extracellular matrix (ECM) deposition that results in restricted joint motion after total knee arthroplasties (TKAs). Currently, treatment options are limited. Therefore, an in vitro model of knee-related myofibroblastogenesis is valuable to facilitate investigation of the arthrofibrotic process, diagnostic and therapeutic options. In this study, we obtained intraoperative posterior capsule (PC), quadriceps tendon (QT), and suprapatellar pouch (SP) tissues from the knees of four patients undergoing primary TKAs for osteoarthritis. From these tissues, we isolated primary cells by the outgrowth method and subsequently characterized these cells in the absence and presence of the pro-myofibroblastic cytokine, transforming growth factor beta 1 (TGFβ1). Light microscopy of knee outgrowth cells revealed spindle-shaped cells, and immunofluorescence (IF) analysis demonstrated staining for the fibroblast-specific markers TE-7 and vimentin (VIM). These knee outgrowth fibroblasts differentiated readily into myofibroblasts as reflected by enhanced α-smooth muscle actin (ACTA2) mRNA and protein expression and increased mRNA expression of collagen type 1 (COL1A1) and type 3 (COL3A1) with collagenous matrix deposition in the presence of TGFβ1. Outgrowth knee fibroblasts were more sensitive to TGFβ1-mediated myofibroblastogenesis than adipose-derived mesenchymal stromal/stem cells (MSCs). While outgrowth knee fibroblasts isolated from three anatomical regions in four patients exhibited similar gene expression, these cells are distinct from other fibroblastic cell types (i.e., Dupuytren's fibroblasts) as revealed by RNA-sequencing. In conclusion, our study provides an in vitro myofibroblastic model of outgrowth knee fibroblasts derived from patients undergoing primary TKA that can be utilized to study myofibroblastogenesis and assess therapeutic strategies for arthrofibrosis.
Collapse
Affiliation(s)
- Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Afton K. Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kevin P. Sheehan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Aaron R. Owen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Wegner E, Slotina E, Mickan T, Truffel S, Arand C, Wagner D, Ritz U, Rommens PM, Gercek E, Drees P, Baranowski A. Pleiotropic Long-Term Effects of Atorvastatin on Posttraumatic Joint Contracture in a Rat Model. Pharmaceutics 2022; 14:pharmaceutics14030523. [PMID: 35335899 PMCID: PMC8950153 DOI: 10.3390/pharmaceutics14030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
The antifibrotic effect of atorvastatin has already been demonstrated in several organ systems. In the present study, a rat model was used to investigate the effect of atorvastatin on posttraumatic joint contracture. Forty-eight Sprague Dawley rats were equally randomized into an atorvastatin group and a control group. After initial joint trauma, knee joints were immobilized for intervals of 2 weeks (n = 16) or 4 weeks (n = 16) or immobilized for 4 weeks with subsequent remobilization for another 4 weeks (n = 16). Starting from the day of surgery, animals received either atorvastatin or placebo daily. After euthanasia at week 2, 4 or 8, joint contracture was determined, histological examinations were performed, and gene expression was assessed. The results suggest that the joint contracture was primarily arthrogenic. Atorvastatin failed to significantly affect contracture formation and showed a reduction in myofibroblast numbers to 98 ± 58 (control: 319 ± 113, p < 0.01) and a reduction in joint capsule collagen to 60 ± 8% (control: 73 ± 9%, p < 0.05) at week 2. Gene expression of α-smooth muscle actin (α-SMA), collagen type I, transforming growth factor β1 (TGF-β1) and interleukin-6 (IL-6) was not significantly affected by atorvastatin. Atorvastatin decreases myofibroblast number and collagen deposition but does not result in an improvement in joint mobility.
Collapse
|