1
|
Wei Q, Ouyang M, Guo X, Fu X, Liu T, Luo Y, Tang H, Yang Y, Gao X, Mao H. Effect of hyperoside on osteoporosis in ovariectomized mice through estrogen receptor α/ITGβ3 signaling pathway. Eur J Pharmacol 2024; 977:176666. [PMID: 38797313 DOI: 10.1016/j.ejphar.2024.176666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Osteoporosis is a highly prevalent bone metabolic disease in menopause due to estrogen deficiency. Hyperoside is a main compound in Semen cuscutae. Our team previously reported that Semen cuscutae has anti osteoporosis effect on ovariectomized mice by inhibiting bone resorption of osteoclasts. However, it is still unclear whether hyperoside affects osteoclast differentiation and bone resorption, and whether its anti-osteoporosis effect is related to an estrogen-like effect. This study investigates the potential mechanism of hyperoside's anti-osteoporotic effect by examining its impact on osteoclast differentiation and its relationship with the estrogen receptor. DXA, Micro-CT, TRAP staining, HE, and ELISA were used to assess the impact of hyperoside on OVX-induced osteoporosis. The effect of hyperoside on octeoclast differentiation was evaluated using TRAP activity assay, TRAP staining, F-actin staining. The activation of the estrogen receptor by hyperoside and its relationship with osteoclast differentiation were detected using dual-luciferase reporter assay and estrogen receptor antagonists. Our findings revealed that hyperoside (20-80 mg/kg) protect against OVX-induced osteoporosis, including increasing BMD and BMC and improving bone microstructure. Hyperoside inhibited osteoclast differentiation in a concentration dependent manner, whereas estrogen receptor α antagonists reversed its inhibitory effect osteoclast differentiation. Western blot results suggested that hyperoside inhibited TRAP, RANKL, c-Fos and ITG β3 protein expression in osteoclast or femoral bone marrow of ovariectomized mice. Our findings suggest that hyperoside inhibits osteoclast differentiation and protects OVX-induced osteoporosis through the ERα/ITGβ3 signaling pathway.
Collapse
Affiliation(s)
- Qiu Wei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - MingHui Ouyang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaotong Guo
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyu Fu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ting Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yage Luo
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huajing Tang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Yang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Haoping Mao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
2
|
Meghil MM, Cutler CW. Influence of Vitamin D on Periodontal Inflammation: A Review. Pathogens 2023; 12:1180. [PMID: 37764988 PMCID: PMC10537363 DOI: 10.3390/pathogens12091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The active form of vitamin D is the hormonally active 1,25(OH)2D3 (Vit D) vitamin, which plays an important role in bone biology and host immunity. The vitamin D receptor (VDR) is a nuclear ligand-dependent transcription factor expressed by many cells. Ligation of VDR by VitD regulates a wide plethora of genes and physiologic functions through the formation of the complex Vit D-VDR signaling cascade. The influence of Vit D-VDR signaling in host immune response to microbial infection has been of interest to many researchers. This is particularly important in oral health and diseases, as oral mucosa is exposed to a complex microbiota, with certain species capable of causing disruption to immune homeostasis. In this review, we focus on the immune modulatory roles of Vit D in the bone degenerative oral disease, periodontitis.
Collapse
Affiliation(s)
- Mohamed M. Meghil
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Christopher W. Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Santonocito S, Ferlito S, Polizzi A, Ronsivalle V, Reitano G, Lo Giudice A, Isola G. Impact exerted by scaffolds and biomaterials in periodontal bone and tissue regeneration engineering: new challenges and perspectives for disease treatment. EXPLORATION OF MEDICINE 2023:215-234. [DOI: 10.37349/emed.2023.00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 10/01/2024] Open
Abstract
The periodontium is an appropriate target for regeneration, as it cannot restore its function following disease. Significantly, the periodontium's limited regenerative capacity could be enhanced through the development of novel biomaterials and therapeutic approaches. Notably, the regenerative potential of the periodontium depends not only on its tissue-specific architecture and function but also on its ability to reconstruct distinct tissues and tissue interfaces, implying that the development of tissue engineering techniques can offer new perspectives for the organized reconstruction of soft and hard periodontal tissues. With their biocompatible structure and one-of-a-kind stimulus-responsive property, hydrogels have been utilized as an excellent drug delivery system for the treatment of several oral diseases. Furthermore, bioceramics and three-dimensional (3D) printed scaffolds are also appropriate scaffolding materials for the regeneration of periodontal tissue, bone, and cartilage. This work aims to examine and update material-based, biologically active cues and the deployment of breakthrough bio-fabrication technologies to regenerate the numerous tissues that comprise the periodontium for clinical and scientific applications.
Collapse
Affiliation(s)
- Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Catania 95123, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Giuseppe Reitano
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| |
Collapse
|
4
|
Lu EMC. The role of vitamin D in periodontal health and disease. J Periodontal Res 2023; 58:213-224. [PMID: 36537578 DOI: 10.1111/jre.13083] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Vitamin D plays an essential role in calcium and bone metabolism, immune regulation and possesses profound anti-inflammatory effects. Evidence suggests that low serum vitamin D is associated with increased severity of periodontitis, a chronic inflammatory condition characterised by destruction of the supporting tissues surrounding the tooth, which has several shared risk factors with other chronic non-communicable diseases. The biological functions of vitamin D are mediated by its strong anti-microbial, anti-inflammatory, and host modulatory properties. Experimental periodontitis models involving targeted deletion of 1α-hydroxylase, the enzyme responsible for the conversion of inactive substrate to active 1,25(OH)2 D3 (calcitriol), showed augmented alveolar bone loss and gingival inflammation. Vitamin D receptor (VDR) gene polymorphisms have also been associated with increased severity of periodontitis. Thus, the involvement of vitamin D in the pathogenesis of periodontitis is biological plausible. Clinical studies have consistently demonstrated an inverse relationship between serum 25OHD3 and periodontal disease inflammation. However, due to the paucity of well-designed longitudinal studies, there is less support for the impact of vitamin D status on periodontal disease progression and tooth loss. The evidence emphasises the importance of maintaining vitamin D sufficiency in supporting periodontal health. This review aims to first examine the biological mechanisms by which vitamin D might influence the pathogenesis of periodontal disease and second, discuss the clinical evidence which implicate the role of vitamin D in periodontal disease.
Collapse
Affiliation(s)
- Emily Ming-Chieh Lu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
5
|
Zihni Korkmaz M, Yemenoğlu H, Günaçar DN, Ustaoğlu G, Ateş Yildirim E. The effects of vitamin D deficiency on mandibular bone structure: a retrospective radiological study. Oral Radiol 2023; 39:67-74. [PMID: 35277812 PMCID: PMC8916492 DOI: 10.1007/s11282-022-00602-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/21/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate the effects of vitamin D deficiency on the mandibular bone structure by fractal analysis and panoramic morphometric indices. METHODS Ninety participants were divided into three groups as 30 individuals with severe vitamin D deficiency, 30 individuals with vitamin D deficiency, and 30 individuals with vitamin D sufficiency. Fractal dimension analysis (FD), panoramic mandibular index (PMI), mandibular cortical index (MCI), and mandibular cortical thickness measurement (CTM) were evaluated on panoramic radiographs. RESULTS FD values of the patients with vitamin D deficiency were found to be statistically lower than the patients with vitamin D sufficiency (p < 0.05). FD value of supracortical area above the angulus mandible (FD2) in patients with severe vitamin D deficiency was significantly lower than FD values (p = 0.002). There was no statistically significant difference between the groups in the CTM (p > 0.05). PMI was significantly lower in patients with severe vitamin D deficiency (p < 0.001). There was a significant difference in MCI values between the groups (p < 0.05). CONCLUSION Vitamin D deficiency causes a decrease in bone mineral density in the mandible, and an increase in alveolar porosity. FD analysis and radiomorphometric indices in panoramic radiographs can be used to assess osteoporotic changes in patients with vitamin D deficiency.
Collapse
Affiliation(s)
- Meltem Zihni Korkmaz
- Faculty of Dentistry, Department of Periodontology, Recep Tayyip Erdogan University, TR-53100, Rize, Turkey.
| | - Hatice Yemenoğlu
- Faculty of Dentistry, Department of Periodontology, Recep Tayyip Erdogan University, TR-53100, Rize, Turkey
| | - Dilara Nil Günaçar
- Faculty of Dentistry, Department of Oral and Maxillofacial Radiology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Gülbahar Ustaoğlu
- Faculty of Dentistry, Department of Periodontology, Abant İzzet Baysal University, Bolu, Turkey
| | - Esra Ateş Yildirim
- Faculty of Dentistry, Department of Periodontology, Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
6
|
Zhu L, Zhou C, Chen S, Huang D, Jiang Y, Lan Y, Zou S, Li Y. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells 2022; 11:3380. [PMID: 36359775 PMCID: PMC9657655 DOI: 10.3390/cells11213380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Isola G. Salivary Tests: A New Personalized Approach for the Early Diagnosis of Oral and Periodontal Diseases. J Pers Med 2022; 12:jpm12101636. [PMID: 36294775 PMCID: PMC9604671 DOI: 10.3390/jpm12101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Medical Surgery Specialties, School of Dentistry, University of Catania, 95123 Catania, Italy
| |
Collapse
|
8
|
Costa SA, Nascimento GG, Colins PMG, Alves CMC, Thomaz EBAF, Carvalho Souza SDF, da Silva AAM, Ribeiro CCC. Investigating oral and systemic pathways between unhealthy and healthy dietary patterns to periodontitis in adolescents: A population-based study. J Clin Periodontol 2022; 49:580-590. [PMID: 35415936 DOI: 10.1111/jcpe.13625] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/10/2022] [Accepted: 04/02/2022] [Indexed: 01/11/2023]
Abstract
AIM To investigate pathways between unhealthy and healthy dietary patterns and periodontitis in adolescents (18-19 years of age). MATERIALS AND METHODS This population-based study (n = 2515) modelled direct and mediated pathways (via biofilm and obesity) from patterns of healthy diet (fruits, fibre, vegetables, and dairy) and unhealthy diet (sugars, snacks, and salty/fast foods) with initial periodontitis (bleeding on probing [BoP], probing depth [PD] ≥ 4 mm, clinical attachment loss [CAL] ≥ 4 mm), moderate periodontitis (BoP, PD ≥ 5 mm, and CAL ≥ 5 mm), and European Federation of Periodontology and the American Academy of Periodontology (EFP-AAP) periodontitis definitions, adjusting for sex, socio-economic status, smoking, and alcohol, through structural equation modelling (α = 5%). RESULTS Higher values of healthy diet were associated with lower values of initial periodontitis (standardized coefficient [SC] = -0.160; p < .001), moderate periodontitis (SC = -0.202; p < .001), and EFP-AAP periodontitis (p < .05). A higher value of unhealthy diet was associated with higher values of initial periodontitis (SC = 0.134; p = .005) and moderate periodontitis (SC = 0.180; p < .001). Biofilm mediated the association between higher values of unhealthy diet and all periodontal outcomes (p < .05). CONCLUSIONS Our findings suggest that both healthy and unhealthy dietary patterns may contribute to reduced or increased extent and severity of periodontitis by local and systemic mechanisms, preceding the effect of other established causes such as smoking and obesity, in younger population.
Collapse
Affiliation(s)
| | - Gustavo G Nascimento
- Section for Periodontology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang D, Yu S, Zhang Q, Cheng Q, Xie S, Zhang Y, Guo X, Zou Y, Yin Y, Yu J, Li H, Xia L, Qiu L, Xia W. A robust method for simultaneous measurement of serum 25(OH)D, 1,25(OH) 2 D, and 24,25(OH) 2 D by liquid chromatography-tandem mass spectrometry with efficient separation of 3-epi analogs, 23R,25(OH) 2 D 3 , and 4β,25(OH) 2 D 3. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4792. [PMID: 34913542 DOI: 10.1002/jms.4792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND This study aimed to establish a robust, simple method to detect 25-hydroxyvitamin D3 (25(OH)D3 ), 25-hydroxyvitamin D2 (25(OH)D2 ), 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), 1,25-dihydroxyvitamin D2 (1,25(OH)2 D2 ), 24,25-dihydroxyvitamin D3 (24,25(OH)2 D3 ), and 24,25-dihydroxyvitamin D2 (24,25(OH)2 D2 ) simultaneously with efficient separation of 3-epi 25(OH)D3 , 3-epi 24,25(OH)2 D3 , 23R,25(OH)2 D3 , and 4β,25-dihydroxyvitamin D3 (4β,25(OH)2 D3 ) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). METHOD This method was validated according to procedures established by Clinical and Laboratory Standards Institute (CLSI) and then applied in healthy population to determine the distribution of the vitamin D metabolites by LC-MS/MS. RESULTS The total-run CV% of 25(OH)D3 , 25(OH)D2 , 24,25(OH)2 D3 , 24,25(OH)2 D2 , 1,25(OH)2 D3 , and 1,25(OH)2 D2 were 6.30%-8.40%, 5.00%-8.40%, 5.90%-9.00%, 5.60%-9.00%, 5.60%-8.00%, and 7.00%-9.70%, respectively. The linearity correlation coefficients r of these six vitamin D metabolites were >0.99. The matrix effects of 25(OH)D3 , 25(OH)D2 , 24,25(OH)2 D3 , 24,25(OH)2 D2 , 1,25(OH)2 D3 , and 1,25(OH)2 D2 were 90.6%-103.3%, 97.3%-106.3%, 90.7%-106.3%, 100.7%-114.5%, 97.9%-104.6%, and 97.0%-111.0%. The trueness values of 25(OH)D3 , 25(OH)D2 , and 24,25(OH)2 D3 were 93.8%-103.0%, 101.0%, and 96.3%-100%, respectively. CONCLUSION This study successfully established an efficient, accurate, robust method for simultaneous measurement of serum 25(OH)D, 1,25(OH)2 D, and 24,25(OH)2 D by LC-MS/MS with efficient separation of 3-epi analogs, 23R,25(OH)2 D3 , and 4β,25(OH)2 D3 .
Collapse
Affiliation(s)
- Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Qi Zhang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qian Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shaowei Xie
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuanyuan Zhang
- Department of Application Support Center, Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Beijing, China
| | - Xiuzhi Guo
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yicong Yin
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jialei Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Honglei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liangyu Xia
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
10
|
Costa SA, Ribeiro CCC, de Oliveira KR, Alves CMC, Thomaz EBAF, Casarin RCV, Souza SDFC. Low bone mineral density is associated with severe periodontitis at the end of the second decade of life: A population-based study. J Clin Periodontol 2021; 48:1322-1332. [PMID: 34288024 DOI: 10.1111/jcpe.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
AIM To evaluate the association between low bone mineral density (BMD) and severe periodontitis at the end of the second decade of life. MATERIALS AND METHODS This population-based study analysed 2032 youngers (18-19 years old) of the RPS cohort. BMD of lumbar spine (BMD-LS) and of the whole body (BMD-WB) were assessed by dual x-ray emission densitometry. Low BMD-LS (Z-score ≤ -2) and low BMD-WB (Z-score ≤ -1.5) were correlated with severe periodontitis. The extent of periodontal disease was also evaluated as the following outcomes: proportions of teeth affected by clinical attachment loss ≥5 mm and probing depth ≥5 mm. Multivariate models by sex, education, family income, risk of alcohol dependence, smoking, plaque, bleeding index, and body mass index were estimated through logistic regression (binary outcomes) and Poisson regression (continuous outcomes). RESULTS The prevalence of severe periodontitis was 10.97%. Low BMD-LS (odds ratio [OR] = 2.08, confidence interval [CI] = 1.12-3.85, p = .01) and low BMD-WB (OR = 1.34, CI = 1.001-1.81, p = .04) were associated with severe periodontitis in the final multivariate models. Low BMD-LS and BMD-WB were also associated with a greater extent of periodontitis (p < .05). CONCLUSIONS Low BMD was found to be associated with the severity and extent of periodontitis in adolescents. Adolescents at peak bone mass age presenting low BMD are more likely to be affected by severe periodontitis.
Collapse
|
11
|
Isola G, Palazzo G, Polizzi A, Murabito P, Giuffrida C, Lo Gullo A. Association of Systemic Sclerosis and Periodontitis with Vitamin D Levels. Nutrients 2021; 13:nu13020705. [PMID: 33672176 PMCID: PMC7926920 DOI: 10.3390/nu13020705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to analyze the association among systemic sclerosis (SSc), periodontitis (PT); we also evaluated the impact of PT and SSc on vitamin D levels. Moreover, we tested the association with potential confounders. A total of 38 patients with SSc, 40 subjects with PT, 41 subjects with both PT and SSc, and 41 healthy controls were included in the study. The median vitamin D levels in PT subject were 19.1 (17.6-26.8) ng/mL, while SSc + PT group had vitamin d levels of 15.9 (14.7-16.9) ng/mL, significantly lower with respect to SSc patients (21.1 (15.4-22.9) ng/mL) and to healthy subjects (30.5 (28.8-32.3) ng/mL) (p < 0.001). In all subjects, vitamin D was negatively associated with c-reactive protein (CRP) (p < 0.001) and with probing depth (PD), clinical attachment level (CAL), bleeding on probing (BOP), and plaque score (PI) (p < 0.001 for all parameters) and positively related to the number of teeth (p < 0.001). Moreover, univariate regression analysis demonstrated an association among high low-density lipoproteins (LDL) cholesterol (p = 0.021), CRP (p = 0.014), and PT (p < 0.001) and reduced levels of vitamin D. The multivariate regression analysis showed that PT (p = 0.011) and CRP (p = 0.031) were both predictors of vitamin D levels. Subjects with PT and SSc plus PT had significant lower vitamin D values with respect to SSc and to healthy subjects. In addition, PT seems negatively associated with levels of vitamin D in all analyzed patients.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
- Correspondence: ; Tel.: +39-095-7435359
| | - Giuseppe Palazzo
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
| | - Paolo Murabito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
| | - Clemente Giuffrida
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.G.); (A.L.G.)
| | - Alberto Lo Gullo
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.G.); (A.L.G.)
| |
Collapse
|
12
|
Miao D, Goltzman D. Probing the Scope and Mechanisms of Calcitriol Actions Using Genetically Modified Mouse Models. JBMR Plus 2021; 5:e10434. [PMID: 33553990 PMCID: PMC7839819 DOI: 10.1002/jbm4.10434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Genetically modified mice have provided novel insights into the mechanisms of activation and inactivation of vitamin D, and in the process have provided phenocopies of acquired human disease such as rickets and osteomalacia and inherited diseases such as pseudovitamin D deficiency rickets, hereditary vitamin D resistant rickets, and idiopathic infantile hypercalcemia. Both global and tissue-specific deletion studies leading to decreases of the active form of vitamin D, calcitriol [1,25(OH)2D], and/or of the vitamin D receptor (VDR), have demonstrated the primary role of calcitriol and VDR in bone, cartilage and tooth development and in the regulation of mineral metabolism and of parathyroid hormone (PTH) and FGF23, which modulate calcium and phosphate fluxes. They have also, however, extended the spectrum of actions of calcitriol and the VDR to include, among others: modulation, jointly and independently, of skin metabolism; joint regulation of adipose tissue metabolism; cardiovascular function; and immune function. Genetic studies in older mice have also shed light on the molecular mechanisms underlying the important role of the calcitriol/VDR pathway in diseases of aging such as osteoporosis and cancer. In the course of these studies in diverse tissues, important upstream and downstream, often tissue-selective, pathways have been illuminated, and intracrine, as well as endocrine actions have been described. Human studies to date have focused on acquired or genetic deficiencies of the prohormone vitamin D or the (generally inactive) precursor metabolite 25-hyrodxyvitamin D, but have yet to probe the pleiotropic aspects of deficiency of the active form of vitamin D, calcitriol, in human disease. © 2020 American Society for Bone and Mineral Research © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Dengshun Miao
- The Research Center for AgingAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical UniversityNanjingChina
| | - David Goltzman
- Department of MedicineMcGill University Health Centre and McGill UniversityMontrealQCCanada
| |
Collapse
|
13
|
Chen H, Hu X, Yang R, Wu G, Tan Q, Goltzman D, Miao D. SIRT1/FOXO3a axis plays an important role in the prevention of mandibular bone loss induced by 1,25(OH) 2D deficiency. Int J Biol Sci 2020; 16:2712-2726. [PMID: 33110391 PMCID: PMC7586429 DOI: 10.7150/ijbs.48169] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
It has been reported that 1,25 dihydroxyvitamin D [1,25(OH)2D] deficiency leads to the loss of mandibular bone, however the mechanism is unclear. We investigated whether the Sirt1/FOXO3a signaling pathway is involved in this process. Using a 1,25(OH)2D deficiency model induced by genetic deletion in mice of 25-hydroxyvitamin D-1α hydroxylase [1α(OH)ase-/- mice]. We first documented a sharp reduction of expression levels of Sirt1 in the 1α(OH)ase-/- mice in vivo. Next, we demonstrated dose-dependent upregulation of Sirt1 by treatment with exogenous 1,25(OH)2D3in vitro. We then identified a functional VDR binding site in the Sirt1 promoter. By crossing Prx1-Sirt1 transgenic mice with 1α(OH)ase-/- mice we demonstrated that the overexpression of Sirt1 in mesenchymal stem cells (MSCs) greatly improved the 1α(OH)ase-/- mandibular bone loss phenotype by increasing osteoblastic bone formation and reducing osteoclastic bone resorption. In mechanistic studies, we showed, in 1α(OH)ase-/- mice, decreases of Sirt1 and FoxO3a, an increase in oxidative stress as reflected by a reduction of the antioxidant enzymes peroxiredoxin1 (Prdx1), SOD1 and SOD2 expression, and an increase of markers for osteocyte senescence and senescence associated secretory phenotypes (SASP), including β-galactosidase (β-gal), p16, p53 and p21. The targeted overexpression of Sirt1 in the 1α(OH)ase-/- mice restored the expression levels of these molecules. Finally, we demonstrated that a Sirt1 agonist can upregulate FOXO3a activity by increasing deacetylation and nuclear translocation. Overall, results from this study support the concept that targeted increases in Sirt1/FOXO3a signaling levels can greatly improve the bone loss caused by 1,25(OH)2D deficiency.
Collapse
Affiliation(s)
- Haiyun Chen
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoqing Hu
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Renlei Yang
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guoping Wu
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, The Drum Tower Clinical Medical College, Affiliated Drum Tower Hospital, Nanjing Medical University, Nanjing 210008, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Dengshun Miao
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
14
|
Voo VTF, O'Brien T, Butzkueven H, Monif M. The role of vitamin D and P2X7R in multiple sclerosis. J Neuroimmunol 2019; 330:159-169. [PMID: 30908981 DOI: 10.1016/j.jneuroim.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is characterized by neuroinflammatory infiltrates and central nervous system demyelination. In the neuroinflammatory foci of MS there is increased expression of a purinergic receptor, P2X7R. Although implicated in the neuroinflammation, the exact role of P2X7R in the context of MS is unclear and forms the basis of this review. In this review, we also introduce the immunopathologies and inflammatory processes in MS, with a focus on P2X7R and the possible immunomodulatory role of vitamin D deficiency in this setting.
Collapse
Affiliation(s)
- Veronica Tsin Fong Voo
- Department of Physiology, The University of Melbourne, Melbourne, Australia; Department of Neuroscience, Monash University, Melbourne, Australia
| | - Terence O'Brien
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Neurology, Melbourne Health, Melbourne, Australia
| | | | - Mastura Monif
- Department of Physiology, The University of Melbourne, Melbourne, Australia; Department of Neuroscience, Monash University, Melbourne, Australia; Department of Neurology, Melbourne Health, Melbourne, Australia.
| |
Collapse
|
15
|
Menzel LP, Ruddick W, Chowdhury MH, Brice DC, Clance R, Porcelli E, Ryan LK, Lee J, Yilmaz Ö, Kirkwood KL, McMahon L, Tran A, Diamond G. Activation of vitamin D in the gingival epithelium and its role in gingival inflammation and alveolar bone loss. J Periodontal Res 2019; 54:444-452. [PMID: 30802957 DOI: 10.1111/jre.12646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Both chronic and aggressive periodontal disease are associated with vitamin D deficiency. The active form of vitamin D, 1,25(OH)2 D3 , induces the expression of the antimicrobial peptide LL-37 and innate immune mediators in cultured human gingival epithelial cells (GECs). The aim of this study was to further delineate the mechanism by which vitamin D enhances the innate defense against the development of periodontal disease (PD). MATERIALS AND METHODS Wild-type C57Bl/6 mice were made deficient in vitamin D by dietary restriction. Cultured primary and immortalized GEC were stimulated with 1,25(OH)2 D3 , followed by infection with Porphyromonas gingivalis, and viable intracellular bacteria were quantified. Conversion of vitamin D3 to 25(OH)D3 and 1,25(OH)2 D3 was quantified by ELISA. Effect of vitamin D on basal IL-1α expression in mice was determined by topical administration to the gingiva of wild-type mice, followed by qRT-PCR. RESULTS Dietary restriction of vitamin D led to alveolar bone loss and increased inflammation in the gingiva in the mouse model. In primary human GEC and established human cell lines, treatment of GEC with 1,25(OH)2 D3 inhibited the intracellular growth of P. gingivalis. Cultured GEC expressed two 25-hydroxylases (CYP27A1 and CYP2R1), as well as 1-α hydroxylase, enabling conversion of vitamin D to both 25(OH)D3 and 1,25(OH)2 D3 . Topical application of both vitamin D3 and 1,25(OH)2 D3 to the gingiva of mice led to rapid inhibition of IL-1α expression, a prominent pro-inflammatory cytokine associated with inflammation, which also exhibited more than a 2-fold decrease from basal levels in OKF6/TERT1 cells upon 1,25(OH)2 D3 treatment, as determined by RNA-seq. CONCLUSION Vitamin D deficiency in mice contributes to PD, recapitulating the association seen in humans, and provides a unique model to study the development of PD. Vitamin D increases the activity of GEC against the invasion of periodontal pathogens and inhibits the inflammatory response, both in vitro and in vivo. GEC can convert inactive vitamin D to the active form in situ, supporting the hypothesis that vitamin D can be applied directly to the gingiva to prevent or treat periodontal disease.
Collapse
Affiliation(s)
- Lorenzo P Menzel
- Department of Oral Biology, University of Florida, Gainesville, Florida
| | - Willam Ruddick
- Department of Oral Biology, University of Florida, Gainesville, Florida
| | | | - David C Brice
- Department of Oral Biology, University of Florida, Gainesville, Florida
| | - Ryan Clance
- Department of Oral Biology, University of Florida, Gainesville, Florida
| | - Emily Porcelli
- Department of Oral Biology, University of Florida, Gainesville, Florida
| | - Lisa K Ryan
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina.,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Keith L Kirkwood
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York
| | - Laura McMahon
- Department of Oral Biology, Rutgers New Jersey Dental School, Newark, New Jersey
| | - Amy Tran
- Department of Oral Biology, Rutgers New Jersey Dental School, Newark, New Jersey
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
16
|
Abstract
INTRODUCTION Vitamin D deficiency is common, world-wide, but vitamin D repletion throughout life, and into older age, has accepted health benefits for bone. Many mechanisms through which vitamin D also benefits soft tissues are understood, and clinical evidence of such benefits is now accumulating, especially following re-analyses of trial data, which are revealing previously missed health benefits with correction of deficiency. AREAS COVERED The sources of vitamin D, its activation, mechanistic effects; problems of trials of supplementation for reducing health risks, the benefits shown for mortality, cardiovascular disease, infection and cancer; the global problem of vitamin D deficiency; age-related reductions in vitamin D efficacy, and currently recommended intakes. EXPERT COMMENTARY High prevalence of vitamin D deficiency and insufficiency worldwide have proven ill-effects on health. Governmental efforts to improve population repletion by recommending minimal daily intakes does benefit some but is not effective at the population-level. However, food fortification with vitamin D3, already implemented in some countries, can solve this highly avoidable problem cost-effectively and is probably the best way to abolish vitamin D inadequacy, allowing public health benefits to emerge over time, thereby allowing future research on vitamin D to be directed at emerging issues on vitamin D.
Collapse
|