1
|
Wang R, Wang T, Chen Z, Jiang J, Du Y, Yuan H, Pan Y, Wang Y. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2745-2. [PMID: 39825206 DOI: 10.1007/s11427-024-2745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 01/20/2025]
Abstract
Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing. BBR-HB-CM contained bioactive materials that promoted the polarization of macrophages from M1 to M2, impeded the formation of ANs and NETs, and modulated M2 macrophage efferocytosis in vivo and in vitro. Mechanistically, BBR-HB-CM promoted bone formation by inhibiting macrophage-myofibroblast transition and reprogrammed macrophage polarization through p85/AKT/mTOR pathway-dependent autophagy. The 3-methyladenine abolished the therapeutic effects of BBR-HB-CM. Further studies revealed that BBR-HB-CM accelerated TES healing in rats with type 2 diabetes mellitus. Overall, our results demonstrated that BBR-HB-CM had high potential to promote rapid TES healing.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
- Department of Stomatology, Chongzhou People's Hospital, Chengdu, 611230, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyu Chen
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiandong Jiang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Qin Z, Han Y, Du Y, Zhang Y, Bian Y, Wang R, Wang H, Guo F, Yuan H, Pan Y, Jin J, Zhou Q, Wang Y, Han F, Xu Y, Jiang J. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells promote alveolar bone regeneration by regulating macrophage polarization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1010-1026. [PMID: 38489007 DOI: 10.1007/s11427-023-2454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 03/17/2024]
Abstract
Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.
Collapse
Affiliation(s)
- Ziyue Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yixuan Zhang
- Gusu school, Nanjing medical university, Suzhou, 215002, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qigang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing Jiangsu, 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jiandong Jiang
- Department of Virology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
3
|
Fahmy SH, Jungbluth H, Jepsen S, Winter J. Effects of histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors on proliferative, differentiative, and regenerative functions of Toll-like receptor 2 (TLR-2)-stimulated human dental pulp cells (hDPCs). Clin Oral Investig 2023; 28:53. [PMID: 38157054 DOI: 10.1007/s00784-023-05466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This in vitro study aimed to modify TLR-2-mediated effects on the paracrine, proliferative, and differentiation potentials of human dental pulp-derived cells using histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors. MATERIALS AND METHODS Cell viability was assessed using the XTT assay. Cells were either treated with 10 μg/ml Pam3CSK4 only, or pre-treated with valproic acid (VPA) (3 mM), trichostatin A (TSA) (3 μM), and MG-149 (3 μM) for a total of 4 h and 24 h. Control groups included unstimulated cells and cells incubated with inhibitors solvents only. Transcript levels for NANOG, OCT3-4, FGF-1 and 2, NGF, VEGF, COL-1A1, TLR-2, hβD-2 and 3, BMP-2, DSPP, and ALP were assessed through qPCR. RESULTS After 24 h, TSA pre-treatment significantly upregulated the defensins and maintained the elevated pro-inflammatory cytokines, but significantly reduced healing and differentiation genes. VPA significantly upregulated the pro-inflammatory cytokine levels, while MG-149 significantly downregulated them. Pluripotency genes were not significantly affected by any regimen. CONCLUSIONS At the attempted concentrations, TSA upregulated the defensins gene expression levels, and MG-149 exerted a remarkable anti-inflammatory effect; therefore, they could favorably impact the immunological profile of hDPCs. CLINICAL RELEVANCE Targeting hDPC nuclear function could be a promising option in the scope of the biological management of inflammatory pulp diseases.
Collapse
Affiliation(s)
- Sarah Hossam Fahmy
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany.
| | - Holger Jungbluth
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Wenbo D, Yifu H, Li K. SPI1 Regulates the Progression of Ankylosing Spondylitis by Modulating TLR5 via NF-κB Signaling. Inflammation 2023; 46:1697-1708. [PMID: 37277671 DOI: 10.1007/s10753-023-01834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 06/07/2023]
Abstract
Ankylosing spondylitis (AS) is an autoimmune disease which associated with inflammation of the spinal joints. Enhanced osteogenic differentiation was observed in AS; however, the underlying mechanism remains undefined. A cohort of AS (n = 15) and patients with traumatic fracture (n = 15) were recruited to this study. Fibroblasts were isolated, and characterized by H&E and immunocytochemistry (ICC) analysis. The expression and secretion of key molecules were detected by qRT-PCR, western blot, immunofluorescence (IF), and ELISA. Calcium deposition and alkaline phosphatase (ALP) activity were monitored by Alizarin Red S and ALP staining. The direct association between Spi-1 proto-oncogene (SPI1) and toll-like receptor 5 (TLR5) promoter was assessed by ChIP assay. AS fibroblasts was successfully isolated and exhibited osteogenic differentiation potentials. SPI1 was elevated in AS fibroblasts, and silencing of SPI1 inhibited osteogenic differentiation of AS fibroblasts. Mechanistic study showed that SPI1 acted as a transcriptional activator of TLR5. Knockdown of TLR5 suppressed osteogenic differentiation of AS fibroblasts via nuclear factor kappa B (NF-κB) signaling. Rescue experiments revealed that overexpression of TLR5 reversed SPI1 knockdown-suppressed osteogenic differentiation via NF-κB signaling. SPI1 regulated the progression of AS by modulating TLR5 via NF-κB signaling.
Collapse
Affiliation(s)
- Dai Wenbo
- Department of Spine Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541000, China
| | - He Yifu
- Surgical Department, Affiliated Hospital of Youjiang Medical University for Nationality, Baise, 533000, China
| | - Kai Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guilin Medical University, Guilin, 541000, China.
| |
Collapse
|
5
|
Song B, Xian W, Sun Y, Gou L, Guo Q, Zhou X, Ren B, Cheng L. Akkermansia muciniphila inhibited the periodontitis caused by Fusobacterium nucleatum. NPJ Biofilms Microbiomes 2023; 9:49. [PMID: 37460552 DOI: 10.1038/s41522-023-00417-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Periodontitis is the most important cause of tooth loss in adults and is closely related to various systemic diseases. Its etiologic factor is plaque biofilm, and the primary treatment modality is plaque control. Studies have confirmed that Fusobacterium nucleatum can cause periodontitis through its virulence factors and copolymerizing effects with other periodontal pathogens, such as the red complex. Inhibiting F. nucleatum is an essential target for preventing periodontitis. The time-consuming and costly traditional periodontal treatment, periodontal scaling, and root planing are a significant burden on individual and public health. Antibiotic use may lead to oral microbial resistance and microbiome imbalance, while probiotics regulate microbial balance. Akkermansia muciniphila is a critical probiotic isolated from the human intestine. It can protect the integrity of the epithelial barrier, regulate and maintain flora homeostasis, improve metabolism, and colonize the oral cavity. Its abundance is inversely correlated with various diseases. We hypothesized that A. muciniphila could inhibit the effects of F. nucleatum and alleviate periodontitis. Bacterial co-culture experiments showed that A. muciniphila could inhibit the expression of the virulence gene of F. nucleatum. After treating gingival epithelial cells (GECs) with F. nucleatum and A. muciniphila, transcriptome sequencing and ELISA experiments on medium supernatant showed that A. muciniphila inhibited the inflammatory effect of F. nucleatum on GECs by inhibiting TLR/MyD88/NF-κB pathway modulation and secretion of inflammatory factors. Finally, animal experiments demonstrated that A. muciniphila could inhibit F. nucleatum-induced periodontitis in BALB/c mice.
Collapse
Affiliation(s)
- Bingqing Song
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Wenpan Xian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Yan Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China.
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
6
|
Lin Y, Jin L, Yang Y. Periodontal ligament cells from patients with treated stable periodontitis: Characterization and osteogenic differentiation potential. J Periodontal Res 2023; 58:237-246. [PMID: 36567428 DOI: 10.1111/jre.13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament progenitor cells (PDL cells) isolated from patients with inflammatory periodontitis have impaired regenerative capacity, but it is unknown whether this capacity can be recovered upon treatment and stabilization of the periodontal condition. The study aimed to investigate the expression of surface markers and the proliferation and osteogenic potential of PDL cells isolated from patients with treated stable periodontitis (S-PDL cells), periodontally healthy individuals (H-PDL cells), and patients with inflammatory periodontitis (I-PDL cells). METHODS H-PDL, I-PDL, and S-PDL cells were isolated from the extracted teeth of individuals who (1) were periodontally healthy, (2) had inflammatory periodontitis, and (3) had treated stable periodontitis, respectively. The expression levels of surface markers and the proliferative and osteogenic capacities of the PDL cells were assessed. RESULTS PDL cells derived from all three sources exhibited mesenchymal stem cell (MSC) characteristics. They were positive for MSC-related markers and negative for a hematopoiesis-related marker. However, S-PDL cells had higher proliferation rates, higher expression levels of osteogenic markers, higher alkaline phosphatase activity, and more calcium nodules than I-PDL cells. But all of these parameters remained lower in S-PDL cells than in H-PDL cells. CONCLUSIONS S-PDL cells proliferated faster and had greater osteogenic potential than I-PDL cells, although these values remained lower than those in H-PDL cells.
Collapse
Affiliation(s)
- Yifan Lin
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yanqi Yang
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Psychological stress: neuroimmune roles in periodontal disease. Odontology 2022:10.1007/s10266-022-00768-8. [DOI: 10.1007/s10266-022-00768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
|
8
|
Jin S, Jiang H, Sun Y, Li F, Xia J, Li Y, Zheng J, Qin Y. Osteogenic differentiation of periodontal membrane stem cells in inflammatory environments. Open Life Sci 2022; 17:1240-1248. [PMID: 36213382 PMCID: PMC9490861 DOI: 10.1515/biol-2022-0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is a common disease that is difficult to treat, and if not controlled in time, it causes severe conditions, such as alveolar bone resorption and tooth loosening and loss. Periodontal ligament stem cells constitute a promising cell source for regenerative treatment of periodontitis due to their high osteogenic differentiation capacity. PDLSC osteogenesis plays a central role in periodontal regeneration through successive cytokine-mediated signaling pathways and various biochemical and physicochemical factors. However, this process is inhibited in the inflammatory periodontitis environment due to high concentrations of lipopolysaccharide. Here, we review the mechanisms that influence the osteogenic differentiation of periodontal stem cells in this inflammatory microenvironment.
Collapse
Affiliation(s)
- Shenghao Jin
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Haitao Jiang
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Yue Sun
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Fang Li
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Jianglan Xia
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Yaxin Li
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Jiwei Zheng
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Ying Qin
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| |
Collapse
|
9
|
Thymoquinone-Mediated Modulation of Toll-like Receptors and Pluripotency Factors in Gingival Mesenchymal Stem/Progenitor Cells. Cells 2022; 11:cells11091452. [PMID: 35563755 PMCID: PMC9101758 DOI: 10.3390/cells11091452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Thymoquinone (TQ), the key active component of Nigella sativa (NS), demonstrates very promising biomedical anti-inflammatory, antioxidant, antimicrobial and anticancer properties. Several investigations have inspected the modulative activities of TQ on different stem/progenitor cell types, but its possible role in the regulation of gingival mesenchymal stem/progenitor cells (G-MSCs) has not yet been characterized. For the first time, this study investigates the effects of TQ on G-MSCs’ stemness and Toll-like receptor expression profiles. G-MSCs (n = 5) were isolated, sorted via anti-STRO-1 antibodies and then disseminated on cell culture dishes to create colony-forming units (CFUs), and their stem/progenitor cell attributes were characterized. TQ stimulation of the G-MSCs was performed, followed by an examination of the expression of pluripotency-related factors using RT-PCR and the expression profiles of TLRs 1−10 using flowcytometry, and they were compared to a non-stimulated control group. The G-MSCs presented all the predefined stem/progenitor cells’ features. The TQ-activated G-MSCs displayed significantly higher expressions of TLR3 and NANOG with a significantly reduced expression of TLR1 (p < 0.05, Wilcoxon signed-rank test). TQ-mediated stimulation preserves G-MSCs’ pluripotency and facilitates a cellular shift into an immunocompetent-differentiating phenotype through increased TLR3 expression. This characteristic modulation might impact the potential therapeutic applications of G-MSCs.
Collapse
|
10
|
TLR4 activation inhibits the proliferation and osteogenic differentiation of skeletal muscle stem cells by downregulating LGI1. J Physiol Biochem 2022; 78:667-678. [PMID: 35294724 DOI: 10.1007/s13105-022-00888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Skeletal muscle stem cells (SMSCs) are vital to the growth, maintenance, and repair of the muscles; emerging evidence has indicated that Toll-like receptor 4 (TLR4) can potentially regulate muscle regeneration. In present study, in vitro and in vivo experiments were performed to explore the correlation of TLR4 with leucine-rich glioma-inactivated 1 (LGI1) as well as their effects on the proliferation and osteogenesis potential of SMSCs. In order to examine the regulatory mechanisms of TLR4 and LGI1 in SMSCs, the obtained cells were treated with lipopolysaccharide (LPS, used as an activator of TLR4) of different concentration at different time points as well as the siRNA against LGI1. Subsequently, a series of detection was undertaken in order to measure the proliferation and differentiation potential of SMSCs, which involved detection of the related factors, cell activity, and the sphere-forming capability. Following LPS treatment, the increased TLR4 expression and reduced LGI1 expression were observed. Consequently, we also discovered that Erk signaling pathway was inactivated and cell proliferation and osteogenesis capabilities declined, presented by the downregulation of related factors such as cyclin B1 and runt-related transcription factor 2. Moreover, the cell activity and sphere-formation performance of SMSCs were also declined. These results were also validated in rats with cecal ligation and perforation-induced rat models with sepsis. In conclusion, the present study reveals a regulatory mechanism in SMSCs whereby LGI1 expression is reduced by TLR4, thus impeding cell proliferation and osteogenesis, highlighting TLR4 as a potential therapeutic target against many diseases related to SMSCs.
Collapse
|
11
|
Andrukhov O. Toll-Like Receptors and Dental Mesenchymal Stromal Cells. FRONTIERS IN ORAL HEALTH 2022; 2:648901. [PMID: 35048000 PMCID: PMC8757738 DOI: 10.3389/froh.2021.648901] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Dental mesenchymal stromal cells (MSCs) are a promising tool for clinical application in and beyond dentistry. These cells possess multilineage differentiation potential and immunomodulatory properties. Due to their localization in the oral cavity, these cells could sometimes be exposed to different bacteria and viruses. Dental MSCs express various Toll-like receptors (TLRs), and therefore, they can recognize different microorganisms. The engagement of TLRs in dental MSCs by various ligands might change their properties and function. The differentiation capacity of dental MSCs might be either inhibited or enhanced by TLRs ligands depending on their nature and concentrations. Activation of TLR signaling in dental MSCs induces the production of proinflammatory mediators. Additionally, TLR ligands alter the immunomodulatory ability of dental MSCs, but this aspect is still poorly explored. Understanding the role of TLR signaling in dental MSCs physiology is essential to assess their role in oral homeostasis, inflammatory diseases, and tissue regeneration.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Zhang B, Chen G, Chen X, Yang X, Fan T, Sun C, Chen Z. Integrating Bioinformatic Strategies with Real-World Data to Infer Distinctive Immunocyte Infiltration Landscape and Immunologically Relevant Transcriptome Fingerprints in Ossification of Ligamentum Flavum. J Inflamm Res 2021; 14:3665-3685. [PMID: 34354364 PMCID: PMC8331123 DOI: 10.2147/jir.s318009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Ossification of the ligamentum flavum (OLF) is a multifactorial disease characterized by an insidious and debilitating process of abnormal bone formation in ligamentum tissues. However, its definite pathogenesis has not been fully elucidated. Potential links between the immune system and various forms of heterotopic ossification have been discussed for many years, whereas no research investigated the immune effects on the initiation and development of OLF. Therefore, we attempt to shed light on this issue. Methods A series of bioinformatic algorithms were integrated to evaluate the immune score and the immunocyte infiltration patterns between OLF and normal samples, screen OLF-related and immune-related differentially expressed genes (OIDEGs), and analyze their biological functions. Correlation analysis inferred OIDEGs-related differentially expressed lncRNAs (OIDELs) and infiltrating immune cells (OIICs) to construct an immunoregulatory network. Results Differential immune score and immune cell infiltration were determined between two groups, and 10 OIDEGs with diverse biological function annotations were identified and verified. A lncRNA-gene-immunocyte regulatory network further revealed 10 OIDEGs, 41 OIDELs and 7 OIICs that were highly correlated. Among them, CD1E and STAT3 were predicted as hub genes whether at the expression level or interaction level. cDCs emerged as having the most prominent differences and the highest degree of connectivity. FO393414.3, AC096734.1, LINC01137 and DLX6-AS1 with the greatest number of OIDEGs were thought to be more likely to participate in immunoregulation of OLF. Conclusion This is the first research to preliminarily elucidate OLF-related immunocyte infiltration landscape and immune-associated transcriptome signatures based on bioinformatic strategies and real-world data, which may provide compelling insights into the pathogenesis and therapeutic targets of OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Guanghui Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Xi Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Xiaoxi Yang
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Tianqi Fan
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Chuiguo Sun
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Zhongqiang Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| |
Collapse
|
13
|
Karlis GD, Schöningh E, Jansen IDC, Schoenmaker T, Hogervorst JMA, van Veen HA, Moonen CGJ, Łagosz-Ćwik KB, Forouzanfar T, de Vries TJ. Chronic Exposure of Gingival Fibroblasts to TLR2 or TLR4 Agonist Inhibits Osteoclastogenesis but Does Not Affect Osteogenesis. Front Immunol 2020; 11:1693. [PMID: 32793243 PMCID: PMC7390923 DOI: 10.3389/fimmu.2020.01693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic exposure to periodontopathogenic bacteria such as Porphyromonas gingivalis and the products of these bacteria that interact with the cells of the tooth surrounding tissues can ultimately result in periodontitis. This is a disease that is characterized by inflammation-related alveolar bone degradation by the bone-resorbing cells, the osteoclasts. Interactions of bacterial products with Toll-like receptors (TLRs), in particular TLR2 and TLR4, play a significant role in this chronic inflammatory reaction, which possibly affects osteoclastic activity and osteogenic capacity. Little is known about how chronic exposure to specific TLR activators affects these two antagonistic activities. Here, we studied the effect of TLR activation on gingival fibroblasts (GF), cells that are anatomically close to infiltrating bacterial products in the mouth. These were co-cultured with naive osteoclast precursor cells (i.e., monocytes), as part of the peripheral blood mononuclear cells (PBMCs). Activation of GF co-cultures (GF + PBMCs) with TLR2 or TLR4 agonists resulted in a weak reduction of the osteoclastogenic potential of these cultures, predominantly due to TLR2. Interestingly, chronic exposure, especially to TLR2 agonist, resulted in increased release of TNF-α at early time points. This effect, was reversed at later time points, thus suggesting an adaptation to chronic exposure. Monocyte cultures primed with M-CSF + RANKL, led to the formation of bone-resorbing osteoclasts, irrespective of being activated with TLR agonists. Late activation of these co-cultures with TLR2 and with TLR4 agonists led to a slight decrease in bone resorption. Activation of GF with TLR2 and TLR4 agonists did not affect the osteogenic capacity of the GF cells. In conclusion, chronic exposure leads to diverse reactions; inhibitory with naive osteoclast precursors, not effecting already formed (pre-)osteoclasts. We suggest that early encounter of naive monocytes with TLR agonists may result in differentiation toward the macrophage lineage, desirable for clearing bacterial products. Once (pre-)osteoclasts are formed, these cells may be relatively insensitive for direct TLR stimulation. Possibly, TLR activation of periodontal cells indirectly stimulates osteoclasts, by secreting osteoclastogenesis stimulating inflammatory cytokines.
Collapse
Affiliation(s)
- Gerasimos D. Karlis
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Emily Schöningh
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam University College, Amsterdam, Netherlands
| | - Ineke D. C. Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Jolanda M. A. Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Henk A. van Veen
- Department of Cell Biology and Histology, Electron Microscopy Centre Amsterdam, Academic Medical Center, Amsterdam UMC, Amsterdam, Netherlands
| | - Carolyn G. J. Moonen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Katarzyna B. Łagosz-Ćwik
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam UMC, Amsterdam, Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
14
|
Mekhemar M, Tölle J, Dörfer C, Fawzy El‐Sayed K. TLR3 ligation affects differentiation and stemness properties of gingival mesenchymal stem/progenitor cells. J Clin Periodontol 2020; 47:991-1005. [DOI: 10.1111/jcpe.13323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
- Universitätsklinikum SchleswigȐHolstein Ȑ Campus, Kiel
| | - Johannes Tölle
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
| | - Karim Fawzy El‐Sayed
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
- Oral Medicine and Periodontology Department Faculty of Oral and Dental Medicine Cairo University Cairo Egypt
| |
Collapse
|
15
|
Li Y, Qiao Z, Yu F, Hu H, Huang Y, Xiang Q, Zhang Q, Yang Y, Zhao Y. Transforming Growth Factor-β3/Chitosan Sponge (TGF-β3/CS) Facilitates Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. Int J Mol Sci 2019; 20:E4982. [PMID: 31600954 PMCID: PMC6834328 DOI: 10.3390/ijms20204982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease is the main reason for tooth loss in adults. Tissue engineering and regenerative medicine are advanced technologies used to manage soft and hard tissue defects caused by periodontal disease. We developed a transforming growth factor-β3/chitosan sponge (TGF-β3/CS) to repair periodontal soft and hard tissue defects. We investigated the proliferation and osteogenic differentiation behaviors of primary human periodontal ligament stem cells (hPDLSCs) to determine the bioactivity and potential application of TGF-β3 in periodontal disease. We employed calcein-AM/propidium iodide (PI) double labeling or cell membranes (CM)-Dil labeling coupled with fluorescence microscopy to trace the survival and function of cells after implantation in vitro and in vivo. The mineralization of osteogenically differentiated hPDLSCs was confirmed by measuring alkaline phosphatase (ALP) activity and calcium content. The levels of COL I, ALP, TGF-βRI, TGF-βRII, and Pp38/t-p38 were assessed by western blotting to explore the mechanism of bone repair prompted by TGF-β3. When hPDLSCs were implanted with various concentrations of TGF-β3/CS (62.5-500 ng/mL), ALP activity was the highest in the TGF-β3 (250 ng/mL) group after 7 d (p < 0.05 vs. control). The calcium content in each group was increased significantly after 21 and 28 d (p < 0.001 vs. control). The optimal result was achieved by the TGF-β3 (500 ng/mL) group. These results showed that TGF-β3/CS promotes osteogenic differentiation of hPDLSCs, which may involve the p38 mitogen-activated protein kinase (MAPK) signaling pathway. TGF-β3/CS has the potential for application in the repair of incomplete alveolar bone defects.
Collapse
Affiliation(s)
- Yangfan Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China (Y.H.)
| | - Zhifen Qiao
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China (Y.H.)
| | - Fenglin Yu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China (Y.H.)
| | - Huiting Hu
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China;
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China (Y.H.)
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China (Y.H.)
| | - Qihao Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China (Y.H.)
| | - Yan Yang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China (Y.H.)
| | - Yueping Zhao
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China;
| |
Collapse
|
16
|
Xia P, Gu R, Zhang W, Shao L, Li F, Wu C, Sun Y. MicroRNA-200c promotes osteogenic differentiation of human bone mesenchymal stem cells through activating the AKT/β-Catenin signaling pathway via downregulating Myd88. J Cell Physiol 2019; 234:22675-22686. [PMID: 31152447 DOI: 10.1002/jcp.28834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
During the human bone formation, the event of osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) is vital, and recent evidence has emphasized the important role of microRNAs (miRNAs) in osteogenic differentiation of hBMSCs. This study aims to examine the potential effects of miR-200c in osteogenic differentiation of hBMSCs and understand their underlying mechanisms. HBMSCs were obtained via human bone marrow. During osteogenic induction and differentiation, cells were transfected with different plasmids with the intention of investigating the roles of miR-200c on osteogenic differentiation, calcium salt deposition, alkaline-phosphatase (ALP) activity, mineralized nodule formation, osteocalcin (OCN) content, and proliferation of osteoblasts. Following transfection, dual luciferase reporter gene assay was conducted so as to explore the correlation between miR-200c and Myd88. Moreover, the AKT/β-Catenin signaling pathway was blocked with an AKT/β-Catenin inhibitor, AKTi, to investigate its involvement. The hBMSCs were successfully isolated from human bone marrow. Myd88 was determined as a target gene of miR-200c. Gain and loss-of-function assays confirmed that overexpression of miR-200c, or silencing of Myd88 promoted osteogenic differentiation, increased calcium salt deposition, ALP activity, mineralized nodule formation, and enhanced the proliferation of osteoblasts following osteogenic differentiation of hBMSCs. Meanwhile, the downregulation of miR-200c has been shown to have the opposite effect. Furthermore, these findings showed that the miR-200c overexpression activated the AKT/β-Catenin signaling pathway by targeting Myd88. To sum up, the miR-200c upregulation induces osteogenic differentiation of hBMSCs by activating the AKT/β-Catenin signaling pathway via the inhibition of Myd88, providing a target for treatment of bone repair.
Collapse
Affiliation(s)
- Peng Xia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Liwei Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fang Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changyan Wu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yifu Sun
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Blufstein A, Behm C, Gahn J, Uitz O, Naumovska I, Moritz A, Rausch-Fan X, Andrukhov O. Synergistic effects triggered by simultaneous Toll-like receptor-2 and -3 activation in human periodontal ligament stem cells. J Periodontol 2019; 90:1190-1201. [PMID: 31049957 PMCID: PMC6852053 DOI: 10.1002/jper.19-0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Background Although periodontitis is associated with disruption of the host‐microbial homeostasis, viruses are currently discussed to influence disease progression. Viral pathogens are recognized by Toll‐like receptor (TLR)‐3, which engages a different signaling pathway than other TLRs. This study aimed to investigate the effect of TLR‐3 agonist polyinosinic:polycytidylic acid (Poly I:C) on the expression of inflammatory markers and bone metabolism proteins by human periodontal ligament stem cells (hPDLSCs) compared with TLR‐2 agonist Pam3CSK4, which mimics the effect of bacterial lipoproteins. To assess potential combined effects of bacterial and viral infections, hPDLSCs response to simultaneous TLR‐2 and TLR‐3 activation was investigated. Methods HPDLSCs were stimulated with Poly I:C (0.0001‐1 µg/mL), Pam3CSK4 (1 µg/mL), and their combinations for 24 hours. Gene expression and protein levels of interleukin (IL)‐6, IL‐8, monocyte chemoattractant protein (MCP)‐1, and osteoprotegerin (OPG) were measured with qPCR and ELISA. Results Production of IL‐6, IL‐8, MCP‐1, and OPG was significantly increased by Poly I:C or Pam3CSK4 to a similar extent. The levels of all inflammatory mediators induced by simultaneous stimulation with Poly I:C and Pam3CSK4 were significantly higher compared with single stimuli as well as to their summed response. Gene expression and protein levels of OPG were enhanced by Poly I:C, but by lesser extent than by Pam3CSK4. OPG levels upon simultaneous stimulation with Pam3CSK4 and Poly I:C were significantly lower compared with Pam3CSK4 stimulation alone. Conclusions Simultaneous TLR‐2 and TLR‐3 activation synergistically triggers IL‐6, IL‐8, and MCP‐1 production, which was not observed for OPG. These findings suggest that TLR‐3 activation by viral infections might promote periodontitis progression.
Collapse
Affiliation(s)
- Alice Blufstein
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christian Behm
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Gahn
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oksana Uitz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Ivana Naumovska
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Huang X, Cen X, Zhang B, Liao Y, Zhu G, Liu J, Zhao Z. Prospect of circular RNA in osteogenesis: A novel orchestrator of signaling pathways. J Cell Physiol 2019; 234:21450-21459. [PMID: 31131457 DOI: 10.1002/jcp.28866] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Temporomandibular Joint, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yuwei Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|