1
|
Kirkby M, Sabri AHB, Holmes A, Moss GPJ, Scurr D. PAMAM dendrimers as mediators of dermal and transdermal drug delivery: a review. J Pharm Pharmacol 2024; 76:1284-1300. [PMID: 39045860 DOI: 10.1093/jpp/rgae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/03/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Poly(amidoamine) dendrimers have been widely investigated as potential nanomaterials that can enhance the skin permeation of topically applied drugs. This article reviews the studies that have used dendrimers as penetration enhancers and examines the mechanisms by which enhancement is claimed. KEY FINDINGS A wide range of studies have demonstrated that, in certain circumstances and for certain drugs, the incorporation of dendrimers into a topically applied formulation can significantly increase the amount of drug passing into and through the skin. In some cases, dendrimers offered little or no enhancement of skin permeation, suggesting that the drug-dendrimer interaction and the selection of a specific dendrimer were central to ensuring optimal enhancement of skin permeation. Significant interactions between dendrimers and other formulation components were also reported in some cases. SUMMARY Dendrimers offer substantial potential for enhancing drug delivery into and across the skin, putatively by mechanisms that include occlusion and changes to surface tension. However, most of these studies are conducted in vitro and limited progress has been made beyond such laboratory studies, some of which are conducted using membranes of limited relevance to humans, such as rodent skin. Thus, the outcomes and claims of such studies should be treated with caution.
Collapse
Affiliation(s)
- Melissa Kirkby
- The School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Akmal Hidayat Bin Sabri
- The School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Amy Holmes
- The School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gary P J Moss
- The School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - David Scurr
- The School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
2
|
Parveen N, Abourehab MAS, Thanikachalam PV, Khar RK, Kesharwani P. Nanocrystals as an emerging nanocarrier for the management of dermatological diseases. Colloids Surf B Biointerfaces 2023; 225:113231. [PMID: 36907135 DOI: 10.1016/j.colsurfb.2023.113231] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Skin conditions are amongst the most prevalent health issues in the world and come with a heavy economic, social, and psychological burden. Incurable and chronic skin conditions like eczema, psoriasis, fungal infections are linked to major morbidity in the manner of physical pain and a reduction in quality life of patients. Several drugs have difficulties for penetrating the skin due to the barrier mechanism of the skin layers and the incompatible physicochemical characteristics of the drugs. This has led to the introduction of innovative drug delivery methods. Currently, formulations depend on nanocrystals have indeed been researched for topical administration of drugs and have resulted in enhanced skin penetration. This review focuses on skin penetration barriers, modern methods to enhance topical distribution, and the use of nanocrystals to overcome these barriers. By means of mechanisms such as adherence to skin, creation of diffusional corona, targeting of hair follicles, and the generation of a greater concentration gradient throughout the skin, nanocrystals could enhance transport across the skin. Scientists working on product formulations incorporating chemicals that are "challenging-to-deliver" topically may find the most current findings to be of relevance.
Collapse
Affiliation(s)
- Neha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Punniyakoti Veeraveedu Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical And Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Kanchipuram - Chennai Rd, Chennai, Tamil Nadu 602105, India
| | - Roop K Khar
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|
3
|
Alhibah M, Kröger M, Schanzer S, Busch L, Lademann J, Beckers I, Meinke MC, Darvin ME. Penetration Depth of Propylene Glycol, Sodium Fluorescein and Nile Red into the Skin Using Non-Invasive Two-Photon Excited FLIM. Pharmaceutics 2022; 14:1790. [PMID: 36145537 PMCID: PMC9506119 DOI: 10.3390/pharmaceutics14091790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
The stratum corneum (SC) forms a strong barrier against topical drug delivery. Therefore, understanding the penetration depth and pathways into the SC is important for the efficiency of drug delivery and cosmetic safety. In this study, TPT-FLIM (two-photon tomography combined with fluorescence lifetime imaging) was applied as a non-invasive optical method for the visualization of skin structure and components to study penetration depths of exemplary substances, like hydrophilic propylene glycol (PG), sodium fluorescein (NaFl) and lipophilic Nile red (NR) into porcine ear skin ex vivo. Non-fluorescent PG was detected indirectly based on the pH-dependent increase in the fluorescence lifetime of SC components. The pH similarity between PG and viable epidermis limited the detection of PG. NaFl reached the viable epidermis, which was also proved by laser scanning microscopy. Tape stripping and confocal Raman micro-spectroscopy were performed additionally to study NaFl, which revealed penetration depths of ≈5 and ≈8 μm, respectively. Lastly, NR did not permeate the SC. We concluded that the amplitude-weighted mean fluorescence lifetime is the most appropriate FLIM parameter to build up penetration profiles. This work is anticipated to provide a non-invasive TPT-FLIM method for studying the penetration of topically applied drugs and cosmetics into the skin.
Collapse
Affiliation(s)
- Mohammad Alhibah
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Mathematics, Physics and Chemistry, Berliner Hochschule für Technik, Luxemburger Straße 10, 13353 Berlin, Germany
| | - Marius Kröger
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sabine Schanzer
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Loris Busch
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Pharmaceutics and Biopharmaceutics, Philipps University Marburg, 35037 Marburg, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ingeborg Beckers
- Department of Mathematics, Physics and Chemistry, Berliner Hochschule für Technik, Luxemburger Straße 10, 13353 Berlin, Germany
| | - Martina C. Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Maxim E. Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
4
|
Alphandéry E. Ultrasound and nanomaterial: an efficient pair to fight cancer. J Nanobiotechnology 2022; 20:139. [PMID: 35300712 PMCID: PMC8930287 DOI: 10.1186/s12951-022-01243-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/02/2022] [Indexed: 01/12/2023] Open
Abstract
Ultrasounds are often used in cancer treatment protocols, e.g. to collect tumor tissues in the right location using ultrasound-guided biopsy, to image the region of the tumor using more affordable and easier to use apparatus than MRI and CT, or to ablate tumor tissues using HIFU. The efficacy of these methods can be further improved by combining them with various nano-systems, thus enabling: (i) a better resolution of ultrasound imaging, allowing for example the visualization of angiogenic blood vessels, (ii) the specific tumor targeting of anti-tumor chemotherapeutic drugs or gases attached to or encapsulated in nano-systems and released in a controlled manner in the tumor under ultrasound application, (iii) tumor treatment at tumor site using more moderate heating temperatures than with HIFU. Furthermore, some nano-systems display adjustable sizes, i.e. nanobubbles can grow into micro-bubbles. Such dual size is advantageous since it enables gathering within the same unit the targeting properties of nano bubbles via EPR effect and the enhanced ultrasound contrasting properties of micro bubbles. Interestingly, the way in which nano-systems act against a tumor could in principle also be adjusted by accurately selecting the nano-system among a large choice and by tuning the values of the ultrasound parameters, which can lead, due to their mechanical nature, to specific effects such as cavitation that are usually not observed with purely electromagnetic waves and can potentially help destroying the tumor. This review highlights the clinical potential of these combined treatments that can improve the benefit/risk ratio of current cancer treatments.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS, 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de. Cosmochimie, IMPMC, 75005, Paris, France. .,Nanobacterie SARL, 36 boulevard Flandrin, 75116, Paris, France. .,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
5
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
6
|
Martínez-Segoviano IDJ, Ganem-Rondero A. Enhancement of the transdermal delivery of zidovudine by pretreating the skin with two physical enhancers: microneedles and sonophoresis. ACTA ACUST UNITED AC 2021; 29:279-290. [PMID: 34216369 DOI: 10.1007/s40199-021-00402-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/25/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Zidovudine (AZT) has been the most widely used drug for antiretroviral therapy. In order to improve the therapy with this drug, different alternatives have been proposed, such as the transdermal administration. The use of permeation enhancers is necessary to favor the passage of this drug through the skin, due to its physicochemical properties and to the natural permeation barrier imposed by the skin. OBJECTIVES To evaluate the effect of two permeation enhancers, sonophoresis and microneedles, on the permeability of AZT through the skin. METHODS Permeation studies with an AZT solution were performed using pigskin clamped in Franz-type cells. Sonophoresis was applied under different conditions (i.e., amplitude, duty cycle and application time), selected according to an experimental design, where the response variables were the increase in temperature of the skin surface and the increase in transepidermal water loss. ATR-FTIR was also used to demonstrate the effect of enhancers on membrane components. RESULTS The permeability of AZT through intact skin was very poor, with a very long lag time. Pretreatment of the skin with sonophoresis increased AZT transport significantly, reducing the lag time. The maximum flux (27.52 µgcm-2 h-1) and the highest total amount permeated (about 624 µg/cm2) were obtained when applying sonophoresis in continuous mode, with an amplitude of 20%, and an application time of 2 min. Sonophoresis appears to have an impact on stratum corneum proteins. The use of microneedles further increased the flux (30.41 µgcm-2 h-1) and the total amount permeated (about 916 µg/cm2), relative to sonophoresis. CONCLUSION The results are encouraging in terms of promoting AZT transport through the skin using sonophoresis or microneedles as permeation enhancers.
Collapse
Affiliation(s)
- Irene de Jesús Martínez-Segoviano
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1o de Mayo s/n, 54740, Cuautitlán Izcalli, Estado de México, Mexico
| | - Adriana Ganem-Rondero
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1o de Mayo s/n, 54740, Cuautitlán Izcalli, Estado de México, Mexico.
| |
Collapse
|
7
|
Raviraj V, Pham BTT, Kim BJ, Pham NTH, Kok LF, Painter N, Delic NC, Jones SK, Hawkett BS, Lyons JG. Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using superparamagnetic iron oxide nanoparticles. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00079-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
The skin is both a target and a potential conduit for the delivery of drugs, but its cornified cell layer resists penetration by most molecules. This study investigated the potential of superparamagnetic iron oxide nanoparticles to facilitate the transdermal delivery of anticancer agents.
Results
Chemotherapeutic cancer drugs were applied with or without nanoparticles to the skin of hairless mice, and their ability to penetrate the skin was assessed using fluorescence microscopy and tumor growth. Nanoparticles enhanced the penetration of the skin by doxorubicin and 5-fluorouracil as determined by fluorescence microscopy and growth retardation of experimental melanoma in immunocompetent, syngeneic mice. This drug enhancement did not require conjugation or encapsulation of the drugs by the nanoparticles—simple co-administration sufficed. Nanoparticles applied topically to melanomas increased the cytotoxicity and immune cell infiltration induced by co-administered 5-fluorouracil, and also reduced vascularization of the tumors independently of 5-fluorouracil.
Conclusion
Correctly formulated superparamagnetic iron oxide nanoparticles can facilitate the chemotherapeutic effectiveness of cytotoxic drugs on skin tumors by both increasing their transdermal penetration and ameliorating host–tumor interactions. This enhancement of skin penetration occurs without the need for conjugation or encapsulation of the co-administered drugs, and so will likely be applicable to other drugs, also.
Collapse
|
8
|
Ahad A, Raish M, Bin Jardan YA, Al-Mohizea AM, Al-Jenoobi FI. Delivery of Insulin via Skin Route for the Management of Diabetes Mellitus: Approaches for Breaching the Obstacles. Pharmaceutics 2021; 13:pharmaceutics13010100. [PMID: 33466845 PMCID: PMC7830404 DOI: 10.3390/pharmaceutics13010100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin is used for the treatment of diabetes mellitus, which is characterized by hyperglycemia. Subcutaneous injections are the standard mode of delivery for insulin therapy; however, this procedure is very often invasive, which hinders patient compliance, particularly for individuals requiring insulin doses four times a day. Furthermore, cases have been reported of sudden hypoglycemia occurrences following multidose insulin injections. Such an invasive and intensive approach motivates the quest for alternative, more user-friendly insulin administration approaches. For example, transdermal delivery has numerous advantages, such as prolonged drug release, low variability in the drug plasma level, and improved patient compliance. In this paper, the authors summarize different approaches used in transdermal insulin delivery, including microneedles, chemical permeation enhancers, sonophoresis, patches, electroporation, iontophoresis, vesicular formulations, microemulsions, nanoparticles, and microdermabrasion. Transdermal systems for insulin delivery are still being widely researched. The conclusions presented in this paper are extracted from the literature, notably, that the transdermal route could effectively and reliably deliver insulin into the circulatory system. Consistent progress in this area will ensure that some of the aforementioned transdermal insulin delivery systems will be introduced in clinical practice and commercially available in the near future.
Collapse
|
9
|
Mercuri M, Fernandez Rivas D. Challenges and opportunities for small volumes delivery into the skin. BIOMICROFLUIDICS 2021; 15:011301. [PMID: 33532017 PMCID: PMC7826167 DOI: 10.1063/5.0030163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/09/2021] [Indexed: 05/04/2023]
Abstract
Each individual's skin has its own features, such as strength, elasticity, or permeability to drugs, which limits the effectiveness of one-size-fits-all approaches typically found in medical treatments. Therefore, understanding the transport mechanisms of substances across the skin is instrumental for the development of novel minimal invasive transdermal therapies. However, the large difference between transport timescales and length scales of disparate molecules needed for medical therapies makes it difficult to address fundamental questions. Thus, this lack of fundamental knowledge has limited the efficacy of bioengineering equipment and medical treatments. In this article, we provide an overview of the most important microfluidics-related transport phenomena through the skin and versatile tools to study them. Moreover, we provide a summary of challenges and opportunities faced by advanced transdermal delivery methods, such as needle-free jet injectors, microneedles, and tattooing, which could pave the way to the implementation of better therapies and new methods.
Collapse
Affiliation(s)
- Magalí Mercuri
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires, Argentina
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute, TechMed Centre and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
10
|
Emami S, Shayanfar A. Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharm Dev Technol 2020; 25:779-796. [DOI: 10.1080/10837450.2020.1735414] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shahram Emami
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Robertson J, Squire M, Becker S. Circulation Cooling in Continuous Skin Sonoporation at Constant Coupling Fluid Temperatures. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:137-148. [PMID: 31630889 DOI: 10.1016/j.ultrasmedbio.2019.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Exposure of the skin to low-frequency ultrasound in the Franz diffusion cell has been found to increase the permeability of the skin to molecular transport. In many cases, significant heating of the coupling fluid requires the use of duty cycles that extend the total experimental time. This is a methodological study in which the coupling fluid is circulated between a modified Franz diffusion cell and a heat exchanger to allow for the continuous application of low-frequency ultrasound while the coupling fluid temperature is held constant. Dermatomed porcine skin was exposed to continuous ultrasound at 20 kHz for 10 min at an intensity of 55 W/cm2 while the coupling fluid was maintained at one of three target temperatures (13°C, 33°C or 46°C). Foil pitting and passive cavitation detection revealed that inertial cavitation activity decreased with increasing coupling fluid target temperature. Transport measurements revealed an increase in mean donor calcein concentration with increasing coupling fluid temperature, though these were not statistically significant. Taken together these findings suggest that the weakened stratum corneum lipid structure at higher temperatures is more susceptible to the introduction of defects from the jetting of cavitation.
Collapse
Affiliation(s)
- Jeremy Robertson
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Marie Squire
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - Sid Becker
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
12
|
Hu Y, Yang M, Huang H, Shen Y, Liu H, Chen X. Controlled Ultrasound Erosion for Transdermal Delivery and Hepatitis B Immunization. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1208-1220. [PMID: 30803825 DOI: 10.1016/j.ultrasmedbio.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Although ultrasound is effective for transdermal delivery, it remains difficult to control the position, shape and size of localized skin transport regions. We developed an ultrasound erosion protocol to generate a single-site, circular delivery region with controlled size at the center of patched skin. We found that (i) shorter ultrasound pulses (25 cycles) with higher pulse repetition frequency (4 kHz) and higher peak negative pressure (17.0 MPa) resulted in larger (0.995 mm2) and deeper (∼300 µm) skin delivery regions with a higher success rate (94.44%); and (ii) temperature elevation of the skin increased with ultrasound exposure time, with a 30-s safety threshold. Furthermore, we found that hair follicles decreased the delivery controllability of ultrasound erosion. Therefore, we selected the skin of the hind legs of mice without dense hair follicles to deliver more than 1 μL of vaccine solution and successfully elicit immune responses against hepatitis B surface antigen.
Collapse
Affiliation(s)
- Yaxin Hu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China
| | - Mei Yang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China
| | - Haoqiang Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China
| | - Haitao Liu
- Vaccine Research Department, Shenzhen Kangtai Biological Products Company Ltd., Shenzhen, China
| | - Xin Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.
| |
Collapse
|
13
|
Ramesan S, Rezk AR, Yeo LY. High frequency acoustic permeabilisation of drugs through tissue for localised mucosal delivery. LAB ON A CHIP 2018; 18:3272-3284. [PMID: 30225496 DOI: 10.1039/c8lc00355f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The majority of infectious diseases enter the body through mucosal membranes that line the ocular, nasal, oral, vaginal and rectal surfaces. As infections can be effectively prevented by instigating a local immune response in the immunocyte-rich regions of the mucosa, an efficacious route of vaccine administration is to directly target their delivery to these surfaces. It is nevertheless challenging to provide sufficient driving force to penetrate both the mucus lining as well as the epithelial barrier of the mucosal surfaces, which are designed to effectively keep foreign entities out, but not excessively such that the therapeutic agent penetrates deeper into the vascularised submucosal regions where they are mostly taken up by the systemic circulation, thus resulting in a far weaker immune response. In this work, we demonstrate the possibility of controllably localising and hence maximising the delivery of both small and large molecule model therapeutic agents in the mucosa of a porcine buccal model using high frequency acoustics. Unlike their low (kHz order) frequency bulk ultrasonic counterpart, these high frequency (>10 MHz) surface waves do not generate cavitation, which leads to large molecular penetration depths beyond the 100 μm order thick mucosal layer, and which has been known to cause considerable cellular/tissue damage and hence scarring. Through system parameters such as the acoustic irradiation frequency, power and exposure duration, we show that it is possible to tune the penetration depth such that over 95% of the delivered drug are localised within the mucosal layer, whilst preserving their structural integrity.
Collapse
Affiliation(s)
- Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3000, Australia.
| | | | | |
Collapse
|
14
|
Carvalho ALM, Silva JA, Lira AAM, Almeida EDP, Nunes RDS, Sarmento VHV, Veras LMC, de Almeida Leite JR, Leal LB, de Santana DP. Third-Generation Transdermal Delivery Systems Containing Zidovudine: Effect of the Combination of Different Chemical Enhancers and a Microemulsion System. AAPS PharmSciTech 2018; 19:3219-3227. [PMID: 30187445 DOI: 10.1208/s12249-018-1160-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/18/2018] [Indexed: 01/21/2023] Open
Abstract
This study aimed to examine the influence of the combination of chemical enhancers and a microemulsion on the transdermal permeation of zidovudine (AZT). Ethanol, 1,8-cineole, and geraniol were incorporated in a microemulsion. The droplet size, zeta potential, rheology, and SAXS analysis were performed. The permeation enhancer effect was evaluated using pig ear skin. Snake skin (Boa constrictor) treated with the formulations was also used as a stratum corneum model and studied by attenuated total reflectance-infrared spectroscopy. As a result, it was observed that the incorporation of the chemical enhancers promoted a decrease of the droplet size and some rheological modifications. The 1,8-cineole associated with the microemulsion significantly increased the permeated amount of AZT. Conversely, ethanol significantly increased the quantity of the drug retained in the skin. The probable mechanism for the cineole and ethanol effects was respectively: fluidization and increasing of the diffusion coefficient, and increasing of the partition coefficient. Surprising, geraniol + microemulsion drastically decreased both the permeated and the retained amount of AZT into the skin. Thus, the adequate association of microemulsion and chemical enhancers showed to be a crucial step to enable the topical or transdermal use of drugs.
Collapse
|
15
|
Carbajo JM, Maraver F. Salt water and skin interactions: new lines of evidence. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1345-1360. [PMID: 29675710 DOI: 10.1007/s00484-018-1545-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
In Health Resort Medicine, both balneotherapy and thalassotherapy, salt waters and their peloids, or mud products are mainly used to treat rheumatic and skin disorders. These therapeutic agents act jointly via numerous mechanical, thermal, and chemical mechanisms. In this review, we examine a new mechanism of action specific to saline waters. When topically administered, this water rich in sodium and chloride penetrates the skin where it is able to modify cellular osmotic pressure and stimulate nerve receptors in the skin via cell membrane ion channels known as "Piezo" proteins. We describe several models of cutaneous adsorption/desorption and penetration of dissolved ions in mineral waters through the skin (osmosis and cell volume mechanisms in keratinocytes) and examine the role of these resources in stimulating cutaneous nerve receptors. The actions of salt mineral waters are mediated by a mechanism conditioned by the concentration and quality of their salts involving cellular osmosis-mediated activation/inhibition of cell apoptotic or necrotic processes. In turn, this osmotic mechanism modulates the recently described mechanosensitive piezoelectric channels.
Collapse
Affiliation(s)
- Jose Manuel Carbajo
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Francisco Maraver
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain.
- Professional School of Medical Hydrology, Faculty of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
16
|
Canavese G, Ancona A, Racca L, Canta M, Dumontel B, Barbaresco F, Limongi T, Cauda V. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2018; 340:155-172. [PMID: 30881202 PMCID: PMC6420022 DOI: 10.1016/j.cej.2018.01.060] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
At present, ultrasound radiation is broadly employed in medicine for both diagnostic and therapeutic purposes at various frequencies and intensities. In this review article, we focus on therapeutically-active nanoparticles (NPs) when stimulated by ultrasound. We first introduce the different ultrasound-based therapies with special attention to the techniques involved in the oncological field, then we summarize the different NPs used, ranging from soft materials, like liposomes or micro/nano-bubbles, to metal and metal oxide NPs. We therefore focus on the sonodynamic therapy and on the possible working mechanisms under debate of NPs-assisted sonodynamic treatments. We support the idea that various, complex and synergistics physical-chemical processes take place during acoustic cavitation and NP activation. Different mechanisms are therefore responsible for the final cancer cell death and strongly depends not only on the type and structure of NPs or nanocarriers, but also on the way they interact with the ultrasonic pressure waves. We conclude with a brief overview of the clinical applications of the various ultrasound therapies and the related use of NPs-assisted ultrasound in clinics, showing that this very innovative and promising approach is however still at its infancy in the clinical cancer treatment.
Collapse
Affiliation(s)
- Giancarlo Canavese
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technologies CSFT@Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Turin, Italy
| | - Andrea Ancona
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Luisa Racca
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marta Canta
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Bianca Dumontel
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Federica Barbaresco
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technologies CSFT@Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Turin, Italy
| |
Collapse
|
17
|
Rangsimawong W, Obata Y, Opanasopit P, Ngawhirunpat T, Takayama K. Enhancement of Galantamine HBr Skin Permeation Using Sonophoresis and Limonene-Containing PEGylated Liposomes. AAPS PharmSciTech 2018; 19:1093-1104. [PMID: 29168128 DOI: 10.1208/s12249-017-0921-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022] Open
Abstract
This study aimed to investigate the effect of low-frequency sonophoresis (SN) and limonene-containing PEGylated liposomes (PL) on the transdermal delivery of galantamine HBr (GLT). To evaluate the skin penetration mechanism, confocal laser scanning microscopy (CLSM), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) were employed. The application of SN led to more GLT penetration into and through the skin than GLT solution alone. The liposomes also improved GLT permeation, and 2% limonene-containing PL (PL-LI2%) exhibited the highest GLT permeation, followed by PL-LI1%, PL-LI0.1%, and PL. The CLSM images of PL-LI2% resulted in the highest fluorescence intensity of fluorescent hydrophilic molecules in the deep skin layer, and the rhodamine PE-labeled liposome membrane was distributed in the intercellular region of the stratum corneum (SC). PL-LI2% induced significant changes in intercellular lipids in the SC, whereas SN had no effect on intercellular lipids of the SC. DSC thermograms showed that the greatest decrease in the lipid transition temperature occurred in PL-LI2%-treated SC. SN might improve drug permeation through an intracellular pathway, while limonene-containing liposomes play an important role in delivering GLT through an intercellular pathway by increasing the fluidity of intercellular lipids in the SC. Moreover, a small vesicle size and high membrane fluidity might enhance the transportation of intact vesicles through the skin.
Collapse
|
18
|
Low frequency ultrasound and PAMAM dendrimer facilitated transdermal delivery of ketoprofen. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Pereira TA, Ramos DN, Lopez RFV. Hydrogel increases localized transport regions and skin permeability during low frequency ultrasound treatment. Sci Rep 2017; 7:44236. [PMID: 28287146 PMCID: PMC5347001 DOI: 10.1038/srep44236] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/06/2017] [Indexed: 11/09/2022] Open
Abstract
Low frequency ultrasound (LFU) enhances skin permeability via the formation of heterogeneous localized transport regions (LTRs). In this work, hydrogels with different zeta potentials were used as the coupling medium for LFU to investigate their contribution to LTR patterns and to the skin penetration of two model drugs, calcein and doxorubicin (DOX). When hydrogels were used, LTRs covering at least a 3-fold greater skin area were observed compared to those resulting from traditional LFU treatment and sodium lauryl sulfate. More LTRs resulted in an enhancement of calcein skin permeation. The zeta potential of the hydrogels affected the skin penetration of the positively charged DOX; the cationic coupling medium decreased the DOX recovered from the viable epidermis by 2.8-fold, whereas the anionic coupling medium increased the DOX accumulation in the stratum corneum by 4.4-fold. Therefore, LFU/hydrogel treatment increases LTRs areas and can target ionized drugs to specific skin layers depending on the zeta potential of the coupling medium.
Collapse
Affiliation(s)
- Tatiana Aparecida Pereira
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Ribeirao Preto, SP, Brazil
| | - Danielle Nishida Ramos
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Ribeirao Preto, SP, Brazil
| | - Renata F V Lopez
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Ribeirao Preto, SP, Brazil
| |
Collapse
|
20
|
|
21
|
Polymeric micellar nanocarriers of benzoyl peroxide as potential follicular targeting approach for acne treatment. Colloids Surf B Biointerfaces 2016; 146:692-9. [DOI: 10.1016/j.colsurfb.2016.07.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
|
22
|
Rangsimawong W, Opanasopit P, Rojanarata T, Ngawhirunpat T. Mechanistic study of decreased skin penetration using a combination of sonophoresis with sodium fluorescein-loaded PEGylated liposomes with d-limonene. Int J Nanomedicine 2015; 10:7413-23. [PMID: 26719685 PMCID: PMC4687723 DOI: 10.2147/ijn.s96831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The effect of low frequency sonophoresis (SN, 20 kHz) on the skin transport of sodium fluorescein (NaFI)-loaded liposomes was investigated. An in vitro skin penetration study in open and blocked hair follicles was performed, and confocal laser scanning microscopy and scanning electron microscopy were used to visualize the penetration pathways. The results showed that SN significantly increased the flux of NaFI solution, whereas it significantly decreased the flux of NaFI-loaded polyethylene glycol-coated (PEGylated) liposomes with D-limonene (PL-LI). SN did not significantly affect the flux of NaFI-loaded conventional liposomes and PEGylated liposomes. In the blocked follicles, the flux of NaFI-loaded PL-LI both with and without SN decreased, indicating that NaFI-loaded PL-LI penetrated the skin via the transfollicular pathway. A confocal laser scanning microscopy image showed that in the skin without SN, the fluorescence intensity of NaFI-loaded PL-LI was observed in the skin and along the length of hair inside the skin, whereas in the skin with applied SN, the fluorescence intensity was detected only on the top of hair outside the skin. From scanning electron microscopy images, SN dislocated the corneocytes and reduced the deposition of PL-LI around hair follicles. These results revealed that SN may partially plug hair follicle orifices and reduce percutaneous absorption through the follicular pathway.
Collapse
|
23
|
Zorec B, Jelenc J, Miklavčič D, Pavšelj N. Ultrasound and electric pulses for transdermal drug delivery enhancement: Ex vivo assessment of methods with in vivo oriented experimental protocols. Int J Pharm 2015; 490:65-73. [DOI: 10.1016/j.ijpharm.2015.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
|
24
|
Azagury A, Khoury L, Adato Y, Wolloch L, Ariel I, Hallak M, Kost J. The synergistic effect of ultrasound and chemical penetration enhancers on chorioamnion mass transport. J Control Release 2015; 200:35-41. [DOI: 10.1016/j.jconrel.2014.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
|
25
|
Han T, Das DB. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: a review. Eur J Pharm Biopharm 2014; 89:312-28. [PMID: 25541440 DOI: 10.1016/j.ejpb.2014.12.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
Transdermal drug delivery (TDD) is limited by the outer layer of the skin, i.e., the stratum corneum. Research on TDD has become very active in the recent years and various technologies have been developed to overcome the resistance of the stratum corneum to molecular diffusion. In particular, researchers have started to consider the possibility of combining the TDD technologies in order to have further increase in drug permeability. Both microneedles (MNs) and ultrasound are promising technologies. They achieve enhancement in drug permeation via different mechanisms and therefore give a good potential for combining with each other. This review will focus on discussing the potential of this combinational technique along with other important issues, e.g., the mechanisms of ultrasound and MNs as it is and these mechanisms which are coupled via the two systems (i.e. MNs and ultrasound). We discuss the possible ways to achieve this combination as well as how this combination would increase the permeability. Some of the undeveloped (weaker) research areas of MNs and sonophoresis are also discussed in order to understand the true potential of combining the two technologies when they are developed further in the future. We propose several hypothetical combinations based on the possible mechanisms involved in MNs and ultrasound. Furthermore, we carry out a cluster analysis by which we determine the significance of this combinational method in comparison with some other selected combinational methods for TDD (e.g., MNs and iontophoresis). Using a time series analysis tool (ARIMA model), the current trend and the future development of combined MNs and ultrasound are also analysed. Overall, the review in this paper indicates that combining MNs and ultrasound is a promising TDD method for the future.
Collapse
Affiliation(s)
- Tao Han
- Chemical Engineering Department, Loughborough University, Loughborough, UK
| | - Diganta Bhusan Das
- Chemical Engineering Department, Loughborough University, Loughborough, UK.
| |
Collapse
|
26
|
Azagury A, Khoury L, Enden G, Kost J. Ultrasound mediated transdermal drug delivery. Adv Drug Deliv Rev 2014; 72:127-43. [PMID: 24463344 DOI: 10.1016/j.addr.2014.01.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/24/2013] [Accepted: 01/14/2014] [Indexed: 01/06/2023]
Abstract
Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injections. However, the stratum corneum serves as a barrier that limits the penetration of substances to the skin. Application of ultrasound (US) irradiation to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. This review presents the main findings in the field of sonophoresis in transdermal drug delivery as well as transdermal monitoring and the mathematical models associated with this field. Particular attention is paid to the proposed enhancement mechanisms and future trends in the fields of cutaneous vaccination and gene therapy.
Collapse
Affiliation(s)
- Aharon Azagury
- Department of Chemical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Luai Khoury
- Department of Biomedical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Giora Enden
- Department of Biomedical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Joseph Kost
- Department of Chemical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel.
| |
Collapse
|
27
|
Bhatnagar S, Schiffter H, Coussios CC. Exploitation of acoustic cavitation-induced microstreaming to enhance molecular transport. J Pharm Sci 2014; 103:1903-12. [PMID: 24719277 DOI: 10.1002/jps.23971] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/07/2014] [Accepted: 03/25/2014] [Indexed: 11/05/2022]
Abstract
Ultrasound (US) exposure of soft tissues, such as the skin, has been shown to increase permeability, enhancing the passage of drug molecules via passive processes such as diffusion. However, US regimes have not been exploited to enhance active convective transport of drug molecules from a donor layer, such as a gel, into another medium. A layered tissue-mimicking material (TMM) was used as a model for a drug donor layer and underlying soft tissue to test penetration of agents in response to a range of US parameters. Influence of agent molecular mass (3-2000 kDa), US frequency (0.256/1.1 MHz) and US pressure (0-10 MPa) on transport was characterised. Agents of four different molecular sizes were embedded within the TMM with or without cavitation nuclei (CN) and US applied to achieve inertial cavitation. Post-insonation, samples were analysed to determine the concentration and penetration distance of agent transported. US exposure substantially enhanced transport. At both US frequencies, enhancement of transport was significantly higher (p < 0.05) above the cavitation threshold, and CN reduced the pressure at which cavitation, and therefore transport, was achieved. Acoustic cavitation activity and related phenomena was the predominant transport mechanism, and addition of CN significantly enhanced transport within a range of clinically applicable acoustic pressures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.
Collapse
Affiliation(s)
- Sunali Bhatnagar
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
28
|
Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine 2013; 8:1621-33. [PMID: 23637531 PMCID: PMC3635663 DOI: 10.2147/ijn.s43589] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Wenzhou Medical College, Wenzhou City, Zhejiang Province, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:205-18. [PMID: 23386536 DOI: 10.1002/wnan.1211] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human skin not only functions as a permeation barrier (mainly because of the stratum corneum layer) but also provides a unique delivery pathway for therapeutic and other active agents. These compounds penetrate via intercellular, intracellular, and transappendageal routes, resulting in topical delivery (into skin strata) and transdermal delivery (to subcutaneous tissues and into the systemic circulation). Passive and active permeation enhancement methods have been widely applied to increase the cutaneous penetration. The pathology, pathogenesis, and topical treatment approaches of dermatological diseases, such as psoriasis, contact dermatitis, and skin cancer, are then discussed. Recent literature has demonstrated that nanoparticles-based topical delivery systems can be successful in treating these skin conditions. The studies are reviewed starting with the nanoparticles based on natural polymers especially chitosan, followed by those made of synthetic, degradable (aliphatic polyesters), and nondegradable (polyacrylates) polymers; emphasis is given to nanospheres made of polymers derived from naturally occurring metabolites, the tyrosine-derived nanospheres (TyroSpheres™). In summary, the nanoparticles-based topical delivery systems combine the advantages of both the nanosized drug carriers and the topical approach, and are promising for the treatment of skin diseases. For the perspectives, the penetration of ultra-small nanoparticles (size smaller than 40 nm) into skin strata, the targeted delivery of the encapsulated drugs to hair follicle stem cells, and the combination of nanoparticles and microneedle array technologies for special applications such as vaccine delivery are discussed.
Collapse
Affiliation(s)
- Zheng Zhang
- The New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
30
|
Chen L, Han L, Lian G. Recent advances in predicting skin permeability of hydrophilic solutes. Adv Drug Deliv Rev 2013; 65:295-305. [PMID: 22580335 DOI: 10.1016/j.addr.2012.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 11/24/2022]
Abstract
Understanding the permeation of hydrophilic molecules is of relevance to many applications including transdermal drug delivery, skin care as well as risk assessment of occupational, environmental, or consumer exposure. This paper reviews recent advances in modeling skin permeability of hydrophilic solutes, including quantitative structure-permeability relationships (QSPR) and mechanistic models. A dataset of measured human skin permeability of hydrophilic and low hydrophobic solutes has been compiled. Generally statistically derived QSPR models under-estimate skin permeability of hydrophilic solutes. On the other hand, including additional aqueous pathway is necessary for mechanistic models to improve the prediction of skin permeability of hydrophilic solutes, especially for highly hydrophilic solutes. A consensus yet has to be reached as to how the aqueous pathway should be modeled. Nevertheless it is shown that the contribution of aqueous pathway can constitute to more than 95% of the overall skin permeability. Finally, future prospects and needs in improving the prediction of skin permeability of hydrophilic solutes are discussed.
Collapse
|
31
|
Krishnan G, Grice JE, Roberts MS, Benson HAE, Prow TW. Enhanced sonophoretic delivery of 5-aminolevulinic acid: preliminary humanex vivopermeation data. Skin Res Technol 2012; 19:e283-9. [DOI: 10.1111/j.1600-0846.2012.00640.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Gayathri Krishnan
- Curtin Health Innovation Research Institute; School of Pharmacy; Curtin University; Perth; WA; Australia
| | - Jeffrey E. Grice
- Therapeutics Research Centre; School of Medicine; The University of Queensland; QLD; Australia
| | | | - Heather A. E. Benson
- Curtin Health Innovation Research Institute; School of Pharmacy; Curtin University; Perth; WA; Australia
| | - Tarl W. Prow
- Dermatology Research Centre; The University of Queensland, School of Medicine, Princess Alexandra Hospital; Brisbane; QLD; Australia
| |
Collapse
|
32
|
Sampling of disease biomarkers from skin for theranostic applications. Drug Deliv Transl Res 2012; 2:87-94. [DOI: 10.1007/s13346-012-0061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Herwadkar A, Sachdeva V, Taylor LF, Silver H, Banga AK. Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. Int J Pharm 2012; 423:289-96. [DOI: 10.1016/j.ijpharm.2011.11.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/10/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
|
34
|
Polat BE, Hart D, Langer R, Blankschtein D. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 2011; 152:330-48. [PMID: 21238514 PMCID: PMC3436072 DOI: 10.1016/j.jconrel.2011.01.006] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
The use of ultrasound for the delivery of drugs to, or through, the skin is commonly known as sonophoresis or phonophoresis. The use of therapeutic and high frequencies of ultrasound (≥0.7MHz) for sonophoresis (HFS) dates back to as early as the 1950s, while low-frequency sonophoresis (LFS, 20-100kHz) has only been investigated significantly during the past two decades. Although HFS and LFS are similar because they both utilize ultrasound to increase the skin penetration of permeants, the mechanisms associated with each physical enhancer are different. Specifically, the location of cavitation and the extent to which each process can increase skin permeability are quite dissimilar. Although the applications of both technologies are different, they each have strengths that could allow them to improve current methods of local, regional, and systemic drug delivery. In this review, we will discuss the mechanisms associated with both HFS and LFS, specifically concentrating on the key mechanistic differences between these two skin treatment methods. Background on the relevant physics associated with ultrasound transmitted through aqueous media will also be discussed, along with implications of these phenomena on sonophoresis. Finally, a thorough review of the literature is included, dating back to the first published reports of sonophoresis, including a discussion of emerging trends in the field.
Collapse
Affiliation(s)
- Baris E. Polat
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
35
|
Sarheed O, Rasool BKA. Development of an optimised application protocol for sonophoretic transdermal delivery of a model hydrophilic drug. Open Biomed Eng J 2011; 5:14-24. [PMID: 21629673 PMCID: PMC3103896 DOI: 10.2174/1874120701105010014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 11/22/2022] Open
Abstract
It has now been known for over a decade that low frequency ultrasound can be used to effectively enhance transdermal drug penetration - an approach termed sonophoresis. Mechanistically, acoustic cavitation results in the creation of defects in the stratum corneum that allow accelerated absorption of topically applied molecules. The aim of this study was to develop an optimised sonophoresis protocol for studying transdermal drug delivery in vitro. To this end, caffeine was selected as a model hydrophilic drug while porcine skin was used as a model barrier. Following acoustic validation, 20kHz ultrasound was applied for different durations (range: 5 s to 10 min) using three different modes (10%, 33% or 100% duty cycles) and two distinct sonication procedures (either before or concurrent with drug deposition). Each ultrasonic protocol was assessed in terms of its heating and caffeine flux-enhancing effects. It was found that the best regimen was a concurrent 5 min, pulsed (10% duty cycle) beam of SATA intensity 0.37 W/cm2. A key insight was that in the case of pulsed beams of 10% duty cycle, sonication concurrent with drug deposition was superior to sonication prior to drug deposition and potential mechanisms for this are discussed.
Collapse
Affiliation(s)
- Omar Sarheed
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, UAE
| | | |
Collapse
|
36
|
Hathout RM, Mansour S, Geneidi AS, Mortada ND. Visualization, dermatopharmacokinetic analysis and monitoring the conformational effects of a microemulsion formulation in the skin stratum corneum. J Colloid Interface Sci 2010; 354:124-30. [PMID: 21067769 DOI: 10.1016/j.jcis.2010.10.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/12/2010] [Accepted: 10/12/2010] [Indexed: 11/30/2022]
Abstract
The use of nano-systems such as the microemulsions is considered as an increasingly implemented strategy in order to enhance the percutaneous transport into and across the skin barrier. The determination of the major pathway of penetration and the mechanisms by which these formulations work remains crucial. In this study, laser confocal scanning microscopy was used to visualize the penetration and the distribution of a fluorescently-labelled microemulsion (using 0.1% w/v Nile red) consisting of (%, w/w) 15.4% oleic acid, 30.8% Tween 20, 30.8% Transcutol® and 23% water. The surface images revealed that the microemulsion accumulated preferentially in the intercellular domains of the stratum corneum. Additionally, by analysis of the images taken across the whole stratum corneum (SC), the penetration was found to occur along its whole depth. The latter result was confirmed using tape stripping and the subsequent sensitive analysis using liquid chromatography mass spectroscopy. Dermatopharmacokinetic parameters were obtained for the microemulsion different components. These values proved the breakage of the microemulsion during its penetration across the stratum corneum. Moreover, the mechanisms of penetration enhancement and the micro molecular effects on the skin stratum corneum were investigated using attenuated Fourier transform infra-red spectroscopy. The results revealed the penetration of all the microemulsion components in the stratum corneum and demonstrated the microemulsion interaction with the skin barrier perturbing its architecture structure.
Collapse
Affiliation(s)
- Rania M Hathout
- Department of Pharmaceutics, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | | | | | | |
Collapse
|
37
|
Wolloch L, Kost J. The importance of microjet vs shock wave formation in sonophoresis. J Control Release 2010; 148:204-11. [PMID: 20655341 DOI: 10.1016/j.jconrel.2010.07.106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/10/2010] [Accepted: 07/14/2010] [Indexed: 12/01/2022]
Abstract
Low-frequency ultrasound application has been shown to greatly enhance transdermal drug delivery. Skin exposed to ultrasound is affected in a heterogeneous manner, thus mass transport through the stratum corneum occurs mainly through highly permeable localized transport regions (LTRs). Shock waves and microjets generated during inertial cavitations are responsible for the transdermal permeability enhancement. In this study, we evaluated the effect of these two phenomena using direct and indirect methods, and demonstrated that the contribution of microjets to skin permeability enhancement is significantly higher than shock waves.
Collapse
Affiliation(s)
- Lior Wolloch
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
38
|
Tan G, Xu P, Lawson LB, He J, Freytag LC, Clements JD, John VT. Hydration effects on skin microstructure as probed by high-resolution cryo-scanning electron microscopy and mechanistic implications to enhanced transcutaneous delivery of biomacromolecules. J Pharm Sci 2010; 99:730-40. [PMID: 19582754 PMCID: PMC2849273 DOI: 10.1002/jps.21863] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although hydration is long known to improve the permeability of skin, penetration of macromolecules such as proteins is limited and the understanding of enhanced transport is based on empirical observations. This study uses high-resolution cryo-scanning electron microscopy to visualize microstructural changes in the stratum corneum (SC) and enable a mechanistic interpretation of biomacromolecule penetration through highly hydrated porcine skin. Swollen corneocytes, separation of lipid bilayers in the SC intercellular space to form cisternae, and networks of spherical particulates are observed in porcine skin tissue hydrated for a period of 4-10 h. This is explained through compaction of skin lipids when hydrated, a reversal in the conformational transition from unilamellar liposomes in lamellar granules to lamellae between keratinocytes when the SC skin barrier is initially established. Confocal microscopy studies show distinct enhancement in penetration of fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) through skin hydrated for 4-10 h, and limited penetration of FITC-BSA once skin is restored to its natively hydrated structure when exposed to the environment for 2-3 h. These results demonstrate the effectiveness of a 4-10 h hydration period to enhance transcutaneous penetration of large biomacromolecules without permanently damaging the skin.
Collapse
Affiliation(s)
- Grace Tan
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Peng Xu
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Louise B. Lawson
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Jibao He
- Coordinated Instrumentation Facility, Tulane University, New Orleans, Louisiana 70118
| | - Lucia C. Freytag
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - John D. Clements
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Vijay T. John
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|
39
|
Denda M, Nakatani M. Acceleration of permeability barrier recovery by exposure of skin to 10-30 kHz sound. Br J Dermatol 2009; 162:503-7. [DOI: 10.1111/j.1365-2133.2009.09509.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Abstract
OBJECTIVES Use of ultrasound in therapeutics and drug delivery has gained importance in recent years, evident by the increase in patents filed and new commercial devices launched. The present review discusses new advancements in sonophoretic drug delivery in the last two decades, and highlights important challenges still to be met to make this technology of more use in the alleviation of diseases. KEY FINDINGS Phonophoretic research often suffers from poor calibration in terms of the amount of ultrasound energy emitted, and therefore current research must focus on safety of exposure to ultrasound and miniaturization of devices in order to make this technology a commercial reality. More research is needed to identify the role of various parameters influencing sonophoresis so that the process can be optimized. Establishment of long-term safety issues, broadening the range of drugs that can be delivered through this system, and reduction in the cost of delivery are issues still to be addressed. SUMMARY Sonophoresis (phonophoresis) has been shown to increase skin permeability to various low and high molecular weight drugs, including insulin and heparin. However, its therapeutic value is still being evaluated. Some obstacles in transdermal sonophoresis can be overcome by combination with other physical and chemical enhancement techniques. This review describes recent advancements in equipment and devices for phonophoresis, new formulations tried in sonophoresis, synergistic effects with techniques such as chemical enhancers, iontophoresis and electroporation, as well as the growing use of ultrasound in areas such as cancer therapy, cardiovascular disorders, temporary modification of the blood-brain barrier for delivery of imaging and therapeutic agents, hormone replacement therapy, sports medicine, gene therapy and nanotechnology. This review also lists patents pertaining to the formulations and techniques used in sonophoretic drug delivery.
Collapse
Affiliation(s)
- Rekha Rao
- M. M. College of Pharmacy, M. M. University, Mullana, 133001, India
| | | |
Collapse
|
41
|
Dahlan A, Alpar HO, Murdan S. An investigation into the combination of low frequency ultrasound and liposomes on skin permeability. Int J Pharm 2009; 379:139-42. [PMID: 19539736 DOI: 10.1016/j.ijpharm.2009.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/05/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
Antigen application onto skin that has been pre-treated with low frequency ultrasound leads to immunisation, and it was hypothesised that immunisation could be enhanced if antigens were entrapped within liposomes, the latter being known vaccine adjuvants. However, it has been suggested that liposomes can repair skin damage, which could limit antigen permeation and transcutaneous immunisation. The aim of the present work was therefore to investigate the influence of liposome application on subsequent: (i) in vitro antigen permeation through, and (ii) in vivo barrier properties of, ultrasound-treated skin. Sonication was conducted using either phosphate buffered saline (PBS) or an aqueous solution of sodium dodecyl sulphate (SDS) as the coupling medium, and rats were used as the animal models. Liposome application to sonicated skin reduced antigen penetration and transepidermal water loss (TEWL, used as an indication of skin integrity) when the skin had been sonicated using PBS coupling medium. The influence of liposome was evident within 5min of its application, and smaller liposomes were more effective at repairing skin disruption caused by sonication. Such skin repair did not, however, take place when the skin had been sonicated in the presence of SDS (which caused greater skin disruption), and changes in in vitro antigen permeation and in vivo TEWL were negligible. Skin repair by liposomes seems to depend on the extent of the disruption caused by ultrasound application.
Collapse
Affiliation(s)
- Afendi Dahlan
- Department of Pharmaceutics, The School of Pharmacy, University of London, Brunswick Square 29/39, London WC1N 1AX, UK
| | | | | |
Collapse
|
42
|
Combined Ultrasonic and Enzymatic Debridement of Necrotic Eschars in an Animal Model. J Burn Care Res 2009; 30:505-13. [DOI: 10.1097/bcr.0b013e3181a28d89] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Mutalik S, Parekh HS, Davies NM, Nayanabhirama U. A combined approach of chemical enhancers and sonophoresis for the transdermal delivery of tizanidine hydrochloride. Drug Deliv 2009; 16:82-91. [DOI: 10.1080/10717540802605053] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
44
|
Kushner J, Blankschtein D, Langer R. Heterogeneity in skin treated with low-frequency ultrasound. J Pharm Sci 2009; 97:4119-28. [PMID: 18240305 DOI: 10.1002/jps.21308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent experimental evidence using colored, fluorescent permeants suggests that skin treated with low-frequency sonophoresis (LFS) is perturbed in a heterogeneous manner. Macroscopic and microscopic visualization studies, topical penetration studies, transdermal permeability studies, and skin electrical resistivity measurements have shown that discrete domains, referred to as localized transport regions (LTRs), which are formed during LFS treatment of the skin, possess greatly reduced barrier properties, and therefore exhibit increased permeant skin penetration, compared to the surrounding regions of LFS-treated skin. The transformation of LTR formation from a heterogeneous to a homogeneous phenomenon has the potential benefit of increasing the maximum level of transdermal permeability or of reducing the area of skin required to deliver a desired dose of drug transdermally. Future studies, aimed at elucidating both the mechanisms of LTR formation and the limits of nondamaging formation of LTRs in the skin, are required to incorporate these proposed improvements to enhance the efficacy and practical utility of low-frequency sonophoresis.
Collapse
Affiliation(s)
- Joseph Kushner
- Pfizer Global Research and Development, Groton, Connecticut 06340, USA
| | | | | |
Collapse
|
45
|
Smith NB. Applications of ultrasonic skin permeation in transdermal drug delivery. Expert Opin Drug Deliv 2009; 5:1107-20. [PMID: 18817516 DOI: 10.1517/17425247.5.10.1107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transdermal ultrasound-mediated drug delivery has been studied as a method for needle-less, non-invasive drug administration. Potential obstacles include the stratum corneum, which is not sufficiently passively permeable to allow effective transfer of many medications into the bloodstream without active methods. A general review of the transdermal ultrasound drug delivery literature has shown that this technology offers promising potential for non-invasive drug administration. Included in this review are the reported acoustic parameters used for achieving delivery, along with the known intensities and exposure times. Ultrasound mechanisms are discussed as well as spatial field characteristics. Accurate and precise quantification of the acoustic field used in drug delivery experiments is essential to ensure safety versus efficacy and to avoid potentially harmful bioeffects.
Collapse
Affiliation(s)
- Nadine Barrie Smith
- Graduate Program in Acoustics, The Pennsylvania State University 21 Hallowell Building, University Park, PA 16802, USA.
| |
Collapse
|
46
|
Sostaric JZ, Miyoshi N, Cheng JY, Riesz P. Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation. J Phys Chem B 2008; 112:12703-9. [PMID: 18793018 PMCID: PMC2697618 DOI: 10.1021/jp805380e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed to ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl, heptyl, and octyl) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al. Free Radical Biol. Med. 2005, 39, 1539-1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that "sonoprotection" (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles.
Collapse
Affiliation(s)
- Joe Z Sostaric
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
47
|
Benson HA, Namjoshi S. Proteins and Peptides: Strategies for Delivery to and Across the Skin. J Pharm Sci 2008; 97:3591-610. [DOI: 10.1002/jps.21277] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Ogura M, Paliwal S, Mitragotri S. Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 2008; 60:1218-23. [PMID: 18450318 DOI: 10.1016/j.addr.2008.03.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
Application of ultrasound enhances skin permeability to drugs, a phenomenon referred to as sonophoresis. Significant strides have been made in sonophoresis research in recent years, especially under low-frequency conditions (20 kHz<f<100 kHz). This article reviews the mechanistic principles and current status of sonophoresis under low-frequency conditions. Several therapeutic macromolecules including insulin, low-molecular weight heparin, and vaccines have been delivered using low-frequency sonophoresis in vivo. Clinical trials have been performed with several drugs including lidocaine and cyclosporin. Novel theoretical and experimental approaches have provided insights into the mechanisms of low-frequency sonophoresis. Current understanding of these mechanisms is presented.
Collapse
|
49
|
Kushner J, Blankschtein D, Langer R. Evaluation of Hydrophilic Permeant Transport Parameters in the Localized and Non-Localized Transport Regions of Skin Treated Simultaneously With Low-Frequency Ultrasound and Sodium Lauryl Sulfate. J Pharm Sci 2008; 97:906-18. [PMID: 17887123 DOI: 10.1002/jps.21028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The porosity (epsilon), the tortuosity (tau), and the hindrance factor (H) of the aqueous pore channels located in the localized transport regions (LTRs) and the non-LTRs formed in skin treated simultaneously with low-frequency ultrasound (US) and the surfactant sodium lauryl sulfate (SLS), were evaluated for the delivery of four hydrophilic permeants (urea, mannitol, raffinose, and inulin) by analyzing dual-radiolabeled diffusion masking experiments for three different idealized cases of the aqueous pore pathway hypothesis. When epsilon and tau were assumed to be independent of the permeant radius, H was found to be statistically larger in the LTRs than in the non-LTRs. When a distribution of pore radii was assumed to exist in the skin, no statistical differences in epsilon, tau, and H were observed due to the large variation in the pore radii distribution shape parameter (3 A to infinity). When infinitely large aqueous pores were assumed to exist in the skin, epsilon was found to be 3-8-fold greater in the LTRs than in the non-LTRs, while little difference was observed in the LTRs and in the non-LTRs for tau. This last result suggests that the efficacy of US/SLS treatment may be enhanced by increasing the porosity of the non-LTRs.
Collapse
Affiliation(s)
- Joseph Kushner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
50
|
Kushner J, Kim D, So PTC, Blankschtein D, Langer RS. Dual-Channel Two-Photon Microscopy Study of Transdermal Transport in Skin Treated with Low-Frequency Ultrasound and a Chemical Enhancer. J Invest Dermatol 2007; 127:2832-46. [PMID: 17554365 DOI: 10.1038/sj.jid.5700908] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Visualization of transdermal permeant pathways is necessary to substantiate model-based conclusions drawn using permeability data. The aim of this investigation was to visualize the transdermal delivery of sulforhodamine B (SRB), a fluorescent hydrophilic permeant, and of rhodamine B hexyl ester (RBHE), a fluorescent hydrophobic permeant, using dual-channel two-photon microscopy (TPM) to better understand the transport pathways and the mechanisms of enhancement in skin treated with low-frequency ultrasound (US) and/or a chemical enhancer (sodium lauryl sulfate--SLS) relative to untreated skin (the control). The results demonstrate that (1) both SRB and RBHE penetrate beyond the stratum corneum and into the viable epidermis only in discrete regions (localized transport regions--LTRs) of US treated and of US/SLS-treated skin, (2) a chemical enhancer is required in the coupling medium during US treatment to obtain two significant levels of increased penetration of SRB and RBHE in US-treated skin relative to untreated skin, and (3) transcellular pathways are present in the LTRs of US treated and of US/SLS-treated skin for SRB and RBHE, and in SLS-treated skin for SRB. In summary, the skin is greatly perturbed in the LTRs of US treated and US/SLS-treated skin with chemical enhancers playing a significant role in US-mediated transdermal drug delivery.
Collapse
Affiliation(s)
- Joseph Kushner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|