1
|
Wu Y, Meibohm B, Zhang T, Hou X, Wang H, Sun X, Jiang M, Zhang B, Zhang W, Liu Y, Jin W, Wang F. Translational modelling to predict human pharmacokinetics and pharmacodynamics of a Bruton's tyrosine kinase-targeted protein degrader BGB-16673. Br J Pharmacol 2024. [PMID: 39289908 DOI: 10.1111/bph.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Bifunctional small molecule degraders, which link the target protein with E3 ubiquitin ligase, could lead to the efficient degradation of the target protein. BGB-16673 is a Bruton's tyrosine kinase (BTK) degrader. A translational PK/PD modelling approach was used to predict the human BTK degradation of BGB-16673 from preclinical in vitro and in vivo data. EXPERIMENTAL APPROACH A simplified mechanistic PK/PD model was used to establish the correlation between the in vitro and in vivo BTK degradation by BGB-16673 in a mouse model. Human and mouse species differences were compared using the parameters generated from in vitro human or mouse blood, and human or mouse serum spiked TMD-8 cells. Human PD was then predicted using the simplified mechanistic PK/PD model. KEY RESULTS BGB-16673 showed potent BTK degradation in mouse whole blood, human whole blood, and TMD-8 tumour cells in vitro. Furthermore, BGB-16673 showed BTK degradation in a murine TMD-8 xenograft model in vivo. The PK/PD model predicted human PD and the observed BTK degradation in clinical studies both showed robust BTK degradation in blood and tumour at clinical dose range. CONCLUSION AND IMPLICATIONS The presented simplified mechanistic model with reduced number of model parameters is practically easier to be applied to research projects compared with the full mechanistic model. It can be used as a tool to better understand the PK/PD behaviour for targeted protein degraders and increase the confidence when moving to the clinical stage.
Collapse
Affiliation(s)
- Yue Wu
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Taichang Zhang
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xinfeng Hou
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
- Migrasome Therapeutics Co. Ltd., Beijing, China
| | - Haitao Wang
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xiaona Sun
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Ming Jiang
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Bo Zhang
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Wenjing Zhang
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Ye Liu
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Wei Jin
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Fan Wang
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing, China
| |
Collapse
|
2
|
Tajiri A, Matsumoto S, Maeda S, Soga T, Kagiyama K, Ikeda H, Fukasawa K, Miyata A, Kamimura H. Prediction of human serum concentration-time profiles of therapeutic monoclonal antibodies using common marmosets ( Callithrix jacchus): initial assessment with canakinumab, adalimumab, and bevacizumab. Xenobiotica 2024; 54:648-657. [PMID: 38977390 DOI: 10.1080/00498254.2024.2371921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Cynomolgus monkeys and human FcRn transgenic mice are generally used for pharmacokinetic predictions of therapeutic monoclonal antibodies (mAbs). In the present study, the application of the common marmoset, a small nonhuman primate, as a potential animal model for prediction was evaluated for the first time.Canakinumab, adalimumab, and bevacizumab, which exhibited linear pharmacokinetics in humans, were selected as the model compounds. Marmoset pharmacokinetic data were reportedly available only for canakinumab, and those for adalimumab and bevacizumab were acquired in-house.Four pharmacokinetic parameters for a two-compartment model (i.e. clearance and volume of distribution in the central and peripheral compartments) in marmosets were extrapolated to the values in humans with allometric scaling using the average exponents of the three mAbs. As a result, the observed human serum concentration-time curves of the three mAbs following intravenous administration and those of canakinumab and adalimumab following subcutaneous injections (with an assumed absorption rate constant and bioavailability) were reasonably predicted.Although further prediction studies using a sufficient number of other mAbs are necessary to evaluate the versatility of this model, the findings indicate that marmosets can be an alternative to preceding animals for human pharmacokinetic predictions of therapeutic mAbs.
Collapse
Affiliation(s)
- Ayaka Tajiri
- Drug Discovery Department, R&D Division, Meiji Seika Pharma Co., Ltd, Tokyo, Japan
| | - Shogo Matsumoto
- Drug Discovery Department, R&D Division, Meiji Seika Pharma Co., Ltd, Tokyo, Japan
| | - Satoshi Maeda
- Yaotsu Breeding Center, CLEA Japan, Inc., Gifu, Japan
| | - Takuma Soga
- Yaotsu Breeding Center, CLEA Japan, Inc., Gifu, Japan
| | | | - Hiroshi Ikeda
- Tokyo Animal and Diet Department, CLEA Japan, Inc., Tokyo, Japan
| | | | - Atsunori Miyata
- Drug Discovery Department, R&D Division, Meiji Seika Pharma Co., Ltd, Tokyo, Japan
| | | |
Collapse
|
3
|
Thoma G, Miltz W, Srinivas H, Penno CA, Kiffe M, Gajewska M, Klein K, Evans A, Beerli C, Röhn TA. Structure-Guided Elaboration of a Fragment-Like Hit into an Orally Efficacious Leukotriene A4 Hydrolase Inhibitor. J Med Chem 2024. [PMID: 38476002 DOI: 10.1021/acs.jmedchem.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Leukotriene A4 hydrolase (LTA4H) is the final and rate-limiting enzyme in the biosynthesis of pro-inflammatory leukotriene B4 (LTB4). Preclinical studies have provided strong evidence that LTA4H is an attractive drug target for the treatment of chronic inflammatory diseases. Here, we describe the transformation of compound 2, a fragment-like hit, into the potent inhibitor of LTA4H 3. Our strategy involved two key steps. First, we aimed to increase the polarity of fragment 2 to improve its drug-likeness, particularly its solubility, while preserving both its promising potency and low molecular weight. Second, we utilized structural information and incorporated a basic amino function, which allowed for the formation of an essential hydrogen bond with Q136 of LTA4H and consequently enhanced the potency. Compound 3 exhibited exceptional selectivity and showed oral efficacy in a KRN passive serum-induced arthritis model in mice. The anticipated human dose to achieve 90% target engagement at the trough concentration was determined to be 40 mg administered once daily.
Collapse
Affiliation(s)
- Gebhard Thoma
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Wolfgang Miltz
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Honnappa Srinivas
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Carlos A Penno
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Michael Kiffe
- PK Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Monika Gajewska
- PK Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Kai Klein
- PK Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Amanda Evans
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Christian Beerli
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Till A Röhn
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| |
Collapse
|
4
|
Liang X, Koleske ML, Yang J, Lai Y. Building a Predictive PBPK Model for Human OATP Substrates: a Strategic Framework for Early Evaluation of Clinical Pharmacokinetic Variations Using Pitavastatin as an Example. AAPS J 2024; 26:13. [PMID: 38182946 DOI: 10.1208/s12248-023-00882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024] Open
Abstract
To select a drug candidate for clinical development, accurately and promptly predicting human pharmacokinetic (PK) profiles, assessing drug-drug interactions (DDIs), and anticipating potential PK variations in disease populations are crucial steps in drug discovery. The complexity of predicting human PK significantly increases when hepatic transporters are involved in drug clearance (CL) and volume of distribution (Vss). A strategic framework is developed here, utilizing pitavastatin as an example. The framework includes the construction of a monkey physiologically-based PK (PBPK) model, model calibration to obtain scaling factors (SF) of in vitro-in vivo extrapolation (IVIVE) for various clearance parameters, human model development and validation, and assessment of DDIs and PK variations in disease populations. Through incorporating in vitro human parameters and calibrated SFs from the monkey model of 3.45, 0.14, and 1.17 for CLint,active, CLint,passive, and CLint,bile, respectively, and together with the relative fraction transported by individual transporters obtained from in vitro studies and the optimized Ki values for OATP inhibition, the model reasonably captured observed pitavastatin PK profiles, DDIs and PK variations in human subjects carrying genetic polymorphisms, i.e., AUC within 20%. Lastly, when applying the functional reduction based on measured OATP1B biomarkers, the model adequately predicted PK changes in the hepatic impairment population. The present study presents a strategic framework for early-stage drug development, enabling the prediction of PK profiles and assessment of PK variations in scenarios like DDIs, genetic polymorphism, and hepatic impairment-related disease states, specifically focusing on OATP substrates.
Collapse
Affiliation(s)
- Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA
| | - Megan L Koleske
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA
| | - Jesse Yang
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA.
| |
Collapse
|
5
|
Thoma G, Markert C, Lueoend R, Miltz W, Spanka C, Bollbuck B, Wolf RM, Srinivas H, Penno CA, Kiffe M, Gajewska M, Bednarczyk D, Wieczorek G, Evans A, Beerli C, Röhn TA. Discovery of Amino Alcohols as Highly Potent, Selective, and Orally Efficacious Inhibitors of Leukotriene A4 Hydrolase. J Med Chem 2023; 66:16410-16425. [PMID: 38015154 DOI: 10.1021/acs.jmedchem.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The discovery of chiral amino alcohols derived from our previously disclosed clinical LTA4H inhibitor LYS006 is described. In a biochemical assay, their optical antipodes showed similar potencies, which could be rationalized by the cocrystal structures of these compounds bound to LTA4H. Despite comparable stabilities in liver microsomes, they showed distinct in vivo PK properties. Selective O-phosphorylation of the (R)-enantiomers in blood led to clearance values above the hepatic blood flow, whereas the (S)-enantiomers were unaffected and exhibited satisfactory metabolic stabilities in vivo. Introduction of two pyrazole rings led to compound (S)-2 with a more balanced distribution of polarity across the molecule, exhibiting high selectivity and excellent potency in vitro and in vivo. Furthermore, compound (S)-2 showed favorable profiles in 16-week IND-enabling toxicology studies in dogs and rats. Based on allometric scaling and potency in whole blood, compound (S)-2 has the potential for a low oral efficacious dose administered once daily.
Collapse
Affiliation(s)
- Gebhard Thoma
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Christian Markert
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Rainer Lueoend
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Wolfgang Miltz
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Carsten Spanka
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Birgit Bollbuck
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Romain M Wolf
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Honnappa Srinivas
- Chemical Biology & Therapeutics, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Carlos A Penno
- Chemical Biology & Therapeutics, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Michael Kiffe
- PK Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Monika Gajewska
- PK Sciences, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Dallas Bednarczyk
- Discovery & Translational Lab, Biomedical Research, Novartis Pharma AG, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Grazyna Wieczorek
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Amanda Evans
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Christian Beerli
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Till A Röhn
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| |
Collapse
|
6
|
Kamimura H, Uehara S, Yoneda N, Suemizu H. Empirical scaling factor for predicting human pharmacokinetic profiles of disproportionate metabolites using the Css-MRTpo method and chimeric mice with humanised livers. Xenobiotica 2023; 53:523-535. [PMID: 37938160 DOI: 10.1080/00498254.2023.2280785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Predicting plasma concentration-time profiles of disproportionate metabolites in humans is crucial for evaluating metabolites according to the Safety Testing guidelines. We evaluated Css-MRTpo, an empirical method, using chimeric mice with humanised livers capable of generating human-disproportionate metabolites. Azilsartan and AZ-M2 were administered to humanised chimeric mice, and pharmacokinetic parameters were obtained. Pharmacokinetic data for DS-1971a and DS-M1 in humanised chimeric mice were obtained from the literature. The human plasma concentration-time profiles of these compounds were simulated using the Css-MRTpo method. Azilsartan, DS-1971a, and PF-04937319 produced human disproportionate metabolites, AZ-M2, DS-M1, and PF-M1, respectively. The predicted human pharmacokinetic profiles of PF-04937319 and PF-M1 were obtained from a previous study, and their outcomes were re-evaluated. Our findings revealed that the plasma concentrations of the three metabolites were unexpectedly underpredicted, whereas the three unchanged drugs were reasonably predicted. Further, the introduction of the empirical scaling factor of 3, obtained from six model compounds, improved the predictability of metabolites, suggesting the potential usefulness of the Css-MRTpo method in combination with humanised chimeric mice for predicting the pharmacokinetic profiles of disproportionate metabolites at the early stage of new drug development.
Collapse
Affiliation(s)
- Hidetaka Kamimura
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Shotaro Uehara
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Nao Yoneda
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Hiroshi Suemizu
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| |
Collapse
|
7
|
Yau E, Gertz M, Ogungbenro K, Aarons L, Olivares-Morales A. A "middle-out approach" for the prediction of human drug disposition from preclinical data using simplified physiologically based pharmacokinetic (PBPK) models. CPT Pharmacometrics Syst Pharmacol 2023; 12:346-359. [PMID: 36647756 PMCID: PMC10014056 DOI: 10.1002/psp4.12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Simplified physiologically based pharmacokinetic (PBPK) models using estimated tissue-to-unbound plasma partition coefficients (Kpus) were previously investigated by fitting them to in vivo pharmacokinetic (PK) data. After optimization with preclinical data, the performance of these models for extrapolation of distribution kinetics to human were evaluated to determine the best approach for the prediction of human drug disposition and volume of distribution (Vss) using PBPK modeling. Three lipophilic bases were tested (diazepam, midazolam, and basmisanil) for which intravenous PK data were available in rat, monkey, and human. The models with Kpu scalars using k-means clustering were generally the best for fitting data in the preclinical species and gave plausible Kpu values. Extrapolations of plasma concentrations for diazepam and midazolam using these models and parameters obtained were consistent with the observed clinical data. For diazepam and midazolam, the human predictions of Vss after optimization in rats and monkeys were better compared with the Vss estimated from the traditional PBPK modeling approach (varying from 1.1 to 3.1 vs. 3.7-fold error). For basmisanil, the sparse preclinical data available could have affected the model performance for fitting and the subsequent extrapolation to human. Overall, this work provides a rational strategy to predict human drug distribution using preclinical PK data within the PBPK modeling strategy.
Collapse
Affiliation(s)
- Estelle Yau
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK.,Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael Gertz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK
| | - Leon Aarons
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK
| | - Andrés Olivares-Morales
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
8
|
Matsumoto S, Uehara S, Kamimura H, Cho N, Ikeda H, Maeda S, Kagiyama K, Miyata A, Suemizu H, Fukasawa K. Selection of the candidate compound at an early stage of new drug development: retrospective pharmacokinetic and metabolic evaluations of valsartan using common marmosets. Xenobiotica 2022; 52:613-624. [PMID: 36148579 DOI: 10.1080/00498254.2022.2127131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shogo Matsumoto
- Drug & Discovery & Management Department, R&D Division, Meiji Seika Pharma Co., Ltd., Tokyo, Japan
| | - Shotaro Uehara
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hidetaka Kamimura
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki, Japan.,Business Promotion Department, CLEA Japan, Inc., Tokyo, Japan
| | - Naoki Cho
- Drug & Discovery & Management Department, R&D Division, Meiji Seika Pharma Co., Ltd., Tokyo, Japan
| | - Hiroshi Ikeda
- Tokyo Animal & Diet Department, CLEA Japan, Inc., Tokyo, Japan
| | - Satoshi Maeda
- Yaotsu Breeding Center, CLEA Japan, Inc., Gifu, Japan
| | | | - Atsunori Miyata
- Drug & Discovery & Management Department, R&D Division, Meiji Seika Pharma Co., Ltd., Tokyo, Japan
| | - Hiroshi Suemizu
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki, Japan
| | | |
Collapse
|
9
|
Petersson C, Zhou X, Berghausen J, Cebrian D, Davies M, DeMent K, Eddershaw P, Riedmaier AE, Leblanc AF, Manveski N, Marathe P, Mavroudis PD, McDougall R, Parrott N, Reichel A, Rotter C, Tess D, Volak LP, Xiao G, Yang Z, Baker J. Current Approaches for Predicting Human PK for Small Molecule Development Candidates: Findings from the IQ Human PK Prediction Working Group Survey. AAPS J 2022; 24:85. [DOI: 10.1208/s12248-022-00735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
|
10
|
Mahmood I. A Simple Method for the Prediction of Human Concentration-Time Profiles and Pharmacokinetics of Antibody-Drug Conjugates (ADC) from Rats or Monkeys. Antibodies (Basel) 2022; 11:antib11020042. [PMID: 35735361 PMCID: PMC9219807 DOI: 10.3390/antib11020042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Knowledge of human concentration-time profiles from animal data can be useful during early drug development. The objective of this study is to predict human concentration-time profiles of antibody-drug conjugates (ADCs) and subsequently predict pharmacokinetic parameters in humans from rats or monkeys. Eight methods with different exponents of volume of distribution (0.8-1) as well as exponents of clearance (0.85), along with the exponents of volume of distribution for 5 ADCs, were used to predict human concentration-time profiles. The PK parameters were also scaled to humans from monkeys or rats using fixed exponents and compared with the PK parameters predicted from predicted human concentration-time profiles. The results of the study indicated that the exponent 0.9 and the combination of exponents of 0.9 and 0.8 (two exponents, 0.8 and 0.9, were used) were the best method to predict human concentration-time profiles and, subsequently, human PK parameters. The predicted PK parameters from fixed exponents were comparable with the predicted PK parameters estimated from human concentration-time profiles. The proposed methods are applicable to rats or monkeys with the same degree of accuracy. Overall, the proposed methods are robust, accurate, and cost- and time-effective.
Collapse
Affiliation(s)
- Iftekhar Mahmood
- Mahmood Clinical Pharmacology Consultancy, LLC., Rockville, MD 20850, USA
| |
Collapse
|
11
|
Dudal S, Bissantz C, Caruso A, David-Pierson P, Driessen W, Koller E, Krippendorff BF, Lechmann M, Olivares-Morales A, Paehler A, Rynn C, Türck D, Van De Vyver A, Wang K, Winther L. Translating pharmacology models effectively to predict therapeutic benefit. Drug Discov Today 2022; 27:1604-1621. [PMID: 35304340 DOI: 10.1016/j.drudis.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Many in vitro and in vivo models are used in pharmacological research to evaluate the role of targeted proteins in a disease. Understanding the translational relevance and limitation of these models for analyzing the disposition, pharmacokinetic/pharmacodynamic (PK/PD) profile, mechanism, and efficacy of a drug, is essential when selecting the most appropriate model of the disease of interest and predicting clinically efficacious doses of the investigational drug. Here, we review selected animal models used in ophthalmology, infectious diseases, oncology, autoimmune diseases, and neuroscience. Each area has specific challenges around translatability and determination of an efficacious dose: new patient-specific dosing methods could help overcome these limitations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ken Wang
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
12
|
Heimbach T, Kesisoglou F, Novakovic J, Tistaert C, Mueller-Zsigmondy M, Kollipara S, Ahmed T, Mitra A, Suarez-Sharp S. Establishing the Bioequivalence Safe Space for Immediate-Release Oral Dosage Forms using Physiologically Based Biopharmaceutics Modeling (PBBM): Case Studies. J Pharm Sci 2021; 110:3896-3906. [PMID: 34551349 DOI: 10.1016/j.xphs.2021.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
For oral drug products, in vitro dissolution is the most used surrogate of in vivo dissolution and absorption. In the context of drug product quality, safe space is defined as the boundaries of in vitro dissolution, and relevant quality attributes, within which drug product variants are expected to be bioequivalent to each other. It would be highly desirable if the safe space could be established via a direct link between available in vitro data and in vivo pharmacokinetics. In response to the challenges with establishing in vitro-in vivo correlations (IVIVC) with traditional modeling approaches, physiologically based biopharmaceutics modeling (PBBM) has been gaining increased attention. In this manuscript we report five case studies on using PBBM to establish a safe space for BCS Class 2 and 4 across different companies, including applications in an industrial setting for both internal decision making or regulatory applications. The case studies provide an opportunity to reflect on practical vs. ideal datasets for safe space development, the methodologies for incorporating dissolution data in the model and the criteria used for model validation and application. PBBM and safe space, still represent an evolving field and more examples are needed to drive development of best practices.
Collapse
Affiliation(s)
- Tycho Heimbach
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., RY80B-1403, 126 E. Lincoln Ave, Rahway 07065, NJ, USA
| | - Filippos Kesisoglou
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., RY80B-1403, 126 E. Lincoln Ave, Rahway 07065, NJ, USA.
| | | | | | | | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integration Product Development Organization (IPDO), Medchal Malkajgiri District, Hyberadad 500090, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integration Product Development Organization (IPDO), Medchal Malkajgiri District, Hyberadad 500090, Telangana, India
| | - Amitava Mitra
- Clinical Pharmacology and Pharmacometrics, Janssen Research and Development, Springhouse, PA, USA
| | | |
Collapse
|
13
|
Vuppugalla R, Sane R, Wichroski M, Gavai AK, Boyanapalli S, Yang Z. Prospective prediction of plasma pharmacokinetics of a novel immune-modulating agent in cancer patients after intra-tumoral administration: translation from non-clinical species to humans. Xenobiotica 2021; 51:1255-1263. [PMID: 34461800 DOI: 10.1080/00498254.2021.1934606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Intra-tumoral (I-TUMOUR) delivery is being widely explored for novel anti-cancer agents. This route is anticipated to result in high tumour concentrations leading to better efficacy and safety. Prediction of human systemic pharmacokinetics (PK) from non-clinical species facilitates understanding of pharmacokinetic-pharmacodynamic relationships, efficient dose selection, and risk assessment of novel drugs. However, there is limited knowledge on the predictability of human pharmacokinetics following I-TUMOUR delivery.In this publication, we present a case study wherein human systemic PK of a novel agent administered intra-tumourally was prospectively predicted and compared with observed human PK.Simple allometry was used to project the human clearance (10.5 mL/min/kg) and steady-state volume of distribution (1.4 L/kg) after intravenous (IV) dosing. Using these IV PK parameters and assuming rapid absorption and complete I-TUMOUR bioavailability, human plasma PK profile was simulated. The projected 30 min concentrations and AUC(0-6h) were within 1.9 to 2.5-fold and 1 to 1.4-fold of the observed PK indicating a reasonable concordance between predicted and observed PK.To our knowledge, this is the first article that prospectively projected human pharmacokinetics after I-TUMOUR dosing. The results from this study indicate that similar approaches can be used to project the human PK of other I-TUMOUR agents.
Collapse
Affiliation(s)
- Ragini Vuppugalla
- Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Lawrenceville, NJ, USA
| | - Ramola Sane
- Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Cambridge, MA, USA
| | - Michael Wichroski
- Drug Discovery Biology, Bristol-Myers Squibb Co., Cambridge, MA, USA
| | | | | | - Zheng Yang
- Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Lawrenceville, NJ, USA
| |
Collapse
|
14
|
Prediction of Human Pharmacokinetic Profiles of the Antituberculosis Drug Delamanid from Nonclinical Data: Potential Therapeutic Value against Extrapulmonary Tuberculosis. Antimicrob Agents Chemother 2021; 65:e0257120. [PMID: 34097484 DOI: 10.1128/aac.02571-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Delamanid has been studied extensively and approved for the treatment of pulmonary multidrug-resistant tuberculosis; however, its potential in the treatment of extrapulmonary tuberculosis remains unknown. We previously reported that, in rats, delamanid was broadly distributed to various tissues in addition to the lungs. In this study, we simulated human plasma concentration-time courses (pharmacokinetic profile) of delamanid, which has a unique property of metabolism by albumin, using two different approaches (steady-state concentration of plasma-mean residence time [Css-MRT] and physiologically based pharmacokinetic [PBPK] modeling). In Css-MRT, allometric scaling predicted the distribution volume at steady state based on data from mice, rats, and dogs. Total clearance was predicted by in vitro-in vivo extrapolation using a scaled albumin amount. A simulated human pharmacokinetic profile using a combination of human-predicted Css and MRT was almost identical to the observed profile after single oral administration, which suggests that the pharmacokinetic profile of delamanid could be predicted by allometric scaling from these animals and metabolic capacity in vitro. The PBPK model was constructed on the assumption that delamanid was metabolized by albumin in circulating plasma and tissues, to which the simulated pharmacokinetic profile was consistent. Moreover, the PBPK modeling approach demonstrated that the simulated concentrations of delamanid at steady state in the lung, brain, liver, and heart were higher than the in vivo effective concentration for Mycobacterium tuberculosis. These results indicate that delamanid may achieve similar concentrations in various organs to that of the lung and may have the potential to treat extrapulmonary tuberculosis.
Collapse
|
15
|
Sharda N, Khandelwal P, Zhang L, Caceres-Cortes J, Marathe P, Chimalakonda A. Pharmacokinetics of 40 kDa Polyethylene glycol (PEG) in mice, rats, cynomolgus monkeys and predicted pharmacokinetics in humans. Eur J Pharm Sci 2021; 165:105928. [PMID: 34265405 DOI: 10.1016/j.ejps.2021.105928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/30/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022]
Abstract
Conjugation with polyethylene glycol (PEG), PEGylation, has been considered a useful tool to improve drug-like properties of novel small molecules and biologics in drug discovery. PEG40 or 40 kDa PEG is a double-branched PEG, routinely employed to improve the pharmacokinetics (PK) of therapeutics, including successful marketed products such as Pegasys® and Omontys®. However, less is known about the extent of contribution of PEG40 to the overall PK of the PEGylated product. Considering the half-life of PEG40 conjugated PEGylated products ranges from 1 to 14 days in human, this information is immensely valuable. After successfully developing a high sensitivity NMR based analytical method to quantitate PEG40 in mice serum after intravenous (IV) administration (Khandelwal et al., 2019), here, we extend its application to measure PEG40 in serum after IV administration and subcutaneous (SC) absorption in routinely employed non-clinical species in drug discovery, namely, mice, rats and cynomolgus monkeys. We utilized non-compartmental analysis and compartmental modeling to characterize the PK of PEG40 in these non-clinical species. Finally, we employed allometric scaling and Wajima (MRT-Css) method to predict the PK of PEG40 in human after IV administration and SC absorption. In general, our data shows that intrinsic PK parameters of PEG40 in mice, rats and cynomolgus monkeys are in the range of published literature values for PEG40-conjugated products, unless saturable clearance mechanisms are involved. We observed a bioavailability (F) of ~68% in CD-1 mice after SC administration of PEG40. In rats, the clearance (CL) and volume of distribution at steady state (Vss) after IV infusion of PEG40 were 0.079 mL/min/kg and 0.19 L/kg, respectively; and SC bioavailability was ~20%. In cynomolgus monkeys, after IV infusion, CL and Vss of PEG40 were 0.037 mL/min/kg and 0.20 L/kg, respectively; and SC bioavailability was ~69%. In addition, our findings indicate flip-flop kinetics of PEG40 in rodents, but not in cynomolgus monkeys. Finally, in human, intrinsic CL and Vss of PEG40 were projected to be 0.02 mL/min/kg (0.084 L/h) and 0.22 L/kg, respectively. This comprehensive report of PK of PEG40 in non-clinical species and its subsequent prediction in humans is expected to be useful to drug discovery and development scientists for efficient decision-making and optimal resource utilization.
Collapse
Affiliation(s)
- Nidhi Sharda
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Route 206 & Province Line Rd., Princeton NJ, 08543, USA; Clinical Pharmacology and Pharmacometrics, 3401 Princeton Pike, Lawrenceville NJ, 08648, USA
| | - Purnima Khandelwal
- Department of Discovery Synthesis, Small Molecule Drug Discovery, Bristol-Myers Squibb, Route 206 & Province Line Rd., Princeton NJ, 08543, USA
| | - Lisa Zhang
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Route 206 & Province Line Rd., Princeton NJ, 08543, USA
| | - Janet Caceres-Cortes
- Department of Discovery Synthesis, Small Molecule Drug Discovery, Bristol-Myers Squibb, Route 206 & Province Line Rd., Princeton NJ, 08543, USA
| | - Punit Marathe
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Route 206 & Province Line Rd., Princeton NJ, 08543, USA
| | - Anjaneya Chimalakonda
- Clinical Pharmacology and Pharmacometrics, 3401 Princeton Pike, Lawrenceville NJ, 08648, USA.
| |
Collapse
|
16
|
Bamfo NO, Hosey-Cojocari C, Benet LZ, Remsberg CM. Examination of Urinary Excretion of Unchanged Drug in Humans and Preclinical Animal Models: Increasing the Predictability of Poor Metabolism in Humans. Pharm Res 2021; 38:1139-1156. [PMID: 34254223 PMCID: PMC9855226 DOI: 10.1007/s11095-021-03076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/19/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE A dataset of fraction excreted unchanged in the urine (fe) values was developed and used to evaluate the ability of preclinical animal species to predict high urinary excretion, and corresponding poor metabolism, in humans. METHODS A literature review of fe values in rats, dogs, and monkeys was conducted for all Biopharmaceutics Drug Disposition Classification System (BDDCS) Class 3 and 4 drugs (n=352) and a set of Class 1 and 2 drugs (n=80). The final dataset consisted of 202 total fe values for 135 unique drugs. Human and animal data were compared through correlations, two-fold analysis, and binary classifications of high (fe ≥30%) versus low (<30%) urinary excretion in humans. Receiver Operating Characteristic curves were plotted to optimize animal fe thresholds. RESULTS Significant correlations were found between fe values for each animal species and human fe (p<0.05). Sixty-five percent of all fe values were within two-fold of human fe with animals more likely to underpredict human urinary excretion as opposed to overpredict. Dogs were the most reliable predictors of human fe of the three animal species examined with 72% of fe values within two-fold of human fe and the greatest accuracy in predicting human fe ≥30%. ROC determined thresholds of ≥25% in rats, ≥19% in dogs, and ≥10% in monkeys had improved accuracies in predicting human fe of ≥30%. CONCLUSIONS Drugs with high urinary excretion in animals are likely to have high urinary excretion in humans. Animal models tend to underpredict the urinary excretion of unchanged drug in humans.
Collapse
Affiliation(s)
- Nadia O Bamfo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chelsea Hosey-Cojocari
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California, USA
| | - Connie M Remsberg
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA.
| |
Collapse
|
17
|
Parrish KE, Swanson J, Cheng L, Luk E, Stetsko P, Smalley J, Shu YZ, Huang J, Pabalan JG, Sun Y, Zvyaga T, Cvijic ME, Burke J, Borzilleri R, Murtaza A, Augustine K, Yang Z. Pharmacodynamics-based approach for efficacious human dose projection of BMS-986260, a small molecule transforming growth factor beta receptor 1 inhibitor. Biopharm Drug Dispos 2020; 42:137-149. [PMID: 33354831 DOI: 10.1002/bdd.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023]
Abstract
Transforming growth factor beta (TGF-β) is a pleiotropic cytokine that has a wide array of biological effects. For decades, tumor biology implicated TGF-β as an attractive therapeutic target due to its immunosuppressive effects. Toward this end, multiple pharmaceutical companies developed a number of drug modalities that specifically target the TGF-β pathway. BMS-986260 is a small molecule, selective TGF-βR1 kinase inhibitor that was under preclinical development for oncology. In vivo studies across mouse, rat, dog, and monkey and cryopreserved hepatocytes predicted human pharmacokinetics (PK) and distribution of BMS-986260. Efficacy studies of BMS-986260 were undertaken in the MC38 murine colon cancer model, and target engagement, as measured by phosphorylation of SMAD2/3, was assessed in whole blood to predict the clinical efficacious dose. The human clearance is predicted to be low, 4.25 ml/min/kg. BMS-986260 provided a durable and robust antitumor response at 3.75 mg/kg daily and 1.88 mg/kg twice-daily dosing regimens. Phosphorylation of SMAD2/3 was 3.5-fold less potent in human monocytes than other preclinical species. Taken together, the projected clinical efficacious dose was 600 mg QD or 210 mg BID for 3 days followed by a 4-day drug holiday. Mechanism-based cardiovascular findings in the rat ultimately led to the termination of BMS-986260. This study describes the preclinical PK characterization and pharmacodynamics-based efficacious dose projection of a novel small molecule TGF-βR1 inhibitor.
Collapse
Affiliation(s)
- Karen E Parrish
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Jesse Swanson
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Lihong Cheng
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Emily Luk
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Paul Stetsko
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - James Smalley
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Yue-Zhong Shu
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Jinwen Huang
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Jonathan G Pabalan
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Yongnian Sun
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Tatyana Zvyaga
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Mary Ellen Cvijic
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - James Burke
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Robert Borzilleri
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Anwar Murtaza
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Karen Augustine
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| | - Zheng Yang
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Early Discovery, Princeton, New Jersey, USA
| |
Collapse
|
18
|
Song L, Yao X, Liu Y, Zhong W, Jiang J, Liu H, Zhou H, Shi C, Zong K, Wang C, Ma C, Liu D, Hu P. Translational prediction of first-in-human pharmacokinetics and pharmacodynamics of janagliflozin, a selective SGLT2 inhibitor, using allometric scaling, dedrick and PK/PD modeling methods. Eur J Pharm Sci 2020; 147:105281. [PMID: 32126254 DOI: 10.1016/j.ejps.2020.105281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/18/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
AIM Janagliflozin is an orally selective SGLT2 inhibitor. To predict human pharmacokinetics/pharmacodynamics (PK/PD) characteristics of janagliflozin. To design optimal starting dose and effective dose for janagliflozin first-in-human (FIH) study. METHODS Animal PK/PD properties of janagliflozin were obtained from preclinical in vivo and in vitro study. Pharmacologically effective level of same class SGLT2 inhibitors were assessed through preclinical and clinical efficacy data of dapagliflozin, empagliflozin and canagliflozin. Human PK parameters and profiles of janagliflozin were predicted by various methods such as allometric scaling (AS), dedrick and PK/PD modeling analysis. Mechanistic PK/PD model was developed to describe janagliflozin-mediated impact on urinary glucose excretion (UGE). Human IC50 was scaled from rat model-estimated IC50 by correcting interspecies difference of in vitro IC50 and plasma fu of rat and human. The quantitative PK/PD prediction of janagliflozin was evaluated via observed PK/PD profiles of healthy subjects. Predicted PK/PD characteristics of janagliflozin were applied in FIH dose design. Optimal starting dose was suggested by considering preclinical PD and toxicity data of janagliflozin. Effective dose was suggested by considering pharmacologically effective level of same class drugs. RESULTS PK/PD characteristics of janagliflozin in preclinical species were summarized. Pharmacologically effective level for SGLT2 inhibitors was defined as 25~30% ΔUGE (ΔUGE=--(PG*GFR)within24h) based on efficacy data of three same class drugs. Human predicted CL, Vss and F were 1.04 L/h, 77.5 L and 0.80. Predicted AUC and Cmax of janagliflozin of 10 and 50 mg were within 0.47~2.08 fold of observed values. Predicted human UGE0-24 h and UGE0-144 h of 10 and 50 mg dose range were within 0.66~1.41 fold of observed values. Optimal starting dose and pharmacologically active dose (PAD) were suggested as 10 mg and 50 mg. Dose range for FIH study was designed as 10-450 mg. CONCLUSIONS This study predicted human PK/PD characteristics of janagliflozin based on preclinical data and provide optimal dose design for janagliflozin FIH study based on pharmacologically effective level of same class drugs.
Collapse
Affiliation(s)
- Ling Song
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences, Beijing, 100032, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing,100191, China.
| | - Xueting Yao
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Yang Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Wen Zhong
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Ji Jiang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Hongzhong Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Huimin Zhou
- XuanZhu Pharma Co., Ltd., Jinan, Shandong, 250101, China
| | - Chongtie Shi
- XuanZhu Pharma Co., Ltd., Jinan, Shandong, 250101, China
| | - Kaiqi Zong
- XuanZhu Pharma Co., Ltd., Jinan, Shandong, 250101, China
| | - Chong Wang
- XuanZhu Pharma Co., Ltd., Jinan, Shandong, 250101, China
| | - Chuanxiang Ma
- XuanZhu Pharma Co., Ltd., Jinan, Shandong, 250101, China
| | - Dongyang Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences, Beijing, 100032, China; Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China.
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences, Beijing, 100032, China.
| |
Collapse
|
19
|
Cornelissen AS, Klaassen SD, van Groningen T, Bohnert S, Joosen MJA. Comparative physiology and efficacy of atropine and scopolamine in sarin nerve agent poisoning. Toxicol Appl Pharmacol 2020; 396:114994. [PMID: 32251685 DOI: 10.1016/j.taap.2020.114994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 01/20/2023]
Abstract
Anticholinergic treatment is key for effective medical treatment of nerve agent exposure. Atropine is included at a 2 mg intramuscular dose in so-called autoinjectors designed for self- and buddy-aid. As patient cohorts are not available, predicting and evaluating the efficacy of medical countermeasures relies on animal models. The use of atropine as a muscarinic antagonist is based on efficacy achieved in studies in a variety of species. The dose of atropine administered varies considerably across these studies. This is a complicating factor in the prediction of efficacy in the human situation, largely because atropine dosing also influences therapeutic efficacy of oximes and anticonvulsants generally part of the treatment administered. To improve translation of efficacy of dosing regimens, including pharmacokinetics and physiology provide a promising approach. In the current study, pharmacokinetics and physiological parameters obtained using EEG and ECG were assessed in naïve rats and in sarin-exposed rats for two anticholinergic drugs, atropine and scopolamine. The aim was to find a predictive parameter for therapeutic efficacy. Scopolamine and atropine showed a similar bioavailability, but brain levels reached were much higher for scopolamine. Scopolamine exhibited a dose-dependent loss of beta power in naïve animals, whereas atropine did not show any such central effect. This effect was correlated with an enhanced anticonvulsant effect of scopolamine compared to atropine. These findings show that an approach including pharmacokinetics and physiology could contribute to improved dose scaling across species and assessing the therapeutic potential of similar anticholinergic and anticonvulsant drugs against nerve agent poisoning.
Collapse
Affiliation(s)
- Alex S Cornelissen
- TNO Defense, Security and Safety, CBRN Protection, Lange Kleiweg 137, 2288, GJ, Rijswijk, the Netherlands.
| | - Steven D Klaassen
- TNO Defense, Security and Safety, CBRN Protection, Lange Kleiweg 137, 2288, GJ, Rijswijk, the Netherlands
| | - Tomas van Groningen
- TNO Defense, Security and Safety, CBRN Protection, Lange Kleiweg 137, 2288, GJ, Rijswijk, the Netherlands
| | - Sara Bohnert
- Defence Research and Development Canada-Suffield Research Centre, Department of National Defence, Suffield, Alberta, Canada
| | - Marloes J A Joosen
- TNO Defense, Security and Safety, CBRN Protection, Lange Kleiweg 137, 2288, GJ, Rijswijk, the Netherlands
| |
Collapse
|
20
|
Patel D, Yang W, Lipert M, Wu T. Application and Impact of Human Dose Projection from Discovery to Early Drug Development. AAPS PharmSciTech 2020; 21:44. [PMID: 31897807 DOI: 10.1208/s12249-019-1598-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/01/2019] [Indexed: 12/31/2022] Open
Abstract
The application and impact of human dose projection (HDP) has been well recognized in the late drug development phase, with increasing appreciation earlier during discovery and early development. This commentary describes the perspective of pharmaceutical scientists on the evolving application and impact of HDP at various phases from discovery to early development, including lead generation, lead optimization, lead up to candidate nomination, and early drug development. The underlying fundamental concepts and key input parameters for HDP are briefly discussed. A broad overview of phase-specific tools and approaches commonly utilized for human dose projection in the pharmaceutical industry is provided. A discussion of phase-appropriate implementation strategies, associated limitations/assumptions and continuous refinement for HDP from discovery to early development is presented. The authors describe the phase-specific applications of human dose projection to facilitate key assessments and relative impact on decision points.
Collapse
|
21
|
Kamimura H, Uehara S, Suemizu H. A novel Css-MRTpo approach to simulate oral plasma concentration-time profiles of the partial glucokinase activator PF-04937319 and its disproportionate N-demethylated metabolite in humans using chimeric mice with humanized livers. Xenobiotica 2019; 50:761-768. [PMID: 31721621 DOI: 10.1080/00498254.2019.1693082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A Css-MRTpo superposition method was devised to predict (retrospectively) oral plasma concentration-time profiles of PF-04937319 and its MIST-related metabolite, M1, in humans using chimeric mice with humanized liver.Original PK data were taken from a published report in which PF-04937319 and M1 were given to chimeric mice orally and/or intravenously. Human CL and Vss were predicted by single-species allometry and MRTiv,pred were calculated as Vss,pred/CL,pred. MRTpo,human were assumed to be MRTiv,pred plus MAT or mean metabolite formation time (MFT). Human Css was calculated by dividing the corrected oral dose by Vss,pred.Chronological sampling time and measured plasma concentrations were corrected by MRTpo,human and Css,human, respectively, and transformed to the corresponding values in humans.The obtained concentration-time profile of PF-04937319 was superimposed well with the observed data after single and repeated oral administration to humans. The transformed plasma concentration of M1 was somewhat lower than the observed value, but a slow increase of the simulated metabolite reflected gradual increase of observed M1 on Day 1. Transformed M1 gave an almost-flat concentration-time profile on Day 14, which was consistent with the curve observed in humans. Application of this novel method to other MIST-related compounds is discussed.
Collapse
Affiliation(s)
- Hidetaka Kamimura
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Shotaro Uehara
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| |
Collapse
|
22
|
Jairam RK, Mallurwar SR, Sulochana SP, Chandrasekhar DV, Todmal U, Bhamidipati RK, Richter W, Srinivas NR, Mullangi R. Prediction of Human Pharmacokinetics of Fomepizole from Preclinical Species Pharmacokinetics Based on Normalizing Time Course Profiles. AAPS PharmSciTech 2019; 20:221. [PMID: 31214899 DOI: 10.1208/s12249-019-1434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
Fomepizole is used as an antidote to treat methanol poisoning due to its selectivity towards alcohol dehydrogenase. In the present study, the goal is to develop a method to predict the fomepizole human plasma concentration versus time profile based on the preclinical pharmacokinetics using the assumption of superimposability on simulated time course profiles of animals and humans. Standard allometric equations with/without correction factors were also assimilated in the prediction. The volume of distribution at steady state (Vss) predicted by simple allometry (57.55 L) was very close to the reported value (42.17 L). However, clearance (CL) prediction by simple allometry was at least 3-fold higher to the reported value (33.86 mL/min); hence, multiple correction factors were used to predict the clearance. Both brain weight and maximum life span potential could predict the CL with 1.22- and 1.01-fold difference. Specifically, the predicted Vss and CL values via interspecies scaling were used in the prediction of series of human intravenous pharmacokinetic parameters, while the simulation of human oral profile was done by the use of absorption rate constant (Ka) from dog following the applicability of human bioavailability value scaled from dog data. In summary, the findings indicate that the utility of diverse allometry approaches to derive the human pharmacokinetics of fomepizole after intravenous/oral dosing.
Collapse
Affiliation(s)
- Ravi Kumar Jairam
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys, Industrial Suburb, Yeshwanthpur, Bangalore, 560 022, India
| | | | - Suresh P Sulochana
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys, Industrial Suburb, Yeshwanthpur, Bangalore, 560 022, India
| | - Devaraj V Chandrasekhar
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys, Industrial Suburb, Yeshwanthpur, Bangalore, 560 022, India
| | - Umesh Todmal
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys, Industrial Suburb, Yeshwanthpur, Bangalore, 560 022, India
| | - Ravi Kanth Bhamidipati
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys, Industrial Suburb, Yeshwanthpur, Bangalore, 560 022, India
| | - Wolfgang Richter
- TUBE Pharmaceuticals GmbH, Leberstr. 20, A-1110, Vienna, Austria
| | | | - Ramesh Mullangi
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys, Industrial Suburb, Yeshwanthpur, Bangalore, 560 022, India.
| |
Collapse
|
23
|
Pierrillas PB, Henin E, Ball K, Ogier J, Amiel M, Kraus-Berthier L, Chenel M, Bouzom F, Tod M. Prediction of Human Nonlinear Pharmacokinetics of a New Bcl-2 Inhibitor Using PBPK Modeling and Interspecies Extrapolation Strategy. Drug Metab Dispos 2019; 47:648-656. [PMID: 30940629 DOI: 10.1124/dmd.118.085605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/26/2019] [Indexed: 01/05/2023] Open
Abstract
S 55746 ((S)-N-(4-hydroxyphenyl)-3-(6-(3-(morpholinomethyl)-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)benzo[d][1,3]dioxol-5-yl)-N-phenyl-5,6,7,8-tetrahydroindolizine-1-carboxamide) is a new selective Bcl-2 (B-cell lymphoma 2) inhibitor developed by Servier Laboratories and used to restore apoptosis functions in cancer patients. The aim of this work was to develop a translational approach using physiologically based (PB) pharmacokinetic (PK) modeling for interspecies extrapolation to anticipate the nonlinear PK behavior of this new compound in patients. A PBPK mouse model was first built using a hybrid approach, defining scaling factors (determined from in vitro data) to correct in vitro clearance parameters and predicted Kp (partition coefficient) values. The qualification of the hybrid model using these empirically determined scaling factors was satisfactorily completed with rat and dog data, allowing extrapolation of the PBPK model to humans. Human PBPK simulations were then compared with clinical trial data from a phase 1 trial in which the drug was given orally and daily to cancer patients. Human PBPK predictions were within the 95% prediction interval for the eight dose levels, taking into account both the nonlinear dose and time dependencies occurring in S 55746 kinetics. Thus, the proposed PK interspecies extrapolation strategy, based on preclinical and in vitro information and physiologic assumptions, could be a useful tool for predicting human plasma concentrations at the early stage of drug development.
Collapse
Affiliation(s)
- Philippe B Pierrillas
- Equipe mixte de recherche 3738, Ciblage Thérapeutique en Oncologie, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Université Claude Bernard Lyon 1, Oullins, France (P.P., E.H., M.T.); Pharmacie Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France (M.T.); Centre de Pharmacocinétique et Métabolisme, Technologie Servier, Orléans, France (P.P., F.B.); Clinical Pharmacokinetics and Pharmacometrics Division, Servier, Suresnes, France (K.B., J.O., M.A., M.C.); and Institut de Recherches Internationales Servier, Oncology R&D Unit, Suresnes, France (L.K-B.)
| | - Emilie Henin
- Equipe mixte de recherche 3738, Ciblage Thérapeutique en Oncologie, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Université Claude Bernard Lyon 1, Oullins, France (P.P., E.H., M.T.); Pharmacie Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France (M.T.); Centre de Pharmacocinétique et Métabolisme, Technologie Servier, Orléans, France (P.P., F.B.); Clinical Pharmacokinetics and Pharmacometrics Division, Servier, Suresnes, France (K.B., J.O., M.A., M.C.); and Institut de Recherches Internationales Servier, Oncology R&D Unit, Suresnes, France (L.K-B.)
| | - Kathryn Ball
- Equipe mixte de recherche 3738, Ciblage Thérapeutique en Oncologie, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Université Claude Bernard Lyon 1, Oullins, France (P.P., E.H., M.T.); Pharmacie Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France (M.T.); Centre de Pharmacocinétique et Métabolisme, Technologie Servier, Orléans, France (P.P., F.B.); Clinical Pharmacokinetics and Pharmacometrics Division, Servier, Suresnes, France (K.B., J.O., M.A., M.C.); and Institut de Recherches Internationales Servier, Oncology R&D Unit, Suresnes, France (L.K-B.)
| | - Julien Ogier
- Equipe mixte de recherche 3738, Ciblage Thérapeutique en Oncologie, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Université Claude Bernard Lyon 1, Oullins, France (P.P., E.H., M.T.); Pharmacie Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France (M.T.); Centre de Pharmacocinétique et Métabolisme, Technologie Servier, Orléans, France (P.P., F.B.); Clinical Pharmacokinetics and Pharmacometrics Division, Servier, Suresnes, France (K.B., J.O., M.A., M.C.); and Institut de Recherches Internationales Servier, Oncology R&D Unit, Suresnes, France (L.K-B.)
| | - Magali Amiel
- Equipe mixte de recherche 3738, Ciblage Thérapeutique en Oncologie, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Université Claude Bernard Lyon 1, Oullins, France (P.P., E.H., M.T.); Pharmacie Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France (M.T.); Centre de Pharmacocinétique et Métabolisme, Technologie Servier, Orléans, France (P.P., F.B.); Clinical Pharmacokinetics and Pharmacometrics Division, Servier, Suresnes, France (K.B., J.O., M.A., M.C.); and Institut de Recherches Internationales Servier, Oncology R&D Unit, Suresnes, France (L.K-B.)
| | - Laurence Kraus-Berthier
- Equipe mixte de recherche 3738, Ciblage Thérapeutique en Oncologie, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Université Claude Bernard Lyon 1, Oullins, France (P.P., E.H., M.T.); Pharmacie Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France (M.T.); Centre de Pharmacocinétique et Métabolisme, Technologie Servier, Orléans, France (P.P., F.B.); Clinical Pharmacokinetics and Pharmacometrics Division, Servier, Suresnes, France (K.B., J.O., M.A., M.C.); and Institut de Recherches Internationales Servier, Oncology R&D Unit, Suresnes, France (L.K-B.)
| | - Marylore Chenel
- Equipe mixte de recherche 3738, Ciblage Thérapeutique en Oncologie, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Université Claude Bernard Lyon 1, Oullins, France (P.P., E.H., M.T.); Pharmacie Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France (M.T.); Centre de Pharmacocinétique et Métabolisme, Technologie Servier, Orléans, France (P.P., F.B.); Clinical Pharmacokinetics and Pharmacometrics Division, Servier, Suresnes, France (K.B., J.O., M.A., M.C.); and Institut de Recherches Internationales Servier, Oncology R&D Unit, Suresnes, France (L.K-B.)
| | - François Bouzom
- Equipe mixte de recherche 3738, Ciblage Thérapeutique en Oncologie, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Université Claude Bernard Lyon 1, Oullins, France (P.P., E.H., M.T.); Pharmacie Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France (M.T.); Centre de Pharmacocinétique et Métabolisme, Technologie Servier, Orléans, France (P.P., F.B.); Clinical Pharmacokinetics and Pharmacometrics Division, Servier, Suresnes, France (K.B., J.O., M.A., M.C.); and Institut de Recherches Internationales Servier, Oncology R&D Unit, Suresnes, France (L.K-B.)
| | - Michel Tod
- Equipe mixte de recherche 3738, Ciblage Thérapeutique en Oncologie, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Université Claude Bernard Lyon 1, Oullins, France (P.P., E.H., M.T.); Pharmacie Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France (M.T.); Centre de Pharmacocinétique et Métabolisme, Technologie Servier, Orléans, France (P.P., F.B.); Clinical Pharmacokinetics and Pharmacometrics Division, Servier, Suresnes, France (K.B., J.O., M.A., M.C.); and Institut de Recherches Internationales Servier, Oncology R&D Unit, Suresnes, France (L.K-B.)
| |
Collapse
|
24
|
Miyamoto M, Iwasaki S, Chisaki I, Nakagawa S, Amano N, Kosugi Y, Hirabayashi H. Prediction of human pharmacokinetics of long half-life compounds using chimeric mice with humanised liver. Xenobiotica 2019; 49:1379-1387. [DOI: 10.1080/00498254.2019.1579394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maki Miyamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shinji Iwasaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Ikumi Chisaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Sayaka Nakagawa
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Nobuyuki Amano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yohei Kosugi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
25
|
Smith PW, Zuccotto F, Bates RH, Martinez-Martinez MS, Read KD, Peet C, Epemolu O. Pharmacokinetics of β-Lactam Antibiotics: Clues from the Past To Help Discover Long-Acting Oral Drugs in the Future. ACS Infect Dis 2018; 4:1439-1447. [PMID: 30141902 PMCID: PMC6189874 DOI: 10.1021/acsinfecdis.8b00160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 01/03/2023]
Abstract
β-Lactams represent perhaps the most important class of antibiotics yet discovered. However, despite many years of active research, none of the currently approved drugs in this class combine oral activity with long duration of action. Recent developments suggest that new β-lactam antibiotics with such a profile would have utility in the treatment of tuberculosis. Consequently, the historical β-lactam pharmacokinetic data have been compiled and analyzed to identify possible directions and drug discovery strategies aimed toward new β-lactam antibiotics with this profile.
Collapse
Affiliation(s)
| | - Fabio Zuccotto
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| | - Robert H. Bates
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | | | - Kevin D. Read
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| | - Caroline Peet
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| | - Ola Epemolu
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| |
Collapse
|
26
|
UCT943, a Next-Generation Plasmodium falciparum PI4K Inhibitor Preclinical Candidate for the Treatment of Malaria. Antimicrob Agents Chemother 2018; 62:AAC.00012-18. [PMID: 29941635 PMCID: PMC6125526 DOI: 10.1128/aac.00012-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.
Collapse
|
27
|
Regueiro-Ren A, Swidorski JJ, Liu Z, Chen Y, Sin N, Sit SY, Chen J, Venables BL, Zhu J, Nowicka-Sans B, Protack T, Lin Z, Terry B, Samanta H, Zhang S, Li Z, Easter J, Beno BR, Arora V, Huang XS, Rahematpura S, Parker DD, Haskell R, Santone KS, Cockett MI, Krystal M, Meanwell NA, Jenkins S, Hanumegowda U, Dicker IB. Design, Synthesis, and SAR of C-3 Benzoic Acid, C-17 Triterpenoid Derivatives. Identification of the HIV-1 Maturation Inhibitor 4-((1 R,3a S,5a R,5b R,7a R,11a S,11b R,13a R,13b R)-3a-((2-(1,1-Dioxidothiomorpholino)ethyl)amino)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-2,3,3a,4,5,5a,5b,6,7,7a,8,11,11a,11b,12,13,13a,13b-octadecahydro-1 H-cyclopenta[ a]chrysen-9-yl)benzoic Acid (GSK3532795, BMS-955176). J Med Chem 2018; 61:7289-7313. [PMID: 30067361 DOI: 10.1021/acs.jmedchem.8b00854] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GSK3532795, formerly known as BMS-955176 (1), is a potent, orally active, second-generation HIV-1 maturation inhibitor (MI) that advanced through phase IIb clinical trials. The careful design, selection, and evaluation of substituents appended to the C-3 and C-17 positions of the natural product betulinic acid (3) was critical in attaining a molecule with the desired virological and pharmacokinetic profile. Herein, we highlight the key insights made in the discovery program and detail the evolution of the structure-activity relationships (SARs) that led to the design of the specific C-17 amine moiety in 1. These modifications ultimately enabled the discovery of 1 as a second-generation MI that combines broad coverage of polymorphic viruses (EC50 <15 nM toward a panel of common polymorphisms representative of 96.5% HIV-1 subtype B virus) with a favorable pharmacokinetic profile in preclinical species.
Collapse
|
28
|
Evaluation of Generic Methods to Predict Human Pharmacokinetics Using Physiologically Based Pharmacokinetic Model for Early Drug Discovery of Tyrosine Kinase Inhibitors. Eur J Drug Metab Pharmacokinet 2018; 44:121-132. [DOI: 10.1007/s13318-018-0496-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Horiuchi K, Ohnishi S, Matsuzaki T, Funaki S, Watanabe A, Mizutare T, Matsumoto S, Nezasa KI, Hasegawa H. Improved Human Pharmacokinetic Prediction of Hepatically Metabolized Drugs With Species-Specific Systemic Clearance. J Pharm Sci 2018; 107:1443-1453. [DOI: 10.1016/j.xphs.2017.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/24/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023]
|
30
|
Schneider JL, Dingman RK, Balu-Iyer SV. Lipidic Nanoparticles Comprising Phosphatidylinositol Mitigate Immunogenicity and Improve Efficacy of Recombinant Human Acid Alpha-Glucosidase in a Murine Model of Pompe Disease. J Pharm Sci 2018; 107:831-837. [PMID: 29102549 PMCID: PMC5812781 DOI: 10.1016/j.xphs.2017.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/25/2022]
Abstract
Enzyme replacement therapy with recombinant human acid α-glucosidase (rhGAA) is complicated by the formation of anti-rhGAA antibodies, a short circulating half-life, instability in the plasma, and limited uptake into target tissue. Previously, we have demonstrated that phosphatidylinositol (PI) containing liposomes can reduce the immunogenicity and extend plasma survival of factor VIII (FVIII) in a mouse model of hemophilia A. In this article, we investigate the ability of PI liposomes to be used as a delivery vehicle to overcome the issues that complicate therapy with rhGAA. In a murine model of Pompe disease, administration of PI-rhGAA mitigated the immunogenicity of rhGAA, resulting in a significantly lower formation of anti-rhGAA antibodies. PI-rhGAA also showed minimal improvements to the pharmacokinetic parameters and efficacy measures compared to free rhGAA. Overall, these data suggest that PI-rhGAA may have the potential to be a useful therapeutic option for improving the treatment of Pompe disease.
Collapse
Affiliation(s)
- Jennifer L Schneider
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Robert K Dingman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|
31
|
Preclinical Pharmacokinetics and Pharmacodynamics of Pinometostat (EPZ-5676), a First-in-Class, Small Molecule S-Adenosyl Methionine Competitive Inhibitor of DOT1L. Eur J Drug Metab Pharmacokinet 2017; 42:891-901. [DOI: 10.1007/s13318-017-0404-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Lombardo F, Jing Y. In Silico Prediction of Volume of Distribution in Humans. Extensive Data Set and the Exploration of Linear and Nonlinear Methods Coupled with Molecular Interaction Fields Descriptors. J Chem Inf Model 2016; 56:2042-2052. [DOI: 10.1021/acs.jcim.6b00044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Franco Lombardo
- Modelling, Computation
and Molecular
Properties Group, Biogen, 225 Binney
Street, Cambridge, Massachusetts 02142, United States
| | - Yankang Jing
- Modelling, Computation
and Molecular
Properties Group, Biogen, 225 Binney
Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
33
|
Gobeau N, Stringer R, De Buck S, Tuntland T, Faller B. Evaluation of the GastroPlus™ Advanced Compartmental and Transit (ACAT) Model in Early Discovery. Pharm Res 2016; 33:2126-39. [PMID: 27278908 DOI: 10.1007/s11095-016-1951-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of this study was to evaluate the oral exposure predictions obtained early in drug discovery with a generic GastroPlus Advanced Compartmental And Transit (ACAT) model based on the in vivo intravenous blood concentration-time profile, in silico properties (lipophilicity, pKa) and in vitro high-throughput absorption-distribution-metabolism-excretion (ADME) data (as determined by PAMPA, solubility, liver microsomal stability assays). METHODS The model was applied to a total of 623 discovery molecules and their oral exposure was predicted in rats and/or dogs. The predictions of Cmax, AUClast and Tmax were compared against the observations. RESULTS The generic model proved to make predictions of oral Cmax, AUClast and Tmax within 3-fold of the observations for rats in respectively 65%, 68% and 57% of the 537 cases. For dogs, it was respectively 77%, 79% and 85% of the 124 cases. Statistically, the model was most successful at predicting oral exposure of Biopharmaceutical Classification System (BCS) class 1 compounds compared to classes 2 and 3, and was worst at predicting class 4 compounds oral exposure. CONCLUSION The generic GastroPlus ACAT model provided reasonable predictions especially for BCS class 1 compounds. For compounds of other classes, the model may be refined by obtaining more information on solubility and permeability in secondary assays. This increases confidence that such a model can be used in discovery projects to understand the parameters limiting absorption and extrapolate predictions across species. Also, when predictions disagree with the observations, the model can be updated to test hypotheses and understand oral absorption.
Collapse
Affiliation(s)
- N Gobeau
- Metabolism and Pharmacokinetics (MAP) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland.
- Medicines for Malaria Venture, Route de Pré-Bois 20, PO Box 1826, 1215, Geneva 15, Switzerland.
| | - R Stringer
- Metabolism and Pharmacokinetics (MAP) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - S De Buck
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - T Tuntland
- Metabolism and Pharmacokinetics (MAP) Department, Genomics Institute of the Novartis Foundation, Novartis Institutes for Biomedical Research, San Diego, California, USA
| | - B Faller
- Metabolism and Pharmacokinetics (MAP) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
34
|
Liu D, Ma X, Liu Y, Zhou H, Shi C, Wu F, Jiang J, Hu P. Quantitative prediction of human pharmacokinetics and pharmacodynamics of imigliptin, a novel DPP-4 inhibitor, using allometric scaling, IVIVE and PK/PD modeling methods. Eur J Pharm Sci 2016; 89:73-82. [PMID: 27108678 DOI: 10.1016/j.ejps.2016.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE To predict the pharmacokinetic/pharmacodynamic (PK/PD) profiles of imigliptin, a novel DPP-4 inhibitor, in first-in-human (FIH) study based on the data from preclinical species. METHODS Imigliptin was intravenously and orally administered to rats, dogs, and monkeys to assess their PK/PD properties. DPP-4 activity was the PD biomarker. PK/PD profiles of sitagliptin and alogliptin in rats and humans were obtained and digitized from literatures. PK/PD profiles of all dose levels for each drug in each species were analyzed using modeling approach. Human CL, Vss and PK profiles of imigliptin were then predicted using Allometric Scaling (AS), in vitro in vivo extrapolation (IVIVE), and the steady-state plasma drug concentration - mean residence time (Css-MRT) methods. In vitro EC50 corrected by fu and in vivo EC50 in rats corrected by interspecies difference of sitagliptin and alogliptin were utilized separately to predict imigliptin human EC50. The prediction by integrating all above methods was evaluated by comparing observed and simulated PK/PD profiles in healthy subjects. RESULTS Full PK/PD profiles in animal were summarized for imigliptin, sitagliptin and alogliptin. Imigliptin CL, Vss, and Fa were predicted to be 19.1L/h, 247L, and 0.81 in humans, respectively. Predicted imigliptin AUCs, AUECs, and Emax in humans were within 0.8-1.2 times of observed values whereas other predicted PK/PD parameters were within 0.5-1.5 times of observed values. CONCLUSIONS By integrating available preclinical and clinical data, FIH PK/PD profiles of imigliptin could be accurately predicted.
Collapse
Affiliation(s)
- Dongyang Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
| | - Xifeng Ma
- XuanZhu Pharma Co., Ltd., Jinan, Shandong, China
| | - Yang Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
| | - Huimin Zhou
- XuanZhu Pharma Co., Ltd., Jinan, Shandong, China
| | - Chongtie Shi
- XuanZhu Pharma Co., Ltd., Jinan, Shandong, China
| | - Frank Wu
- XuanZhu Pharma Co., Ltd., Jinan, Shandong, China
| | - Ji Jiang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
35
|
Lombardo F, Berellini G, Labonte LR, Liang G, Kim S. Systematic Evaluation of Wajima Superposition (Steady-State Concentration to Mean Residence Time) in the Estimation of Human Intravenous Pharmacokinetic Profile. J Pharm Sci 2016; 105:1277-87. [PMID: 26886320 DOI: 10.1016/s0022-3549(15)00174-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
We present a systematic evaluation of the Wajima superpositioning method to estimate the human intravenous (i.v.) pharmacokinetic (PK) profile based on a set of 54 marketed drugs with diverse structure and range of physicochemical properties. We illustrate the use of average of "best methods" for the prediction of clearance (CL) and volume of distribution at steady state (VDss) as described in our earlier work (Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):178-191; Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):167-177). These methods provided much more accurate prediction of human PK parameters, yielding 88% and 70% of the prediction within 2-fold error for VDss and CL, respectively. The prediction of human i.v. profile using Wajima superpositioning of rat, dog, and monkey time-concentration profiles was tested against the observed human i.v. PK using fold error statistics. The results showed that 63% of the compounds yielded a geometric mean of fold error below 2-fold, and an additional 19% yielded a geometric mean of fold error between 2- and 3-fold, leaving only 18% of the compounds with a relatively poor prediction. Our results showed that good superposition was observed in any case, demonstrating the predictive value of the Wajima approach, and that the cause of poor prediction of human i.v. profile was mainly due to the poorly predicted CL value, while VDss prediction had a minor impact on the accuracy of human i.v. profile prediction.
Collapse
Affiliation(s)
- Franco Lombardo
- Department of Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139.
| | - Giuliano Berellini
- Department of Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Laura R Labonte
- Department of Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Guiqing Liang
- Department of Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Sean Kim
- Department of Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| |
Collapse
|
36
|
Kamimura H, Ito S. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound. Xenobiotica 2015; 46:557-69. [DOI: 10.3109/00498254.2015.1091113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Mosure KW, Knipe JO, Browning M, Arora V, Shu YZ, Phillip T, Mcphee F, Scola P, Balakrishnan A, Soars MG, Santone K, Sinz M. Preclinical Pharmacokinetics and In Vitro Metabolism of Asunaprevir (BMS-650032), a Potent Hepatitis C Virus NS3 Protease Inhibitor. J Pharm Sci 2015; 104:2813-23. [DOI: 10.1002/jps.24356] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
|
38
|
Zhang T, Heimbach T, Lin W, Zhang J, He H. Prospective Predictions of Human Pharmacokinetics for Eighteen Compounds. J Pharm Sci 2015; 104:2795-806. [DOI: 10.1002/jps.24373] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 01/04/2023]
|
39
|
Matsuo Y, Ishibashi T, Shimamura K, Wajima T. Prediction of Pharmacokinetics and Pharmacodynamics of Doripenem in Pediatric Patients. J Pharm Sci 2015; 104:3194-8. [PMID: 25821174 DOI: 10.1002/jps.24432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/03/2015] [Indexed: 11/07/2022]
Abstract
The aim of this paper was to predict the pharmacokinetics of doripenem in pediatrics from adult pharmacokinetic data and to investigate dosing regimens in pediatrics using Monte-Carlo pharmacokinetics/pharmacodynamics (PK/PD) simulations prior to the initiation of pediatric clinical trials. The pharmacokinetics in pediatrics was predicted by using a previously reported approach for β-lactam antibiotics. Monte-Carlo simulation was employed to assess dosing regimens in pediatrics based on the predicted pharmacokinetic profiles and the minimum inhibitory concentration (MIC) distributions of Haemophilus influenzae and Streptococcus pneumoniae, which frequently cause infectious pediatric diseases. The probabilities of attaining target time above MIC (40%T>MIC) were calculated for dosing regimens of 1-30 mg/kg with two or three times daily dosing (TID) based on simulations of 5000 pediatric patients and MICs. The results suggested 15 and 5 mg/kg TID would give approximately 90% or more probability of target attainment against Haemophilus influenzae and Streptococcus pneumoniae, respectively. The pediatric phase 3 study confirmed that pharmacokinetics in pediatrics could be well predicted by this method, indicating that the dosing regimen had been appropriately selected. The framework of dose selection for pediatric clinical trials based on predictions of pharmacokinetic profiles and PK/PD indices should be applicable to the development of other β-lactam antibiotics for pediatric use.
Collapse
Affiliation(s)
- Yumiko Matsuo
- Clinical Pharmacology and Pharmacokinetics, Clinical Research Department, Shionogi & Co., Ltd
| | - Toru Ishibashi
- Clinical Pharmacology and Pharmacokinetics, Clinical Research Department, Shionogi & Co., Ltd
| | - Kenji Shimamura
- Clinical Pharmacology and Pharmacokinetics, Clinical Research Department, Shionogi & Co., Ltd
| | - Toshihiro Wajima
- Clinical Pharmacology and Pharmacokinetics, Clinical Research Department, Shionogi & Co., Ltd
| |
Collapse
|
40
|
Shetty KA, Kosloski MP, Mager DE, Balu-Iyer SV. Soy phosphatidylinositol containing nanoparticle prolongs hemostatic activity of B-domain deleted factor VIII in hemophilia A mice. J Pharm Sci 2015; 104:388-95. [PMID: 24700333 PMCID: PMC4183744 DOI: 10.1002/jps.23963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 01/16/2023]
Abstract
Factor VIII (FVIII) replacement therapy in hemophilia A (HA) is complicated by a short half-life and high incidence of inhibitory antibody response against the protein. Phosphatidylinositol (PI) containing lipidic nanoparticles have previously been shown to reduce the immunogenicity and prolong the half-life of full length FVIII. It has not been established whether this prolongation in half-life improves hemostatic efficacy and whether this approach could be extended to the B-domain deleted form of FVIII (BDD FVIII). In the current study, we evaluated the pharmacokinetics (PK), hemostatic efficacy, and immunogenicity of BDD FVIII associated with PI nanoparticles (PI-BDD FVIII) in HA mice. Comparative human PK was predicted using an "informed scaling" approach. PI-BDD FVIII showed an approximate 1.5-fold increase in terminal half-life compared with free BDD FVIII following i.v. bolus doses of 40 IU/kg. PI-BDD FVIII-treated animals retained hemostatic efficacy longer than the free FVIII-treated group in a tail vein transection model of hemostasis. PI association reduced the development of inhibitory and binding antibodies against BDD FVIII after a series of i.v. injections. The combined improvements in circulating half-life and hemostatic efficacy could significantly prolong the time above clinically established therapeutic thresholds of prophylactic FVIII replacement therapy in humans.
Collapse
Affiliation(s)
- Krithika A. Shetty
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Matthew P. Kosloski
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Donald E. Mager
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Sathy V. Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
41
|
Tuntland T, Ethell B, Kosaka T, Blasco F, Zang RX, Jain M, Gould T, Hoffmaster K. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front Pharmacol 2014; 5:174. [PMID: 25120485 PMCID: PMC4112793 DOI: 10.3389/fphar.2014.00174] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/05/2014] [Indexed: 12/20/2022] Open
Abstract
Characterizing the relationship between the pharmacokinetics (PK, concentration vs. time) and pharmacodynamics (PD, effect vs. time) is an important tool in the discovery and development of new drugs in the pharmaceutical industry. The purpose of this publication is to serve as a guide for drug discovery scientists toward optimal design and conduct of PK/PD studies in the research phase. This review is a result of the collaborative efforts of DMPK scientists from various Metabolism and Pharmacokinetic (MAP) departments of the global organization Novartis Institute of Biomedical Research (NIBR). We recommend that PK/PD strategies be implemented in early research phases of drug discovery projects to enable successful transition to drug development. Effective PK/PD study design, analysis, and interpretation can help scientists elucidate the relationship between PK and PD, understand the mechanism of drug action, and identify PK properties for further improvement and optimal compound design. Additionally, PK/PD modeling can help increase the translation of in vitro compound potency to the in vivo setting, reduce the number of in vivo animal studies, and improve translation of findings from preclinical species into the clinical setting. This review focuses on three important elements of successful PK/PD studies, namely partnership among key scientists involved in the study execution; parameters that influence study designs; and data analysis and interpretation. Specific examples and case studies are highlighted to help demonstrate key points for consideration. The intent is to provide a broad PK/PD foundation for colleagues in the pharmaceutical industry and serve as a tool to promote appropriate discussions on early research project teams with key scientists involved in PK/PD studies.
Collapse
Affiliation(s)
- Tove Tuntland
- Metabolism and Pharmacokinetics, Genomics Institute of Novartis Research Foundation San Diego, CA, USA
| | - Brian Ethell
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Horsham, West Sussex, UK
| | - Takatoshi Kosaka
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Horsham, West Sussex, UK
| | - Francesca Blasco
- Metabolism and Pharmacokinetics, Novartis Institute of Tropical Diseases Singapore, Singapore
| | - Richard Xu Zang
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Emeryville, CA, USA
| | - Monish Jain
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Cambridge, MA, USA
| | - Ty Gould
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Cambridge, MA, USA
| | - Keith Hoffmaster
- Metabolism and Pharmacokinetics, Novartis Institute of Biomedical Research Cambridge, MA, USA
| |
Collapse
|
42
|
|
43
|
Kosloski MP, Pisal DS, Mager DE, Balu-Iyer SV. Nonlinear pharmacokinetics of factor VIII and its phosphatidylinositol lipidic complex in hemophilia A mice. Biopharm Drug Dispos 2013; 35:154-63. [PMID: 24259187 DOI: 10.1002/bdd.1880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/23/2013] [Accepted: 11/06/2013] [Indexed: 11/06/2022]
Abstract
Factor VIII (FVIII) is an important cofactor in the blood coagulation cascade and its deficiency or dysfunction causes hemophilia A (HA), a bleeding disorder. Replacement with recombinant FVIII is limited by a short half-life and the development of inhibitory antibodies. A phosphatidylinositol (PI) containing lipid nanoparticle was developed that, when associated with FVIII, reduces immunogenicity and prolongs circulation of the therapeutic protein in HA mice. A multiple dose level pharmacokinetic (PK) study of human free FVIII and its FVIII-PI complex over a clinically relevant range of doses (20, 40 and 200 IU/kg) was conducted in HA mice to investigate linearity of the PK and to determine if the reduced catabolism of FVIII following association with PI particles, previously only observed in the terminal phase following 400 IU/kg, could be extendable over a range of doses. The findings suggest that the disposition of FVIII is best characterized by a two-compartment model with saturable Michaelis-Menten elimination. Spontaneous complexation of FVIII with PI particles significantly increases plasma survival of the protein at 20 and 40 IU/kg doses. Human simulations at 40 IU/kg project an increase in the terminal half-life and the time to reach a minimum therapeutic threshold of 0.01 IU/ml of 5.4 h and 40 h, respectively, compared with free FVIII. Formulation with PI containing lipid particles may represent a viable delivery strategy for improving FVIII therapy.
Collapse
Affiliation(s)
- Matthew P Kosloski
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | | | | | | |
Collapse
|
44
|
Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, Obach RS. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos 2013; 41:1975-93. [PMID: 24065860 DOI: 10.1124/dmd.113.054031] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Prediction of human pharmacokinetics of new drugs, as well as other disposition attributes, has become a routine practice in drug research and development. Prior to the 1990s, drug disposition science was used in a mostly descriptive manner in the drug development phase. With the advent of in vitro methods and availability of human-derived reagents for in vitro studies, drug-disposition scientists became engaged in the compound design phase of drug discovery to optimize and predict human disposition properties prior to nomination of candidate compounds into the drug development phase. This has reaped benefits in that the attrition rate of new drug candidates in drug development for reasons of unacceptable pharmacokinetics has greatly decreased. Attributes that are predicted include clearance, volume of distribution, half-life, absorption, and drug-drug interactions. In this article, we offer our experience-based perspectives on the tools and methods of predicting human drug disposition using in vitro and animal data.
Collapse
Affiliation(s)
- Li Di
- Pfizer Inc., Groton, Connecticut
| | | | | | | | | | | | | |
Collapse
|
45
|
Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 2013; 52:83-124. [PMID: 23299465 DOI: 10.1007/s40262-012-0027-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of monoclonal antibodies (mAbs) and their functional derivatives represents a growing segment of the development pipeline in the pharmaceutical industry. More than 25 mAbs and derivatives have been approved for a variety of therapeutic applications. In addition, around 500 mAbs and derivatives are currently in different stages of development. mAbs are considered to be large molecule therapeutics (in general, they are 2-3 orders of magnitude larger than small chemical molecule therapeutics), but they are not just big chemicals. These compounds demonstrate much more complex pharmacokinetic and pharmacodynamic behaviour than small molecules. Because of their large size and relatively poor membrane permeability and instability in the conditions of the gastrointestinal tract, parenteral administration is the most usual route of administration. The rate and extent of mAb distribution is very slow and depends on extravasation in tissue, distribution within the particular tissue, and degradation. Elimination primarily happens via catabolism to peptides and amino acids. Although not definitive, work has been published to define the human tissues mainly involved in the elimination of mAbs, and it seems that many cells throughout the body are involved. mAbs can be targeted against many soluble or membrane-bound targets, thus these compounds may act by a variety of mechanisms to achieve their pharmacological effect. mAbs targeting soluble antigen generally exhibit linear elimination, whereas those targeting membrane-bound antigen often exhibit non-linear elimination, mainly due to target-mediated drug disposition (TMDD). The high-affinity interaction of mAbs and their derivatives with the pharmacological target can often result in non-linear pharmacokinetics. Because of species differences (particularly due to differences in target affinity and abundance) in the pharmacokinetics and pharmacodynamics of mAbs, pharmacokinetic/pharmacodynamic modelling of mAbs has been used routinely to expedite the development of mAbs and their derivatives and has been utilized to help in the selection of appropriate dose regimens. Although modelling approaches have helped to explain variability in both pharmacokinetic and pharmacodynamic properties of these drugs, there is a clear need for more complex models to improve understanding of pharmacokinetic processes and pharmacodynamic interactions of mAbs with the immune system. There are different approaches applied to physiologically based pharmacokinetic (PBPK) modelling of mAbs and important differences between the models developed. Some key additional features that need to be accounted for in PBPK models of mAbs are neonatal Fc receptor (FcRn; an important salvage mechanism for antibodies) binding, TMDD and lymph flow. Several models have been described incorporating some or all of these features and the use of PBPK models are expected to expand over the next few years.
Collapse
|
46
|
Kosloski MP, Pisal DS, Mager DE, Balu-Iyer SV. Allometry of factor VIII and informed scaling of next-generation therapeutic proteins. J Pharm Sci 2013; 102:2380-94. [PMID: 23620343 DOI: 10.1002/jps.23566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/31/2013] [Accepted: 04/02/2013] [Indexed: 02/04/2023]
Abstract
Allometric scaling has been applied to the pharmacokinetics (PK) of factor VIII (FVIII), but published relationships are based on relatively small subsets of available data. Numerous next-generation forms of FVIII are being developed (e.g., Fc fusion, PEGylated, and liposomal formulations) and traditional PK scaling of these products would not incorporate the wealth of existing knowledge for current FVIII therapy in humans. We conducted a meta-analysis and developed allometric relationships of FVIII from over 100 PK studies collected from literature. Normalized Wajima curves were used to relate mean FVIII profiles between species. An "informed scaling" approach was derived for predicting first-in-human PK parameters and demonstrated with a case study for an Fc fusion FVIII. NCA values for FVIII PK were well described by the allometric equations CL = 6.59 W(0.85) and V(ss) = 65.0 W(0.97). A subset of studies characterized by two-compartment modeling showed strong linearity in scaling of total clearance (CL) and central volume, but more variability in distributional CL and peripheral volume. Wajima curves for FVIII superimposed across species and the disposition of Fc fusion FVIII in humans was well predicted by "informed scaling." This approach might be generally applicable for predicting human PK of next-generational therapeutics.
Collapse
Affiliation(s)
- Matthew P Kosloski
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
47
|
Mahmood I. Allometric scaling and prediction of concentration-time profiles of coagulation factors in humans from animals. Xenobiotica 2013; 43:774-9. [DOI: 10.3109/00498254.2013.766778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Mahmood I, Goteti K. Prediction of drug concentration-time data in humans from animals: a comparison of three methods. Xenobiotica 2013; 42:756-65. [PMID: 22360447 DOI: 10.3109/00498254.2012.660210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The main objective of this work is to evaluate three methods to predict concentration-time data of drugs in humans in a multi-compartment system using animal pharmacokinetic parameters following intravenous administration. The prediction of concentration-time data in humans in a multi-compartment system was based on two proposed methods of Mordenti. The third method was based on the assumption that all drugs follow a single-compartment system. Ten drugs from the literature were chosen that were described by two-compartment model in both human and animals. Two-compartment model parameters (CL, V(c), V(ss), V(β), α, A, β and B) of at least 3 animals were scaled to humans and then were used to predict plasma concentrations-time data in humans. Allometrically scaled pharmacokinetic parameters from animals were also used to predict human profile using one-compartment model as a comparison. The results indicated that in a multi-compartment system, application of pharmacokinetic constants provided better prediction of concentration-time data in humans than the assumption that all drugs follow a single-compartment model. Both the proposed methods of Mordenti provided almost similar concentration-time profiles for most of the drugs. For some drugs, predicted α values were substantially higher than the observed values. This prediction error in α resulted in under-prediction of drug concentrations in distribution phase. In order to reduce the prediction error in α, Waijma's method for the prediction of α was modified which resulted in an improved prediction of concentration-time data in humans. Overall, Mordenti's proposed 2 methods and where necessary by modifying Waijma's method for the prediction of α can be used for reasonably accurate prediction of concentration-time data of drugs in humans.
Collapse
Affiliation(s)
- Iftekhar Mahmood
- Office of Blood Review & Research-OBRR, Center for Biologic Evaluation and Research, Food & Drug Administration, 1401 Rockville Pike, Rockville, MD, USA.
| | | |
Collapse
|
49
|
Lombardo F, Waters NJ, Argikar UA, Dennehy MK, Zhan J, Gunduz M, Harriman SP, Berellini G, Rajlic IL, Obach RS. Comprehensive assessment of human pharmacokinetic prediction based on in vivo animal pharmacokinetic data, part 1: volume of distribution at steady state. J Clin Pharmacol 2013; 53:167-77. [PMID: 23436262 DOI: 10.1177/0091270012440281] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/30/2012] [Indexed: 11/16/2022]
Abstract
The authors present a comprehensive analysis on the estimation of volume of distribution at steady state (VD(ss) ) in human based on rat, dog, and monkey data on nearly 400 compounds for which there are also associated human data. This data set, to the authors- knowledge, is the largest publicly available, has been carefully compiled from literature reports, and was expanded with some in-house determinations such as plasma protein binding data. This work offers a good statistical basis for the evaluation of applicable prediction methods, their accuracy, and some methods-dependent diagnostic tools. The authors also grouped the compounds according to their charge classes and show the applicability of each method considered to each class, offering further insight into the probability of a successful prediction. Furthermore, they found that the use of fraction unbound in plasma, to obtain unbound volume of distribution, is generally detrimental to accuracy of several methods, and they discuss possible reasons. Overall, the approach using dog and monkey data in the íie-Tozer equation offers the highest probability of success, with an intrinsic diagnostic tool based on aberrant values (<0 or >1) for the calculated fraction unbound in tissue. Alternatively, methods based on dog data (single-species scaling) and rat and dog data (íie-Tozer equation with 2 species or multiple regression methods) may be considered reasonable approaches while not requiring data in nonhuman primates.
Collapse
Affiliation(s)
- Franco Lombardo
- Metabolism and Pharmacokinetics Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lombardo F, Waters NJ, Argikar UA, Dennehy MK, Zhan J, Gunduz M, Harriman SP, Berellini G, Liric Rajlic I, Obach RS. Comprehensive Assessment of Human Pharmacokinetic Prediction Based on In Vivo Animal Pharmacokinetic Data, Part 2: Clearance. J Clin Pharmacol 2013; 53:178-91. [DOI: 10.1177/0091270012440282] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/17/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Franco Lombardo
- Metabolism and Pharmacokinetics Novartis Institutes for Biomedical Research; Cambridge, MA; USA
| | - Nigel J. Waters
- Metabolism and Pharmacokinetics Novartis Institutes for Biomedical Research; Cambridge, MA; USA
| | - Upendra A. Argikar
- Metabolism and Pharmacokinetics Novartis Institutes for Biomedical Research; Cambridge, MA; USA
| | - Michelle K. Dennehy
- Metabolism and Pharmacokinetics Novartis Institutes for Biomedical Research; Cambridge, MA; USA
| | | | - Mithat Gunduz
- Metabolism and Pharmacokinetics Novartis Institutes for Biomedical Research; Cambridge, MA; USA
| | - Shawn P. Harriman
- Metabolism and Pharmacokinetics Novartis Institutes for Biomedical Research; Cambridge, MA; USA
| | - Giuliano Berellini
- Metabolism and Pharmacokinetics Novartis Institutes for Biomedical Research; Cambridge, MA; USA
| | - Ivana Liric Rajlic
- Metabolism and Pharmacokinetics Novartis Institutes for Biomedical Research; Cambridge, MA; USA
| | - R. Scott Obach
- Pharmacokinetics Dynamics and Metabolism Pfizer Global Research and Development; Groton CT; USA
| |
Collapse
|