1
|
Sharma DK, Pattnaik G, Behera A. Recent developments in nanoparticles for the treatment of diabetes. J Drug Target 2023; 31:908-919. [PMID: 37725445 DOI: 10.1080/1061186x.2023.2261077] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Changes in the homeostasis of blood sugar levels are a hallmark of diabetes mellitus, an incurable metabolic condition, for which the first-line treatment is the subcutaneous injection of insulin. However, this method of administration is linked to low patient compliance because of the possibility of local infection, discomfort and pain. To enable the administration of the peptide through more palatable paths without requiring an injection, like by oral routes, the use of nanoparticles as insulin carriers has been suggested. The use of nanoparticles usually improves the bioavailability and physicochemical stability of the loaded medicine. The utilisation of several forms of nanoparticles (like lipid and polymeric nanoparticles, micelles, dendrimers, liposomes, niosomes, nanoemulsions and drug nanosuspensions) is discussed in this article as a way to improve the administration of various oral hypoglycaemic medications when compared to conventional treatments.
Collapse
Affiliation(s)
- Dinesh Kumar Sharma
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
2
|
Chapa-Villarreal FA, Miller M, Rodriguez-Cruz JJ, Pérez-Carlos D, Peppas NA. Self-assembled block copolymer biomaterials for oral delivery of protein therapeutics. Biomaterials 2023; 300:122191. [PMID: 37295223 DOI: 10.1016/j.biomaterials.2023.122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Protein therapeutics have guided a transformation in disease treatment for various clinical conditions. They have been successful in numerous applications, but administration of protein therapeutics has been limited to parenteral routes which can decrease patient compliance as they are invasive and painful. In recent years, the synergistic relationship of novel biomaterials with modern protein therapeutics has been crucial in the treatment of diseases that were once thought of as incurable. This has guided the development of a variety of alternative administration routes, but the oral delivery of therapeutics remains one of the most desirable due to its ease of administration. This review addresses important aspects of micellar structures prepared by self-assembled processes with applications for oral delivery. These two characteristics have not been placed together in previous literature within the field. Therefore, we describe the barriers for delivery of protein therapeutics, and we concentrate in the oral/transmucosal pathway where drug carriers must overcome several chemical, physical, and biological barriers to achieve a successful therapeutic effect. We critically discuss recent research on biomaterials systems for delivering such therapeutics with an emphasis on self-assembled synthetic block copolymers. Polymerization methods and nanoparticle preparation techniques are similarly analyzed as well as relevant work in this area. Based on our own and others' research, we analyze the use of block copolymers as therapeutic carriers and their promise in treating a variety of diseases, with emphasis on self-assembled micelles for the next generation of oral protein therapeutic systems.
Collapse
Affiliation(s)
- Fabiola A Chapa-Villarreal
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Matthew Miller
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - J Jesus Rodriguez-Cruz
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Diego Pérez-Carlos
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Ren C, Zhong D, Qi Y, Liu C, Liu X, Chen S, Yan S, Zhou M. Bioinspired pH-Responsive Microalgal Hydrogels for Oral Insulin Delivery with Both Hypoglycemic and Insulin Sensitizing Effects. ACS NANO 2023; 17:14161-14175. [PMID: 37406357 DOI: 10.1021/acsnano.3c04897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The oral form of insulin is more convenient and has better patient compliance than subcutaneous or intravenous insulin. Current oral insulin preparations, however, cannot overcome the enzyme barrier, chemical barrier, and epithelial barrier of the gastrointestinal tract completely. In this study, a microalgae-based oral insulin delivery strategy (CV@INS@ALG) was developed using Chlorella vulgaris (CV)-based insulin delivery system cross-linking with sodium alginate (ALG). CV@INS@ALG could overcome the gastrointestinal barrier, protect insulin from harsh gastric conditions, and achieve a pH-responsive drug release in the intestine. CV@INS@ALG might contribute to two mechanisms of insulin absorption, including direct insulin release from the delivery system and endocytosis by M cells and macrophages. In the streptozotocin (STZ)-induced type 1 diabetic mouse model, CV@INS@ALG showed a more effective and long-lasting hypoglycemic effect than direct insulin injection and did not cause any damage to the intestinal tract. Additionally, the long-term oral administration of the carrier CV@ALG effectively ameliorated gut microbiota disorder, and significantly increased the abundance of probiotic Akkermansia in db/db type 2 diabetic mice, thereby enhancing the insulin sensitivity of mice. Microalgal insulin delivery systems could be degraded and metabolized in the intestinal tract after oral administration, showing good biodegradability and biosafety. This insulin delivery strategy based on microalgal biomaterials provides a natural, efficient, and multifunctional solution for oral insulin delivery.
Collapse
Affiliation(s)
- Chaojie Ren
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Danni Zhong
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Chaoyi Liu
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xingyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | | | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Min Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
4
|
De Marchi JGB, Cé R, Onzi G, Alves ACS, Santarém N, Cordeiro da Silva A, Pohlmann AR, Guterres SS, Ribeiro AJ. IgG functionalized polymeric nanoparticles for oral insulin administration. Int J Pharm 2022; 622:121829. [PMID: 35580686 DOI: 10.1016/j.ijpharm.2022.121829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
The oral route is the best way to administer a drug; however, fitting peptide drugs in this route is a major challenge. In insulin cases, less than 0.5% of the administered dose achieves systemic circulation. Oral delivery by nanoparticles can increase insulin permeability across the intestinal epithelium while maintaining its structure and activity until release in the gut. This system can be improved to increase permeability across intestinal cells through active delivery. This study aimed to improve a nanoparticle formulation by promoting functionalization of its surface with immunoglobulin G to increase its absorption by intestinal epithelium. The characterization of formulations showed an adequate size and a good entrapment efficiency. Functionalized nanoparticles led to a desirable increase in insulin release time. Differential scanning calorimetry, infrared spectroscopy and paper chromatography proved the interactions of nanoparticle components. With immunoglobulin G, the nanoparticle size was slightly increased, which did not show aggregate formation. The developed functionalized nanoparticle formulation proved to be adequate to carry insulin and potentially increase its internalization by epithelial gut cells, being a promising alternative to the existing formulations for orally administered low-absorption peptides.
Collapse
Affiliation(s)
- J G B De Marchi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Universidade de Coimbra, Faculdade de Farmácia, Coimbra, Portugal
| | - R Cé
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - G Onzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - A C S Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - N Santarém
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - A Cordeiro da Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; i(3)S, IBMC, Rua Alfredo Allen, Porto, Portugal
| | - A R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - S S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - A J Ribeiro
- Universidade de Coimbra, Faculdade de Farmácia, Coimbra, Portugal; i(3)S, IBMC, Rua Alfredo Allen, Porto, Portugal.
| |
Collapse
|
5
|
Li B, Li X, Chu X, Lou P, Yuan Y, Zhuge A, Zhu X, Shen Y, Pan J, Zhang L, Li L, Wu Z. Micro-ecology restoration of colonic inflammation by in-Situ oral delivery of antibody-laden hydrogel microcapsules. Bioact Mater 2021; 15:305-315. [PMID: 35356818 PMCID: PMC8935091 DOI: 10.1016/j.bioactmat.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/25/2022] Open
Abstract
In-situ oral delivery of therapeutic antibodies, like monoclonal antibody, for chronic inflammation treatment is the most convenient approach compared with other administration routes. Moreover, the abundant links between the gut microbiota and colonic inflammation indicate that the synergistic or antagonistic effect of gut microbiota to colonic inflammation. However, the antibody activity would be significantly affected while transferring through the gastrointestinal tract due to hostile conditions. Moreover, these antibodies have short serum half-lives, thus, require to be frequently administered with high doses to be effective, leading to low patient tolerance. Here, we develop a strategy utilizing thin shell hydrogel microcapsule fabricated by microfluidic technique as the oral delivering carrier. By encapsulating antibodies in these microcapsules, antibodies survive in the hostile gastrointestinal environment and rapidly release into the small intestine through oral administration route, achieving the same therapeutic effect as the intravenous injection evaluated by a colonic inflammation disease model. Moreover, the abundance of some intestinal microorganisms as the indication of the improvement of inflammation has remarkably altered after in-situ antibody-laden microcapsules delivery, implying the restoration of micro-ecology of the intestine. These findings prove our microcapsules are exploited as an efficient oral delivery agent for antibodies with programmable function in clinical application. This thin shell hydrogel microcapsules using a water-in-water-in-oil as the template by microfluidic technique for orally delivery of antibodies is generated to protect from hostile stomach microenvironment and rapid released in the small intestine without losing their activity. The shell contains a double crosslinked network attributed to its ionic crosslinking and covalent crosslinking functionalities. The antibody-laden microcapsules demonstrate great therapeutic efficacy in DSS-induced colonic inflammation disease models, which is approximated to that of the intravenous injection treatment. Orally taken antibody-laden microcapsules restore the intestinal micro-ecological dysbiosis.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xin Li
- Department of Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaodong Chu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Pengcheng Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueling Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yangfan Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Liyuan Zhang
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, USA, 02138
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
- Corresponding author. School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, USA 02138. ;
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Corresponding author. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China. ;
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Corresponding author.
| |
Collapse
|
6
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
7
|
Nelson KM, Irvin-Choy N, Hoffman MK, Gleghorn JP, Day ES. Diseases and conditions that impact maternal and fetal health and the potential for nanomedicine therapies. Adv Drug Deliv Rev 2021; 170:425-438. [PMID: 33002575 DOI: 10.1016/j.addr.2020.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Maternal mortality rates in the United States have steadily increased since 1987 to the current rate of over 16 deaths per 100,000 live births. Whereas most of these deaths are related to an underlying condition, such as cardiovascular disease, many pregnant women die from diseases that emerge as a consequence of pregnancy. Both pre-existing and emergent diseases and conditions are difficult to treat in pregnant women because of the potential harmful effects of the treatment on the developing fetus. Often the health of the woman and the health of the baby are at odds and must be weighed against each other when medical treatment is needed, frequently leading to iatrogenic preterm birth. However, the use of engineered nanomedicines has the potential to fill the treatment gap for pregnant women. This review describes several conditions that may afflict pregnant women and fetuses and introduces how engineered nanomedicines may be used to treat these illnesses. Although the field of maternal-fetal nanomedicine is in its infancy, with additional research and development, engineered nanotherapeutics may greatly improve outcomes for pregnant women and their offspring in the future.
Collapse
|
8
|
Wong CY, Al-Salami H, Dass CR. Fabrication techniques for the preparation of orally administered insulin nanoparticles. J Drug Target 2021; 29:365-386. [PMID: 32876505 DOI: 10.1080/1061186x.2020.1817042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The development of orally administered protein drugs is challenging due to their intrinsic unfavourable features, including large molecular size and poor chemical stability, both of which limit gastrointestinal (GI) absorption efficiency. Nanoparticles can overcome the GI barriers effectively and improve the oral bioavailability of proteins in the GI tract. They possess large surface area to volume ratio, and can facilitate the GI absorption of nanoparticles via the paracellular and transcellular routes. Nanoparticles can be prepared by various fabrication techniques that can encapsulate the fragile therapeutic proteins via hydrophobic bonding and electrostatic interaction. A desirable technique should involve minimal harsh conditions and encapsulate therapeutic proteins with preserved functionalities. The current review examines the characteristics of each preparation technique, and illustrates the examples of insulin-loaded nanoparticles that have been developed in each fabrication method. The following techniques, which include nanoprecipitation, hydrophobic conjugation, flash nanocomplexation, double emulsion, ionotropic gelation, and layer-by-layer adsorption, have been used to formulate ligand-modified nanoparticles for targeted delivery of insulin. Other techniques, including reduction, complex coacervation (polyelectrolyte complexation), hydrophobic ion pairing and emulsion solvent diffusion method, and sol-gel technology, were also discussed in the latter part of the review due to their extensive use in fabrication of insulin nanoparticles. This review also discusses the strategies that have been utilised during the formulation process to improve the stability and bioactivity of therapeutic proteins.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
9
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Ibeanu N, Egbu R, Onyekuru L, Javaheri H, Tee Khaw P, R. Williams G, Brocchini S, Awwad S. Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics 2020; 12:E999. [PMID: 33096803 PMCID: PMC7589296 DOI: 10.3390/pharmaceutics12100999] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Proteins and peptides have emerged in recent years to treat a wide range of multifaceted diseases such as cancer, diabetes and inflammation. The emergence of polypeptides has yielded advancements in the fields of biopharmaceutical production and formulation. Polypeptides often display poor pharmacokinetics, limited permeability across biological barriers, suboptimal biodistribution, and some proclivity for immunogenicity. Frequent administration of polypeptides is generally required to maintain adequate therapeutic levels, which can limit efficacy and compliance while increasing adverse reactions. Many strategies to increase the duration of action of therapeutic polypeptides have been described with many clinical products having been developed. This review describes approaches to optimise polypeptide delivery organised by the commonly used routes of administration. Future innovations in formulation may hold the key to the continued successful development of proteins and peptides with optimal clinical properties.
Collapse
Affiliation(s)
- Nkiruka Ibeanu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Raphael Egbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Lesley Onyekuru
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Hoda Javaheri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Gareth R. Williams
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Steve Brocchini
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Sahar Awwad
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| |
Collapse
|
11
|
Tong T, Wang L, You X, Wu J. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomater Sci 2020; 8:5804-5823. [PMID: 33016274 DOI: 10.1039/d0bm01151g] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, peptide/protein drugs have attracted considerable attention owing to their superior targeting and therapeutic effect and fewer side effects compared with chemical drugs. Oral administration modality with enhanced patient compliance is increasingly being recognized as an ideal route for peptide/protein delivery. However, the limited permeation efficiency and low oral bioavailability of peptide/protein drugs significantly hinder therapeutic advances. To address these problems, various nano and microscale delivery platforms have been developed, which offer significant advantages in oral peptide/protein delivery. In this review, we briefly introduce the transport mechanisms of oral peptide/protein delivery and the primary barriers to this delivery process. We also highlight the recent advances in various nano and microscale delivery platforms designed for oral peptide/protein delivery. We then summarize the existing strategies used in these delivery platforms to improve the oral bioavailability and permeation efficiency of peptide/protein therapeutics. Finally, we discuss the major challenges faced when nano and microscale systems are used for oral peptide/protein delivery. This review is expected to provide critical insight into the design and development of oral peptide/protein delivery systems with significant therapeutic advances.
Collapse
Affiliation(s)
- Tong Tong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | | | | | | |
Collapse
|
12
|
Jain SK, Jain AK, Rajpoot K. Expedition of Eudragit® Polymers in the Development of Novel Drug Delivery Systems. Curr Drug Deliv 2020; 17:448-469. [PMID: 32394836 DOI: 10.2174/1567201817666200512093639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/10/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Eudragit® polymer has been widely used in film-coating for enhancing the quality of products over other materials (e.g., shellac or sugar). Eudragit® polymers are obtained synthetically from the esters of acrylic and methacrylic acid. For the last few years, they have shown immense potential in the formulations of conventional, pH-triggered, and novel drug delivery systems for incorporating a vast range of therapeutics including proteins, vitamins, hormones, vaccines, and genes. Different grades of Eudragit® have been used for designing and delivery of therapeutics at a specific site via the oral route, for instance, in stomach-specific delivery, intestinal delivery, colon-specific delivery, mucosal delivery. Further, these polymers have also shown their great aptitude in topical and ophthalmic delivery. Moreover, available literature evidences the promises of distinct Eudragit® polymers for efficient targeting of incorporated drugs to the site of interest. This review summarizes some potential researches that are being conducted by eminent scientists utilizing the distinct grades of Eudragit® polymers for efficient delivery of therapeutics at various sites of interest.
Collapse
Affiliation(s)
- Sunil Kumar Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Akhlesh K Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| |
Collapse
|
13
|
Ravindran S, Tambe AJ, Suthar JK, Chahar DS, Fernandes JM, Desai V. Nanomedicine: Bioavailability, Biotransformation and Biokinetics. Curr Drug Metab 2020; 20:542-555. [PMID: 31203796 DOI: 10.2174/1389200220666190614150708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Nanomedicine is increasingly used to treat various ailments. Biocompatibility of nanomedicine is primarily governed by its properties such as bioavailability, biotransformation and biokinetics. One of the major advantages of nanomedicine is enhanced bioavailability of drugs. Biotransformation of nanomedicine is important to understand the pharmacological effects of nanomedicine. Biokinetics includes both pharmacokinetics and toxicokinetics of nanomedicine. Physicochemical parameters of nanomaterials have extensive influence on bioavailability, biotransformation and biokinetics of nanomedicine. METHODS We carried out a structured peer-reviewed research literature survey and analysis using bibliographic databases. RESULTS Eighty papers were included in the review. Papers dealing with bioavailability, biotransformation and biokinetics of nanomedicine are found and reviewed. Bioavailability and biotransformation along with biokinetics are three major factors that determine the biological fate of nanomedicine. Extensive research work has been done for drugs of micron size but studies on nanomedicine are scarce. Therefore, more emphasis in this review is given on the bioavailability and biotransformation of nanomedicine along with biokinetics. CONCLUSION Bioavailability results based on various nanomedicine are summarized in the present work. Biotransformation of nanodrugs as well as nanoformulations is also the focus of this article. Both in vitro and in vivo biotransformation studies on nanodrugs and its excipients are necessary to know the effect of metabolites formed. Biokinetics of nanomedicine is captured in details that are complimentary to bioavailability and biotransformation. Nanomedicine has the potential to be developed as a personalized medicine once its physicochemical properties and its effect on biological system are well understood.
Collapse
Affiliation(s)
- Selvan Ravindran
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Amlesh J Tambe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India.,Serum Institute of India, Hadapsar, Pune, India
| | - Jitendra K Suthar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Digamber S Chahar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India.,Serum Institute of India, Hadapsar, Pune, India
| | - Joyleen M Fernandes
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Vedika Desai
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
14
|
Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, Silva AM, Durazzo A, Lucarini M, Izzo AA, Santini A. Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules 2019; 24:E4209. [PMID: 31756981 PMCID: PMC6930606 DOI: 10.3390/molecules24234209] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus, an incurable metabolic disease, is characterized by changes in the homeostasis of blood sugar levels, being the subcutaneous injection of insulin the first line treatment. This administration route is however associated with limited patient's compliance, due to the risk of pain, discomfort and local infection. Nanoparticles have been proposed as insulin carriers to make possible the administration of the peptide via friendlier pathways without the need of injection, i.e., via oral or nasal routes. Nanoparticles stand for particles in the nanometer range that can be obtained from different materials (e.g., polysaccharides, synthetic polymers, lipid) and are commonly used with the aim to improve the physicochemical stability of the loaded drug and thereby its bioavailability. This review discusses the use of different types of nanoparticles (e.g., polymeric and lipid nanoparticles, liposomes, dendrimers, niosomes, micelles, nanoemulsions and also drug nanosuspensions) for improved delivery of different oral hypoglycemic agents in comparison to conventional therapies.
Collapse
Affiliation(s)
- Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Selma B. Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200–319 Porto, Portugal;
| | - Joana R. Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal;
| | - Patricia Severino
- Tiradentes Institute, University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju-SE 49010-390, Brazil;
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (T.N.P.); (L.Y.Z.)
| | - Lucia Y. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (T.N.P.); (L.Y.Z.)
- Department of Organic Chemistry, Kazan State Technological University, ul. Karla Marksa 68, Kazan 420015, Russia
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Department of Biology and Environment, University of Trás-os Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Angelo A. Izzo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| |
Collapse
|
15
|
Wong CY, Luna G, Martinez J, Al-Salami H, Dass CR. Bio-nanotechnological advancement of orally administered insulin nanoparticles: Comprehensive review of experimental design for physicochemical characterization. Int J Pharm 2019; 572:118720. [PMID: 31715357 DOI: 10.1016/j.ijpharm.2019.118720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Therapeutic proteins are labile macromolecules that are prone to degradation during production, freeze-drying and storage. Recent studies showed that nanoparticles can enhance the stability and oral bioavailability of encapsulated proteins. Several conventional approaches (enzyme inhibitors, mucoadhesive polymers) and novel strategies (surface modification, ligand conjugation, flash nano-complexation, stimuli-responsive drug delivery systems) have been employed to improve the physiochemical properties of nanoparticles such as size, zeta potential, morphology, polydispersity index, drug release kinetics and cell-targeting capacity. However, clinical translation of protein-based nanoparticle is limited due to poor experimental design, protocol non-compliance and instrumentation set-up that do not reflect the physiological conditions, resulting in difficulties in mass production of nanoparticles and waste in research funding. In order to address the above concerns, we conducted a comprehensive review to examine the experimental designs and conditions for physical characterization of protein-based nanoparticles. Reliable and robust characterization is essential to verify the cellular interactions and therapeutic potential of protein-based nanoparticles. Importantly, there are a number of crucial factors, which include sample treatment, analytical method, dispersants, sampling grid, staining, quantification parameters, temperature, drug concentration and research materials, should be taken into careful consideration. Variations in research protocol and unreasonable conditions that are used in optimization of pharmaceutical formulations can have great impact in result interpretation. Last but not least, we reviewed all novel instrumentations and assays that are available to examine mucus diffusion capacity, stability and bioactivity of protein-based nanoparticles. These include circular dichroism, fourier transform infrared spectroscopy, X-ray diffractogram, UV spectroscopy, differential scanning calorimetry, fluorescence spectrum, Förster resonance energy transfer, NMR spectroscopy, Raman spectroscopy, cellular assays and animal models.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Giuseppe Luna
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia; Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley 6102, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia.
| |
Collapse
|
16
|
A mechanistic approach for the optimization of loperamide loaded nanocarriers characterization: Diafiltration and mathematical modeling advantages. Eur J Pharm Sci 2018; 125:215-222. [DOI: 10.1016/j.ejps.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/17/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
|
17
|
Sahu KK, Pandey RS. Development and characterization of HBsAg-loaded Eudragit nanoparticles for effective colonic immunization. Pharm Dev Technol 2018; 24:166-175. [DOI: 10.1080/10837450.2018.1444639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kantrol Kumar Sahu
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
18
|
Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B 2018; 8:147-164. [PMID: 29719776 PMCID: PMC5925450 DOI: 10.1016/j.apsb.2018.01.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022] Open
Abstract
Therapeutic proteins and peptides have revolutionized treatment for a number of diseases, and the expected increase in macromolecule-based therapies brings a new set of challenges for the pharmaceutics field. Due to their poor stability, large molecular weight, and poor transport properties, therapeutic proteins and peptides are predominantly limited to parenteral administration. The short serum half-lives typically require frequent injections to maintain an effective dose, and patient compliance is a growing issue as therapeutic protein treatments become more widely available. A number of studies have underscored the relationship of subcutaneous injections with patient non-adherence, estimating that over half of insulin-dependent adults intentionally skip injections. The development of oral formulations has the potential to address some issues associated with non-adherence including the interference with daily activities, embarrassment, and injection pain. Oral delivery can also help to eliminate the adverse effects and scar tissue buildup associated with repeated injections. However, there are several major challenges associated with oral delivery of proteins and peptides, such as the instability in the gastrointestinal (GI) tract, low permeability, and a narrow absorption window in the intestine. This review provides a detailed overview of the oral delivery route and associated challenges. Recent advances in formulation and drug delivery technologies to enhance bioavailability are discussed, including the co-administration of compounds to alter conditions in the GI tract, the modification of the macromolecule physicochemical properties, and the use of improved targeted and controlled release carriers.
Collapse
Affiliation(s)
- Angela M. Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Margaret P. Gran
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author at: McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA. Tel.: +1 512 471 6644; fax: +1 512 471 8227.
| |
Collapse
|
19
|
Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release 2017; 264:247-275. [DOI: 10.1016/j.jconrel.2017.09.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/28/2022]
|
20
|
[Preparation of nanoparticles for sustained insulin release using poly (ethylene glycol) -poly (ε-caprolactone)-poly (N, N-diethylamino-2-ethylmethaerylate)]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017. [PMID: 28736379 PMCID: PMC6765507 DOI: 10.3969/j.issn.1673-4254.2017.07.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To prepare an insulin-loaded nanoparticle assembled using pH-sensitive poly(ethylene glycol)-poly(ε-caprolactone)-poly(N,N-diethylamino-2-ethylmethaerylate) (mPEG-PCL-PDEAEMA) and investigate its performance of sustained insulin release in vitro and its hypoglycemic effects in diabetic rats. METHDOS: mPEG-PCL-PDEAEMA triblock copolymers with different hydrophobic lengths were synthesized by ring opening polymerization (ROP) combined with atom transfer radical polymerization (ATRP). The copolymers were characterized using Fourier-transform Infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance spectroscopy (1H-NMR). Insulin-loaded nanoparticles were prepared by nanoprecipitation technique, in which the reversible swelling of the pH-sensitive material was used for insulin loading and release. The obtained nanoparticles were further confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The entrapment efficiency (EE%), drug loading (DL%) and in vitro release characteristics of the insulin- loaded nanoparticles were assessed using BCA protein assay kit. The hypoglycemic effects of the nanoparticles were evaluated by monitoring the glucose levels. RESULTS The size of the nanoparticles decreased as pH value increased within the range of 1.2 to 7.4. Using copolymers mPEG5k-PCL13k- PDEAEMA10k and mPEG5k-PCL10k-PDEAEMA10k as the drug carriers, the nanoparticles prepared with an optimal insulin-coplymer mass ratio of 90% had an average size of 181.9∓6.67 nm and 169∓7.1 nm, maximal EE% of (81.99∓1.77)% and (53.12∓0.62)%, and maximal DL% of (42.46∓0.53)% and (32.34∓0.26)%, respectively. Compared with free insulin, the insulin-loaded nanoparticles was capable of sustained insulin release and the release rate was lowered as the hydrophobic length increases. In diabetic rats, the insulin-loaded nanoparticles based on mPEG5k-PCL13k- PDEAEMA10k maintained a sustained hypoglycemic effect for 48 h, which was significantly longer than the time of free insulin. CONCLUSION The pH-sensitive triblock copolymer mPEG-PCL-PDEAEMA can serve as a promising candidate of carrier for sustained release of insulin.
Collapse
|
21
|
Barbari GR, Dorkoosh FA, Amini M, Sharifzadeh M, Atyabi F, Balalaie S, Rafiee Tehrani N, Rafiee Tehrani M. A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides. Int J Nanomedicine 2017; 12:3471-3483. [PMID: 28496323 PMCID: PMC5422456 DOI: 10.2147/ijn.s116063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A simple and reproducible water-in-oil (W/O) nanoemulsion technique for making ultrasmall (<15 nm), monodispersed and water-dispersible nanoparticles (NPs) from chitosan (CS) is reported. The nano-sized (50 nm) water pools of the W/O nanoemulsion serve as “nano-containers and nano-reactors”. The entrapped polymer chains of CS inside these “nano-reactors” are covalently cross-linked with the chains of polyethylene glycol (PEG), leading to rigidification and formation of NPs. These NPs possess excessive swelling properties in aqueous medium and preserve integrity in all pH ranges due to chemical cross-linking with PEG. A potent and newly developed cell-penetrating peptide (CPP) is further chemically conjugated to the surface of the NPs, leading to development of a novel peptide-conjugated derivative of CS with profound tight-junction opening properties. The CPP-conjugated NPs can easily be loaded with almost all kinds of proteins, peptides and nucleotides for oral delivery applications. Feasibility of this nanoparticulate system for oral delivery of a model peptide (insulin) is investigated in Caco-2 cell line. The cell culture results for translocation of insulin across the cell monolayer are very promising (15%–19% increase), and animal studies are actively under progress and will be published separately.
Collapse
Affiliation(s)
| | | | | | - Mohammad Sharifzadeh
- Department of Pharmacology, School of Pharmacy, Tehran University of Medical Sciences
| | | | | | - Niyousha Rafiee Tehrani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
22
|
Guerreiro LH, Silva DD, Girard-Dias W, Mascarenhas CM, Miranda K, Sola-Penna M, Ricci Júnior E, Lima LMTDRE. Macromolecular confinement of therapeutic protein in polymeric particles for controlled release: insulin as a case study. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000216039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Luiz Henrique Guerreiro
- Federal University of Rio de Janeiro, Brazil; Rural Federal University of Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lakkireddy HR, Urmann M, Besenius M, Werner U, Haack T, Brun P, Alié J, Illel B, Hortala L, Vogel R, Bazile D. Oral delivery of diabetes peptides - Comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context. Adv Drug Deliv Rev 2016; 106:196-222. [PMID: 26964477 DOI: 10.1016/j.addr.2016.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
While some orally delivered diabetes peptides are moving to late development with standard formulations incorporating functional excipients, the demonstration of the value of nanotechnology in clinic is still at an early stage. The goal of this review is to compare these two drug delivery approaches from a physico-chemical and a biopharmaceutical standpoint in an attempt to define how nanotechnology-based products can be differentiated from standard oral dosage forms for oral bioavailability of diabetes peptides. Points to consider in a translational approach are outlined to seize the opportunities offered by a better understanding of both the intestinal barrier and of nano-carriers designed for oral delivery.
Collapse
Affiliation(s)
- Harivardhan Reddy Lakkireddy
- Drug Delivery Technologies and Innovation, Pharmaceutical Sciences Operations, Lead Generation and Candidate Realization, Sanofi Research and Development, Vitry-sur-Seine, France
| | - Matthias Urmann
- Diabetes Division, Sanofi Research and Development, Frankfurt, Germany
| | - Melissa Besenius
- Diabetes Division, Sanofi Research and Development, Frankfurt, Germany
| | - Ulrich Werner
- Diabetes Division, Sanofi Research and Development, Frankfurt, Germany
| | - Torsten Haack
- Diabetes Division, Sanofi Research and Development, Frankfurt, Germany
| | - Priscilla Brun
- Disposition Safety and Animal Research, Sanofi Research and Development, Montpellier, France
| | - Jean Alié
- Analytical Sciences, Lead Generation and Candidate Realization, Sanofi Research and Development, Montpellier, France
| | - Brigitte Illel
- Pharmaceutical Sciences Operations, Lead Generation and Candidate Realization, Sanofi Research and Development, Montpellier, France
| | - Laurent Hortala
- Pharmaceutical Sciences Operations, Lead Generation and Candidate Realization, Sanofi Research and Development, Montpellier, France
| | - Rachel Vogel
- Pharmaceutical Sciences Operations, Lead Generation and Candidate Realization, Sanofi Research and Development, Montpellier, France
| | - Didier Bazile
- Drug Delivery Technologies and Innovation, Pharmaceutical Sciences Operations, Lead Generation and Candidate Realization, Sanofi Research and Development, Vitry-sur-Seine, France.
| |
Collapse
|
24
|
Banerjee A, Lee J, Mitragotri S. Intestinal mucoadhesive devices for oral delivery of insulin. Bioeng Transl Med 2016; 1:338-346. [PMID: 29313019 PMCID: PMC5689539 DOI: 10.1002/btm2.10015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
Oral delivery of proteins such as insulin has been a long‐lasting challenge owing to gastrointestinal degradation and poor permeability of therapeutic macromolecules across biological membranes. We have developed mucoadhesive intestinal devices for oral delivery of insulin to address this challenge. Here we demonstrate a combination of intestinal devices and a permeation enhancer, dimethyl palmitoyl ammonio propanesulfonate (PPS), for oral delivery of insulin. The devices were delivered from a capsule coated with a pH‐responsive enteric coating. The devices adhere to intestinal mucosa, release their protein load unidirectionally, and prevent enzymatic degradation in the gut. Devices were found to completely release their drug load within 3–4 hr and showed excellent strength of mucoadhesion to porcine intestine. Devices loaded with insulin and PPS significantly decreased blood glucose levels by 30 and 33% in diabetic and nondiabetic rats, respectively. These studies demonstrate that intestinal mucoadhesive devices are a promising oral alternative to insulin injections and therefore should be further explored for the treatment of diabetes.
Collapse
Affiliation(s)
- Amrita Banerjee
- Dept. of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106
| | - JooHee Lee
- Dept. of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106
| | - Samir Mitragotri
- Dept. of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106.,Center for Bioengineering University of California Santa Barbara Santa Barbara California 93106
| |
Collapse
|
25
|
Kaklotar D, Agrawal P, Abdulla A, Singh RP, Mehata AK, Singh S, Mishra B, Pandey BL, Trigunayat A, Muthu MS. Transition from passive to active targeting of oral insulin nanomedicines: enhancement in bioavailability and glycemic control in diabetes. Nanomedicine (Lond) 2016; 11:1465-86. [DOI: 10.2217/nnm.16.43] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oral insulin nanomedicines are effective tools for therapy and management of both Type I and Type II diabetes. This review summarizes the various nanocarriers developed so far in the literature for oral delivery of insulin. It includes lipid-based (i.e., solid lipid nanoparticles and liposomes) and polymeric-based insulin nanomedicines (i.e., chitosan nanoparticles, alginate nanoparticles, dextran nanoparticles and nanoparticles of synthetic polymers) for sustained, controlled and targeted oral delivery of insulin. Mainly, goblet cell-targeting, vitamin B12 receptor-targeting, folate receptor-targeting and transferrin receptor-targeting aspects were focused. Currently, passive and active targeting approaches of oral insulin nanomedicines have improved the oral absorption of insulin and its bioavailability (up to 14%) that produced effective glycaemic control in in vivo models. These results indicate a promising future of oral insulin nanomedicines for the treatment of diabetes.
Collapse
Affiliation(s)
- Dhansukh Kaklotar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Poornima Agrawal
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Allabakshi Abdulla
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul P Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Abhishesh K Mehata
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sanjay Singh
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Bajarangprasad L Pandey
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anshuman Trigunayat
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
26
|
Huanbutta K, Sangnim T, Limmatvapirat S, Nunthanid J, Sriamornsak P. Design and characterization of prednisolone-loaded nanoparticles fabricated by electrohydrodynamic atomization technique. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2016.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Mimi N, Belkacemi H, Sadoun T, Sapin A, Maincent P. How the composition and manufacturing parameters affect insulin release from polymeric nanoparticles. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Ansari M. Oral Delivery of Insulin for Treatment of Diabetes: Classical Challenges and Current Opportunities. JOURNAL OF MEDICAL SCIENCES 2015. [DOI: 10.3923/jms.2015.209.220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Matteucci E, Giampietro O, Covolan V, Giustarini D, Fanti P, Rossi R. Insulin administration: present strategies and future directions for a noninvasive (possibly more physiological) delivery. Drug Des Devel Ther 2015; 9:3109-18. [PMID: 26124635 PMCID: PMC4476457 DOI: 10.2147/dddt.s79322] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Insulin is a life-saving medication for people with type 1 diabetes, but traditional insulin replacement therapy is based on multiple daily subcutaneous injections or continuous subcutaneous pump-regulated infusion. Nonphysiologic delivery of subcutaneous insulin implies a rapid and sustained increase in systemic insulin levels due to the loss of concentration gradient between portal and systemic circulations. In fact, the liver degrades about half of the endogenous insulin secreted by the pancreas into the venous portal system. The reverse insulin distribution has short- and long-term effects on glucose metabolism. Thus, researchers have explored less-invasive administration routes based on innovative pharmaceutical formulations, which preserve hormone stability and ensure the therapeutic effectiveness. This review examines some of the recent proposals from clinical and material chemistry point of view, giving particular attention to patients' (and diabetologists') ideal requirements that organic chemistry could meet.
Collapse
Affiliation(s)
- Elena Matteucci
- Department of Clinical and Experimental Medicine, University of Pisa, Siena, Italy
| | - Ottavio Giampietro
- Department of Clinical and Experimental Medicine, University of Pisa, Siena, Italy
| | - Vera Covolan
- Department of Chemistry and Industrial Chemistry, University of Pisa, Siena, Italy
| | - Daniela Giustarini
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, Siena, Italy
| | - Paolo Fanti
- Division of Nephrology, University of Texas Health Science Center San Antonio, South Texas Veteran Health Care System, San Antonio, Texas, USA
| | - Ranieri Rossi
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, Siena, Italy
| |
Collapse
|
30
|
Luo YY, Xiong XY, Tian Y, Li ZL, Gong YC, Li YP. A review of biodegradable polymeric systems for oral insulin delivery. Drug Deliv 2015; 23:1882-91. [PMID: 26066036 DOI: 10.3109/10717544.2015.1052863] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Currently, repeated routine subcutaneous injections of insulin are the standard treatment for insulin-dependent diabetic patients. However, patients' poor compliance for injections often fails to achieve the stable concentration of blood glucose. As a protein drug, the oral bioavailability of insulin is low due to many physiological reasons. Several carriers, such as macromolecules and liposomes have been used to deliver drugs in vivo. In this review article, the gastrointestinal barriers of oral insulin administration are described. Strategies for increasing the bioavailability of oral insulin, such absorption enhancers, enzyme inhibitors, enteric coatings are also introduced. The potential absorption mechanisms of insulin-loaded nanoparticles across the intestinal epithelium, including intestinal lymphatic route, transcellular route and paracellular route are discussed in this review. Natural polymers, such as chitosan and its derivates, alginate derivatives, γ-PGA-based materials and starch-based nanoparticles have been exploited for oral insulin delivery; synthetic polymers, such as PLGA, PLA, PCL and PEA have also been developed for oral administration of insulin. This review focuses on recent advances in using biodegradable natural and synthetic polymers for oral insulin delivery along with their future prospects.
Collapse
Affiliation(s)
- Yue Yuan Luo
- a School of Life Science, Jiangxi Science & Technology Normal University , Nanchang , China and
| | - Xiang Yuan Xiong
- a School of Life Science, Jiangxi Science & Technology Normal University , Nanchang , China and
| | - Yuan Tian
- b China National Pharmaceutical Industry Co., Ltd ., Beijing , China
| | - Zi Ling Li
- a School of Life Science, Jiangxi Science & Technology Normal University , Nanchang , China and
| | - Yan Chun Gong
- a School of Life Science, Jiangxi Science & Technology Normal University , Nanchang , China and
| | - Yu Ping Li
- a School of Life Science, Jiangxi Science & Technology Normal University , Nanchang , China and
| |
Collapse
|
31
|
Yu F, Li Y, Liu CS, Chen Q, Wang GH, Guo W, Wu XE, Li DH, Wu WD, Chen XD. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Int J Pharm 2015; 484:181-91. [DOI: 10.1016/j.ijpharm.2015.02.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 01/09/2023]
|
32
|
Sharma R, Gupta U, Garg NK, Tyagi RK, Jain NK. Surface engineered and ligand anchored nanobioconjugate: an effective therapeutic approach for oral insulin delivery in experimental diabetic rats. Colloids Surf B Biointerfaces 2015; 127:172-81. [PMID: 25679489 DOI: 10.1016/j.colsurfb.2015.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
Abstract
The present study was designed to enhance intestinal absorption of insulin by nanobioconjugate formulated with PEGylation and Concanavalin A based targeted synergistic approach. The attempts were aimed at maximizing bioavailability and therapeutic efficacy of insulin by incorporating it in Concanavalin A anchored PEGylated nanoconstructs. The Con A anchored PEGylated PLGA diblock copolymer was synthesized by modified surface functionalization method, and was then characterized by FTIR and 1H NMR spectrum analysis. The nanoparticles from synthesized polymers were prepared and characterized for mean size and distribution by laser diffraction spectroscopy. The physicochemically characterized (by SEM and TEM) formulations were evaluated for optimum particle size, polydispersity index, zeta potential and entrapment efficiency 196.3±4.5 nm, 0.15±0.04, -25.6±1.68 and 44.6±3.5% respectively. The insulin encapsulation efficiency and in vitro release were assessed by bicinchoninic protein assay (BCA). The in vitro results corroborated in vivo studies carried out in experimentally created diabetic albino rats. The nano-encapsulated insulin was discovered to meet the requirements by achieving better stability, improved absorption and enhanced oral bioavailability elucidated by in vivo and in vitro bioassays.
Collapse
Affiliation(s)
- Rajeev Sharma
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, MP 470003, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer Rajasthan 305817, India
| | - Neeraj K Garg
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, MP 470003, India
| | - Rajeev K Tyagi
- Department of Periodontics, College of Dental Medicine Georgia Regents University, 1120, 15th Street, Augusta, GA 30912, USA; Biosafety Support Unit, Regional Center for Biotechnology, Department of Biotechnology, Room No. 810, 8th Floor, Block No-9 C.G.O. Complex, Lodhi Road, New Delhi - 110003, India
| | - N K Jain
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
33
|
Fonte P, Araújo F, Silva C, Pereira C, Reis S, Santos HA, Sarmento B. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol Adv 2015; 33:1342-54. [PMID: 25728065 DOI: 10.1016/j.biotechadv.2015.02.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/29/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a high prevalence and one of the most severe and lethal diseases in the world. Insulin is commonly used to treat diabetes in order to give patients a better life condition. However, due to bioavailability problems, the most common route of insulin administration is the subcutaneous route, which may present patients compliance problems to treatment. The oral administration is thus considered the most convenient alternative to deliver insulin, but it faces important challenges. The low stability of insulin in the gastrointestinal tract and low intestinal permeation, are problems to overcome. Therefore, the encapsulation of insulin into polymer-based nanoparticles is presented as a good strategy to improve insulin oral bioavailability. In the last years, different strategies and polymers have been used to encapsulate insulin and deliver it orally. Polymers with distinct properties from natural or synthetic sources have been used to achieve this aim, and among them may be found chitosan, dextran, alginate, poly(γ-glutamic acid), hyaluronic acid, poly(lactic acid), poly(lactide-co-glycolic acid), polycaprolactone (PCL), acrylic polymers and polyallylamine. Promising studies have been developed and positive results were obtained, but there is not a polymeric-based nanoparticle system to deliver insulin orally available in the market yet. There is also a lack of long term toxicity studies about the safety of the developed carriers. Thus, the aims of this review are first to provide a deep understanding on the oral delivery of insulin and the possible routes for its uptake, and then to overview the evolution of this field in the last years of research of insulin-loaded polymer-based nanoparticles in the academic and industrial fields. Toxicity concerns of the discussed nanocarriers are also addressed.
Collapse
Affiliation(s)
- Pedro Fonte
- REQUINTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
| | - Francisca Araújo
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal; ICBAS-Instituto Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Cátia Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
| | - Carla Pereira
- INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Salette Reis
- REQUINTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| |
Collapse
|
34
|
Mudassir J, Darwis Y, Khiang PK. Prerequisite Characteristics of Nanocarriers Favoring Oral Insulin Delivery: Nanogels as an Opportunity. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.921919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 2014; 43:3595-629. [PMID: 24626293 DOI: 10.1039/c3cs60436e] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin is essential for type 1 and advanced type 2 diabetics to maintain blood glucose levels and prolong lives. The traditional administration requires frequent subcutaneous insulin injections that are associated with poor patient compliance, including pain, local tissue necrosis, infection, and nerve damage. Taking advantage of emerging micro- and nanotechnologies, numerous alternative strategies integrated with chemical approaches for insulin delivery have been investigated. This review outlines recent developments in the controlled delivery of insulin, including oral, nasal, pulmonary, transdermal, subcutaneous and closed-loop insulin delivery. Perspectives from new materials, formulations and devices at the micro- or nano-scales are specifically surveyed. Advantages and limitations of current delivery methods, as well as future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Ran Mo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
36
|
Oral insulin delivery in rats by nanoparticles prepared with non-toxic solvents. Int J Pharm 2013; 443:169-74. [DOI: 10.1016/j.ijpharm.2013.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/07/2013] [Indexed: 11/21/2022]
|
37
|
Robles E, Villar E, Alatorre-Meda M, Burboa MG, Valdez MA, Taboada P, Mosquera V. Effects of the hydrophobization on chitosan-insulin nanoparticles obtained by an alkylation reaction on chitosan. J Appl Polym Sci 2012. [DOI: 10.1002/app.38870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Mukhopadhyay P, Mishra R, Rana D, Kundu PP. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2012.04.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Varshosaz J, Moazen E, Fathi M. Preparation of Carvedilol Nanoparticles by Emulsification Method and Optimization of Drug Release: Surface Response Design Versus Genetic Algorithm. J DISPER SCI TECHNOL 2012. [DOI: 10.1080/01932691.2011.620847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Intestinal receptor targeting for peptide delivery: an expert's personal perspective on reasons for failure and new opportunities. Ther Deliv 2012; 2:1575-93. [PMID: 22833983 DOI: 10.4155/tde.11.129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The technology has been available more than 25 years that would enable the oral delivery of vaccines, proteins and peptides, thus avoiding the need for injection. To this day, injection is still the mode of delivery, yet not the main mode of choice. This review focuses on several of the potential modes for oral delivery of peptides, proteins and vaccines. Additionally, the review will provide the reader with an insight into the problems and potential solutions for several of these modes of oral delivery of peptides and proteins.
Collapse
|
41
|
Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. Int J Pharm 2012; 440:3-12. [PMID: 22820482 DOI: 10.1016/j.ijpharm.2012.07.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
For inflammatory bowel disease (IBD) treatment, local delivery of molecules loaded in nanoparticles to the inflamed colon could be a promising strategy. The aim of this study was to investigate how drug-loaded polymeric nanoparticles target the site of inflammation and to analyse the influence of different colon-specific delivery strategies. Three different polymeric nanoparticles were formulated using ovalbumin (OVA) as a model drug. pH-sensitive nanoparticles were made with Eudragit(®) S100. Mucoadhesive nanoparticles were created with trimethylchitosan (TMC). A mix of polymers, PLGA, PEG-PLGA and PEG-PCL, were used to obtain a sustained drug delivery. Furthermore, ligands targeting immune cells (i.e. mannose) or the inflamed colon (i.e. a specific peptide) were grafted on the PEG chain of PCL. Interaction of nanoparticles with the intestinal epithelium was explored using Caco-2 monolayers designed to mimic an inflamed epithelium and then visualized using confocal laser microscopy. TMC nanoparticles had the highest apparent permeability for OVA in the untreated model. However, in the inflamed model, there were no difference between TMC, PLGA-based and Eudragit(®) nanoparticles. The uptake of nanoparticles in the inflamed mouse colon was assessed in a horizontal diffusion chamber. Mannose-grafted PLGA nanoparticles showed the highest accumulation of OVA in inflamed colon. Based on these results, active targeting of macrophages and dendritic cells may be a promising approach for targeting the colon in IBD.
Collapse
|
42
|
Najafzadeh H, Kooshapur H, Kianidehkordi F. Evaluation of an oral insulin formulation in normal and diabetic rats. Indian J Pharmacol 2012; 44:103-5. [PMID: 22345880 PMCID: PMC3271511 DOI: 10.4103/0253-7613.91879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 08/30/2011] [Accepted: 10/18/2011] [Indexed: 02/04/2023] Open
Abstract
Aim: As injection is not an ideal means for insulin delivery, various attempts have been made to administer insulin orally until now. The development of an oral dosage form of insulin would help diabetic patients and make the treatment more convenient. The aim of the present study is to evaluate the effectiveness of an oral insulin formulation containing polar and non-polar ingredients. Materials and Methods: New excipient for oral insulin administration in normal and diabetic rats was evaluated by measuring blood glucose concentrations in two groups (10 rats each) of normal and streptozotocin-induced diabetic rats. Oral insulin was administrated and blood glucose was measured by glucometer at 0, 1, 2, 3 and 4 h post-feeding. The data was compared by Student's t test. Results: Oral insulin formulation significantly (P<0.05) reduced blood glucose from 100 mg/dl to 33.73 mg/dl and 451.66 mg/dl to 200.83 mg/dl at 4 h in normal and diabetic rats, respectively. Conclusion: The novel excipient used could protect insulin from gastric and pancreatic enzymes and reduce blood glucose concentration in both healthy and diabetic rats suggesting that oral delivery of insulin is feasible in a near future.
Collapse
Affiliation(s)
- Hossein Najafzadeh
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran.
| | | | | |
Collapse
|
43
|
Zhang Y, Wu X, Meng L, Zhang Y, Ai R, Qi N, He H, Xu H, Tang X. Thiolated Eudragit nanoparticles for oral insulin delivery: preparation, characterization and in vivo evaluation. Int J Pharm 2012; 436:341-50. [PMID: 22766443 DOI: 10.1016/j.ijpharm.2012.06.054] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
In the present study thiolated Eudragit L100 (Eul) based polymeric nanoparticles (NPs) were employed to develop an oral insulin delivery system. Sulfydryl modification was achieved by grafting cysteine to the carboxylic acid group of Eudragit L100, which displayed maximum conjugate level of 390.3±13.4 μmol thiol groups per gram. Eudragit L100-cysteine (Eul-cys) and Eul nanoparticles were prepared by the precipitation method, in which reversible swelling of pH-sensitive material was used for insulin loading and release. Nanoparticles were characterized in terms of their particle size, morphology, loading efficiency (LE%) and in vitro insulin release behavior. The NPs had an average size of 324.2±39.0 nm and 308.8±35.7 nm, maximal LE% of 92.2±1.7% and 96.4±0.5% for Eul-cys and Eul, respectively. The release profile of NPs in vitro showed pH-dependent behavior. Circular dichroism (CD) spectroscopy analysis proved that the secondary structure of the insulin released from NPs was unchanged compared with native insulin. The mucoadhesion study in vitro showed that Eul-cys NPs produced a 3-fold and 2.8-fold increase in rat jejunum and ileum compared with unmodified polymer NPs, respectively, which was due to the immobilization of thiol groups on Eudragit L100. Oral administration of insulin-loaded Eul-cys NPs produced a higher and prolonged hypoglycemic action, and the corresponding relative bioavailability of insulin was found to be 7.33±0.33%, an increase of 2.8-fold compared with Eul NPs (2.65±0.63%). This delivery system is a promising novel tool to improve the absorption of protein and peptide drugs in the intestinal tract.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wu ZM, Ling L, Zhou LY, Guo XD, Jiang W, Qian Y, Luo KQ, Zhang LJ. Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery. NANOSCALE RESEARCH LETTERS 2012; 7:299. [PMID: 22682064 PMCID: PMC3436866 DOI: 10.1186/1556-276x-7-299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 06/08/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present study was to develop the PLGA/HP55 nanoparticles with improved hypoglycemic effect for oral insulin delivery. The insulin-loaded PLGA/HP55 nanoparticles were produced by a modified multiple emulsion solvent evaporation method. The physicochemical characteristics, in vitro release of insulin, and in vivo efficacy in diabetic rats of the nanoparticles were evaluated. The insulin encapsulation efficiency was up to 94%, and insulin was released in a pH-dependent manner under simulated gastrointestinal conditions. When administered orally (50 IU/kg) to diabetic rats, the nanoparticles can decrease rapidly the blood glucose level with a maximal effect between 1 and 8 h. The relative bioavailability compared with subcutaneous injection (5 IU/kg) in diabetic rats was 11.3% ± 1.05%. This effect may be explained by the fast release of insulin in the upper intestine, where it is better absorbed by the high gradient concentration of insulin than other regions. These results show that the PLGA/HP55 nanoparticles developed in the study might be employed as a potential method for oral insulin delivery.
Collapse
Affiliation(s)
- Zhi Min Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Li Ling
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Li Ying Zhou
- Department of Chemical and Bio-molecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xin Dong Guo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Yu Qian
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Kathy Qian Luo
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Li Juan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| |
Collapse
|
45
|
Krol S, Ellis-Behnke R, Marchetti P. Nanomedicine for treatment of diabetes in an aging population: state-of-the-art and future developments. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8 Suppl 1:S69-76. [PMID: 22640905 DOI: 10.1016/j.nano.2012.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/01/2011] [Accepted: 12/03/2011] [Indexed: 01/05/2023]
Abstract
Nowadays diabetes, especially type 2 diabetes (which is strongly related to the Western diet and life-style), has developed worldwide into an epidemic disease. Nanomedicine aims to provide novel tools for diagnosis, therapy and point-of-care management of patients. Several nanotechnological approaches were developed to improve life quality for patients with insulin-dependent diabetes. They facilitate blood glucose management by non-invasive glucose measurement as well as insulin administration mainly by delivering the fragile protein as protected and targeted formulation via nasal or oral route. In the present review the oral or nasal insulin delivery by polymeric nanoparticles is discussed with focus on physiological change either related to the disease, diabetes or age-related metabolic variations influencing insulin release and bioavailability. One critical point is that new generations of targeted nanoparticle based drugs are developed and optimized for certain metabolic conditions. These conditions may change with age or disease. The influence of age-related factors such as immaturity in very young age, metabolic and physiologic changes in old age or insufficient animal models are still under-investigated not only in nanomedicine but also generally in pharmacology. Summarizing it can be noted that the bioavailability of insulin administered via routes others than subcutaneously is comparably low (max. 60%). Moreover factors like changed gut permeability as described for diabetes type 1 or other metabolic peculiarities such as insulin resistance in case of type 2 diabetes also play a role in affecting the development of novel nanoparticulated drug preparations and can be responsible for unsuccessful translation of promising animal results into human therapy. In future insulin nanoparticle development for diabetes must consider not only requirements imposed by the drug but also metabolic changes inflicted by disease or by age. Moreover new approaches are required for prevention of the disease.
Collapse
Affiliation(s)
- Silke Krol
- Fondazione IRCCS Istituto Neurologico Carlo Besta, IFOM-IEO-Campus, via Adamello 16, 201394 Milan, Italy.
| | | | | |
Collapse
|
46
|
Abstract
Oral peptide delivery has been one of the major challenges of pharmaceutical sciences as it could lead to a great improvement of classical therapies, such as insulin, alongside making an important number of new therapies feasible. Successful oral delivery needs to fulfill two key tasks: to protect the macromolecules from degradation in the GI tract and to shuttle them across the intestinal epithelium in a safe and efficient fashion. Over the last decade, there have been numerous approaches based on the chemical modification of peptides and on the use of permeation enhancers, enzyme inhibitors and drug-delivery systems. Among the approaches developed to overcome these restrictions, the design of nanocarriers seems to be a particularly promising approach. This article is an overview on the state of the art of oral-peptide formulation strategies, with special attention to insulin delivery and the use of polymeric nanocarriers as delivery systems.
Collapse
|
47
|
Wu ZM, Zhou L, Guo XD, Jiang W, Ling L, Qian Y, Luo KQ, Zhang LJ. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int J Pharm 2012; 425:1-8. [PMID: 22248666 DOI: 10.1016/j.ijpharm.2011.12.055] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/20/2011] [Accepted: 12/29/2011] [Indexed: 11/27/2022]
Abstract
In this work, we designed and developed a two-stage delivery system composed of enteric capsule and cationic nanoparticles for oral delivery of insulin. The enteric capsule was coated with pH-sensitive hydroxypropyl methylcellulose phthalate (HP55), which could selectively release insulin from nanoparticles in the intestinal tract, instead of stomach. The biodegradable poly(lactic-co-glycolic acid) (PLGA) was selected as the matrix for loading insulin. Eurdragit(®) RS (RS) was also introduced to the nanoparticles for enhancing the penetration of insulin across the mucosal surface in the intestine. The nanoparticles were prepared with the multiple emulsions solvent evaporation method via ultrasonic emulsification. The optimized nanoparticles have a mean size of 285nm, a positive zeta potential of 42mV. The encapsulation efficiency was up to 73.9%. In vitro results revealed that the initial burst release of insulin from nanoparticles was markedly reduced at pH 1.2, which mimics the stomach environment. In vivo effects of the capsule containing insulin PLGA/RS nanoparticles were also investigated in diabetic rat models. The oral delivered capsules induced a prolonged reduction in blood glucose levels. The pharmacological availability was found to be approximately 9.2%. All the results indicated that the integration of HP55-coated capsule with cationic nanoparticles may be a promising platform for oral delivery of insulin with high bioavailability.
Collapse
Affiliation(s)
- Zhi Min Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Babiuch K, Gottschaldt M, Werz O, Schubert US. Particulate transepithelial drug carriers: barriers and functional polymers. RSC Adv 2012. [DOI: 10.1039/c2ra20726e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
49
|
Abstract
Since its discovery, insulin has been used as highly specific and effective therapeutic protein to treat type 1 diabetes and later was associated to oral antidiabetic agents in the treatment of type 2 diabetes. Generally, insulin is administered parenterally. Although this route is successful, it still has several limitations, such as discomfort, pain, lipodystrophy at the injection sites and peripheral hyperinsulinemia, which may be the cause of side effects and some complications. Thus, alternative routes of administration have been developed, namely, those based on nanotechnologies. Nanoparticles, made of synthetic or natural materials, have been shown to successfully overcome the inherent barriers for insulin stability, degradation, and uptake across the gastrointestinal tract and other mucosal membranes. This review describes some of the many attempts made to develop alternative and more convenient routes for insulin delivery.
Collapse
|
50
|
Krol S, Ellis-Behnke R, Marchetti P. Nanomedicine for treatment of diabetes in an aging population: state-of-the-art and future developments. Maturitas 2011; 73:61-7. [PMID: 22209199 DOI: 10.1016/j.maturitas.2011.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/01/2011] [Accepted: 12/03/2011] [Indexed: 01/08/2023]
Abstract
Nowadays diabetes, especially type 2 diabetes (which is strongly related to the Western diet and life-style), has developed worldwide into an epidemic disease. Nanomedicine aims to provide novel tools for diagnosis, therapy and point-of-care management of patients. Several nanotechnological approaches were developed to improve life quality for patients with insulin-dependent diabetes. They facilitate blood glucose management by non-invasive glucose measurement as well as insulin administration mainly by delivering the fragile protein as protected and targeted formulation via nasal or oral route. In the present review the oral or nasal insulin delivery by polymeric nanoparticles is discussed with focus on physiological change either related to the disease, diabetes or age-related metabolic variations influencing insulin release and bioavailability. One critical point is that new generations of targeted nanoparticle based drugs are developed and optimized for certain metabolic conditions. These conditions may change with age or disease. The influence of age-related factors such as immaturity in very young age, metabolic and physiologic changes in old age or insufficient animal models are still under-investigated not only in nanomedicine but also generally in pharmacology. Summarizing it can be noted that the bioavailability of insulin administered via routes others than subcutaneously is comparably low (max. 60%). Moreover factors like changed gut permeability as described for diabetes type 1 or other metabolic peculiarities such as insulin resistance in case of type 2 diabetes also play a role in affecting the development of novel nanoparticulated drug preparations and can be responsible for unsuccessful translation of promising animal results into human therapy. In future insulin nanoparticle development for diabetes must consider not only requirements imposed by the drug but also metabolic changes inflicted by disease or by age. Moreover new approaches are required for prevention of the disease.
Collapse
Affiliation(s)
- Silke Krol
- Fondazione IRCCS Istituto Neurologico Carlo Besta, IFOM-IEO-Campus, Milan, Italy.
| | | | | |
Collapse
|