1
|
Halder S, Behera US, Poddar S, Khanam J, Karmakar S. Preparation of Microsponge Drug Delivery System (MSDDS) Followed by a Scale-Up Approach. AAPS PharmSciTech 2024; 25:162. [PMID: 38997615 DOI: 10.1208/s12249-024-02874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
In 1987, Won invented the solid-phase porous microsphere (MS), which stores bioactive compounds in many interconnected voids. Spherical particles (5-300 μm), MS, may form clusters of smaller spheres, resulting in many benefits. The current investigation focussed on gel-encased formulation, which can be suitable for dermal usage. First, quasi-emulsion (w/o/w) solvent evaporation was used to prepare 5-fluorouracil (5 FU) MS particles. The final product was characterized (SEM shows porous structure, FTIR and DSC showed drug compatibility with excipients, and gel formulation is shear-thinning) and further scaled up using the 8-fold method. Furthermore, CCD (Central Composite Design) was implemented to obtain the optimized results. After optimizing the conditions, including the polymer (600 mg, ethyl cellulose (EC), eudragit RS 100 (ERS)), stirring speed (1197 rpm), and surfactant concentration (2% w/v), we achieved the following results: optimal yield (63%), mean particle size (152 µm), drug entrapment efficiency (76%), and cumulative drug release (74.24% within 8 h). These findings are promising for industrial applications and align with the objectives outlined in UN Sustainable Development Goals 3, 9, and 17, as well as the goals of the G20 initiative.
Collapse
Affiliation(s)
- S Halder
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - U S Behera
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Jeonnam, Yeosu, 59626, South Korea
| | - S Poddar
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
- Department of Chemical Engineering, Haldia Institute of Technology, West Bengal, 721657, India.
| | - J Khanam
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - S Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
2
|
Yousefpoor Y, Esnaashari SS, Baharifar H, Mehrabi M, Amani A. Current challenges ahead in preparation, characterization, and pharmaceutical applications of nanoemulsions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1920. [PMID: 37558229 DOI: 10.1002/wnan.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023]
Abstract
Nanoemulsions (NEs) are emulsions with particle size of less than around 100 nm. Reviewing the literature, several reports are available on NEs, including preparation, characterization, and applications of them. This review aims to brief challenges that researchers or formulators may encounter when working with NEs. For instance, when selecting NE components and identifying their concentrations, stability and safety of the preparation should be evaluated. When preparing an NE, issues over scale-up of the preparation as well as possible effects of the preparation process on the active ingredient need to be considered. When characterizing the NEs, the two major concerns are accuracy of the method and accessibility of the characterizing instrument. Also a highly efficient NE for clinical use to deliver the active ingredient to the target tissue with maximum safety profile is commonly sought. Throughout the review we also have tried to suggest approaches to overcome the challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yaser Yousefpoor
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical, Torbat Heydariyeh, Iran
| | - Seyedeh Sara Esnaashari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
3
|
van Heeswijk RB, Bauer WR, Bönner F, Janjic JM, Mulder WJM, Schreiber LM, Schwitter J, Flögel U. Cardiovascular Molecular Imaging With Fluorine-19 MRI: The Road to the Clinic. Circ Cardiovasc Imaging 2023; 16:e014742. [PMID: 37725674 DOI: 10.1161/circimaging.123.014742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fluorine-19 (19F) magnetic resonance imaging is a unique quantitative molecular imaging modality that makes use of an injectable fluorine-containing tracer that generates the only visible 19F signal in the body. This hot spot imaging technique has recently been used to characterize a wide array of cardiovascular diseases and seen a broad range of technical improvements. Concurrently, its potential to be translated to the clinical setting is being explored. This review provides an overview of this emerging field and demonstrates its diagnostic potential, which shows promise for clinical translation. We will describe 19F magnetic resonance imaging hardware, pulse sequences, and tracers, followed by an overview of cardiovascular applications. Finally, the challenges on the road to clinical translation are discussed.
Collapse
Affiliation(s)
- Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland (R.B.v.H.)
| | - Wolfgang R Bauer
- Department of Internal Medicine I, Universitätsklinikum Würzburg, Germany (W.R.B.)
| | - Florian Bönner
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Germany (F.B.)
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA (J.M.J.)
| | - Willem J M Mulder
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, the Netherlands (W.J.M.M.)
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands (W.J.M.M.)
| | - Laura M Schreiber
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), Wuerzburg University Hospitals, Germany (L.M.S.)
| | - Juerg Schwitter
- Division of Cardiology, Cardiovascular Department (J.S.), Lausanne University Hospital (CHUV), Switzerland
- CMR Center (J.S.), Lausanne University Hospital (CHUV), Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Switzerland (J.S.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging (U.F.), Heinrich Heine University, Germany
- Cardiovascular Research Institute Düsseldorf (CARID) (U.F.), Heinrich Heine University, Germany
| |
Collapse
|
4
|
Kupikowska-Stobba B, Kasprzak M. Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology. J Mater Chem B 2021; 9:5221-5244. [PMID: 34142690 DOI: 10.1039/d1tb00559f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introducing synthetic bone substitutes into the clinic was a major breakthrough in the regenerative medicine of bone. Despite many advantages of currently available bone implant materials such as biocompatiblity and osteoconductivity, they still suffer from relatively poor bioactivity, osteoinductivity and osteointegration. These properties can be effectively enhanced by functionalization of implant materials with nanoparticles such as osteoinductive hydroxyapatite nanocrystals, resembling inorganic part of the bone, or bioactive polymer nanoparticles providing sustained delivery of pro-osteogenic agents directly at implantation site. One of the most widespread techniques for fabrication of nanoparticles for bone regeneration applications is nanoemulsification. It allows manufacturing of nanoscale particles (<100 nm) that are injectable, 3D-printable, offer high surface-area-to-volume-ratio and minimal mass transport limitations. Nanoparticles obtained by this technique are of particular interest for biomedical engineering due to fabrication procedures requiring low surfactant concentrations, which translates into reduced risk of surfactant-related in vivo adverse effects and improved biocompatibility of the product. This review discusses nanoemulsion technology and its current uses in manufacturing of nanoparticles for bone regeneration applications. In the first section, we introduce basic concepts of nanoemulsification including nanoemulsion formation, properties and preparation methods. In the next sections, we focus on applications of nanoemulsions in fabrication of nanoparticles used for delivery of drugs/biomolecules facilitating osteogenesis and functionalization of bone implants with special emphasis on biomimetic hydroxyapatite nanoparticles, synthetic polymer nanoparticles loaded with bioactive compounds and bone-targeting nanoparticles. We also highlight key challenges in formulation of nanoparticles via nanoemulsification and outline potential further improvements in this field.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| | - Mirosław Kasprzak
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| |
Collapse
|
5
|
Barkat MA, Harshita, Rizwanullah M, Pottoo FH, Beg S, Akhter S, Ahmad FJ. Therapeutic Nanoemulsion: Concept to Delivery. Curr Pharm Des 2020; 26:1145-1166. [PMID: 32183664 DOI: 10.2174/1381612826666200317140600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/23/2020] [Indexed: 11/22/2022]
Abstract
Nanoemulsions (NEs) or nanometric-scaled emulsions are transparent or translucent, optically isotropic and kinetically stable heterogeneous system of two different immiscible liquids namely, water and oil stabilized with an amphiphilic surfactant having droplet size ranges up to 100 nm. They offer a variety of potential interests for certain applications: improved deep-rooted stability; excellent optical clarity; and, enhanced bioavailability due to its nanoscale of particles. Though there is still comparatively narrow insight apropos design, development, and optimization of NEs, which mainly stems from the fact that conventional characteristics of emulsion development and stabilization only partly apply to NEs. The contemporary article focuses on the nanoemulsion dosage form journey from concept to key application in drug delivery. In addition, industrial scalability of the nanoemulsion, as well as its presence in commercial and clinical practice, are also addressed.
Collapse
Affiliation(s)
- Md A Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Harshita
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Md Rizwanullah
- Formulation Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), 31441, Dammam, Saudi Arabia
| | - Sarwar Beg
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sohail Akhter
- Le Studium research fellow for Centre de Biophysique Moléculaire (CBM)-CNRS, University of Orléans, UPR4301, Orléans, France
| | - Farhan J Ahmad
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Saffarionpour S. Preparation of Food Flavor Nanoemulsions by High- and Low-Energy Emulsification Approaches. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09201-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Lambert E, Janjic JM. Multiple linear regression applied to predicting droplet size of complex perfluorocarbon nanoemulsions for biomedical applications. Pharm Dev Technol 2019; 24:700-710. [PMID: 30724654 PMCID: PMC10182475 DOI: 10.1080/10837450.2019.1578372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Multiple linear regression (MLR) modeling as a novel methodological advancement for design, development, and optimization of perfluorocarbon nanoemulsions (PFC NEs) is presented. The goal of the presented work is to develop MLR methods applicable to design, development, and optimization of PFC NEs in broad range of biomedical uses. Depending on the intended use of PFC NEs as either therapeutics or diagnostics, NE composition differs in respect to specific applications (e.g. magnetic resonance imaging, drug delivery, etc). PFC NE composition can significantly impact on PFC NE droplet size which impacts the NE performance and quality. We demonstrated earlier that microfluidization combined with sonication produces stable emulsions with high level of reproducibility. The goal of the presented work was to establish correlation between droplet size and composition in complex PFC-in-oil-in-water NEs while manufacturing process parameters are kept constant. Under these conditions, we demonstrate that MLR model can predict droplet size based on formulation variables such as amount and type of PFC oil and hydrocarbon oil. To the best of our knowledge, this is the first report where PFC NE composition was directly related to its colloidal properties and MLR used to predict colloidal properties from composition variables.
Collapse
Affiliation(s)
- Eric Lambert
- a Graduate School of Pharmaceutical Sciences , Duquesne University , Pittsburgh , PA , USA
| | - Jelena M Janjic
- a Graduate School of Pharmaceutical Sciences , Duquesne University , Pittsburgh , PA , USA
- b Chronic Pain Research Consortium , Duquesne University , Pittsburgh , PA , USA
| |
Collapse
|
8
|
Crecente‐Campo J, Alonso MJ. Engineering, on-demand manufacturing, and scaling-up of polymeric nanocapsules. Bioeng Transl Med 2019; 4:38-50. [PMID: 30680317 PMCID: PMC6336665 DOI: 10.1002/btm2.10118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
Polymeric nanocapsules are versatile delivery systems with the capacity to load lipophilic drugs in their oily nucleus and hydrophilic drugs in their polymeric shell. The objective of this work was to expand the technological possibilities to prepare customized nanocapsules. First, we adapted the solvent displacement technique to modulate the particle size of the resulting nanocapsules in the 50-500 nm range. We also produced nanosystems with a shell made of one or multiple polymer layers i.e. chitosan, dextran sulphate, hyaluronate, chondroitin sulphate, and alginate. In addition, we identified the conditions to translate the process into a miniaturized high-throughput tailor-made fabrication that enables massive screening of formulations. Finally, the production of the nanocapsules was scaled-up both in a batch production, and also using microfluidics. The versatility of the properties of these nanocapsules and their fabrication technologies is expected to propel their advance from bench to clinic.
Collapse
Affiliation(s)
- José Crecente‐Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus VidaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus VidaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
9
|
Janjic JM, Vasudeva K, Saleem M, Stevens A, Liu L, Patel S, Pollock JA. Low-dose NSAIDs reduce pain via macrophage targeted nanoemulsion delivery to neuroinflammation of the sciatic nerve in rat. J Neuroimmunol 2018. [PMID: 29519721 DOI: 10.1016/j.jneuroim.2018.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroinflammation involving macrophages elevates Prostaglandin E2, associated with neuropathic pain. Treatment with non-steroidal anti-inflammatory drugs (NSAIDs) inhibits cyclooxygenase, reducing PGE2. However, NSAIDs cause physiological complications. We developed nanoemulsions incorporating celecoxib and near infrared dye. Intravenous injected nanoemulsion is incorporated into monocytes that accumulate at the injury; revealed in live animals by fluorescence. A single dose (celecoxib 0.24 mg/kg) provides targeted delivery in chronic constriction injury rats, resulting in significant reduction in the visualized inflammation, infiltration of macrophages, COX-2 and PGE2. Animals exhibit relief from hypersensitivity persisting at least four-days. The total body burden of drug is reduced by >2000 fold over oral drug delivery.
Collapse
Affiliation(s)
- Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, United States; Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Kiran Vasudeva
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States; Department of Biological Sciences, Bayer School of Natural & Environmental Science, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Muzamil Saleem
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States; Department of Biological Sciences, Bayer School of Natural & Environmental Science, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Andrea Stevens
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States; Department of Biological Sciences, Bayer School of Natural & Environmental Science, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Lu Liu
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, United States; Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Sravan Patel
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, United States; Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States.
| | - John A Pollock
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States; Department of Biological Sciences, Bayer School of Natural & Environmental Science, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
10
|
Janjic JM, Gorantla VS. Peripheral Nerve Nanoimaging: Monitoring Treatment and Regeneration. AAPS JOURNAL 2017; 19:1304-1316. [PMID: 28779380 DOI: 10.1208/s12248-017-0129-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Accidental and iatrogenic trauma are major causes of peripheral nerve injury. Healing after nerve injury is complex and often incomplete, which can lead to acute or chronic pain and functional impairment. Current assessment methods for nerve regeneration lack sensitivity and objectivity. There is a need for reliable and reproducible, noninvasive strategies with adequate spatial and temporal resolution for longitudinal evaluation of degeneration or regeneration after injury/treatment. Methods for noninvasive monitoring of the efficacy and effectiveness of neurotherapeutics in nerve regeneration or of neuropathic pain are needed to ensure adequacy and responsiveness to management, especially given the large variability in the patient populations, etiologies, and complexity of nerve injuries. Surrogate biomarkers are needed with positive predictive correlation for the dynamics and kinetics of neuroregeneration. They can provide direct real-time insight into the efficacy and mechanisms of individualized therapeutic intervention. Here, we review the state-of-the-art tools, technologies, and therapies in peripheral nerve injury and regeneration as well as provide perspectives for the future. We present compelling evidence that advancements in nanomedicine and innovation in nanotechnology such as nanotheranostics hold groundbreaking potential as paradigm shifts in noninvasive peripheral nerve imaging and drug delivery. Nanotechnology, which revolutionized molecular imaging in cancer and inflammatory disease, can be used to delineate dynamic molecular imaging signatures of neuroinflammation and neuroregeneration while simultaneously monitoring cellular or tissue response to drug therapy. We believe that current clinical successes of nanotechnology can and should be adopted and adapted to the science of peripheral nerve injury and regeneration.
Collapse
Affiliation(s)
- Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, 415 Mellon Hall, Pittsburgh, Pennsylvania, 15282, USA. .,Chronic Pain Research Consortium, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania, 15282, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 1602 E. Carson Street, Pittsburgh, Pennsylvania, 15203, USA.
| | - Vijay S Gorantla
- Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest Baptist Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
11
|
Abellan-Pose R, Teijeiro-Valiño C, Santander-Ortega MJ, Borrajo E, Vidal A, Garcia-Fuentes M, Csaba N, Alonso MJ. Polyaminoacid nanocapsules for drug delivery to the lymphatic system: Effect of the particle size. Int J Pharm 2016; 509:107-117. [DOI: 10.1016/j.ijpharm.2016.05.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023]
|
12
|
Utilization of Near-Infrared Fluorescent Imaging for Pharmaceutically Relevant Applications. Methods Mol Biol 2016; 1444:97-108. [PMID: 27283421 DOI: 10.1007/978-1-4939-3721-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Optical imaging can be utilized for several pharmaceutical applications involving near-infrared fluorescent (NIRF) dyes or NIRF moiety-containing products. Especially during the early phases of product development, NIRF dyes can be used as surrogates for drugs and optical imaging methods can be utilized to optimize the pharmaceutical product properties based on dye entrapment efficiency, in vitro dye release, cellular uptake, and in vivo biodistribution. Based on in vivo accumulation, product efficacy and toxicity can be evaluated in the early development stage. Compared to visible fluorescent dyes, NIRF offers advantages such as low background from formulation excipients as well as biological components.In this chapter, the utility of NIRF imaging methods for in vitro characterization (in vitro release and cellular uptake) and in vivo/ex vivo applicability of pharmaceutically relevant products is presented in detail. Specifically, the application of fluorescence imaging to characterize perfluorocarbon-based formulations for dye loading, in vitro release, cellular uptake, and in vivo imaging to assess target accumulation and biodistribution is discussed. These methods are widely applicable to other nanoparticle-based products involved in inflammation/cancer imaging and therapy. Overall, NIRF-based techniques are indispensible because they are relatively easy, fast, and cost effective to characterize and optimize pharmaceutical products at different stages of product development.
Collapse
|
13
|
Tian Y, Chen L, Zhang W. Influence of Ionic Surfactants on the Properties of Nanoemulsions Emulsified by Nonionic Surfactants Span 80/Tween 80. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2015.1048806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Abstract
Theranostic nanomedicines are a promising new technological advancement toward personalized medicine. Although much progress has been made in pre-clinical studies, their clinical utilization is still under development. A key ingredient for successful theranostic clinical translation is pharmaceutical process design for production on a sufficient scale for clinical testing. In this study, we report, for the first time, a successful scale-up of a model theranostic nanoemulsion. Celecoxib-loaded near-infrared-labeled perfluorocarbon nanoemulsion was produced on three levels of scale (small at 54 mL, medium at 270 mL, and large at 1,000 mL) using microfluidization. The average size and polydispersity were not affected by the equipment used or production scale. The overall nanoemulsion stability was maintained for 90 days upon storage and was not impacted by nanoemulsion production scale or composition. Cell-based evaluations show comparable results for all nanoemulsions with no significant impact of nanoemulsion scale on cell toxicity and their pharmacological effects. This report serves as the first example of a successful scale-up of a theranostic nanoemulsion and a model for future studies on theranostic nanomedicine production and development.
Collapse
Affiliation(s)
- Lu Liu
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University , Pittsburgh, Pennsylvania
| | - Christina Bagia
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University , Pittsburgh, Pennsylvania
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University , Pittsburgh, Pennsylvania. ; Chronic Pain Research Consortium, Duquesne University , Pittsburgh, Pennsylvania. ; McGowan Research Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Thermosensitive and mucoadhesive pluronic-hydroxypropylmethylcellulose hydrogel containing the mini-CD4 M48U1 is a promising efficient barrier against HIV diffusion through macaque cervicovaginal mucus. Antimicrob Agents Chemother 2015; 59:2215-22. [PMID: 25645853 DOI: 10.1128/aac.03503-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To be efficient, vaginal microbicide hydrogels should form a barrier against viral infections and prevent virus spreading through mucus. Multiple particle tracking was used to quantify the mobility of 170-nm fluorescently labeled COOH-modified polystyrene particles (COOH-PS) into thermosensitive hydrogels composed of amphiphilic triblock copolymers with block compositions EOn-POm-EOn (where EO refers to ethylene oxide and PO to propylene oxide) containing mucoadhesive hydroxypropylmethylcellulose (HPMC). COOH-PS were used to mimic the size and the surface charge of HIV-1. Analysis of COOH-PS trajectories showed that particle mobility was decreased by Pluronic hydrogels in comparison with cynomolgus macaque cervicovaginal mucus and hydroxyethylcellulose hydrogel (HEC; 1.5% by weight [wt%]) used as negative controls. Formulation of the peptide mini-CD4 M48U1 used as an anti-HIV-1 molecule into a mixture of Pluronic F127 (20 wt%) and HPMC (1 wt%) did not affect its anti-HIV-1 activity in comparison with HEC hydrogel. The 50% inhibitory concentration (IC50) was 0.53 μg/ml (0.17 μM) for M48U1-HEC and 0.58 μg/ml (0.19 μM) for M48U1-F127-HPMC. The present work suggests that hydrogels composed of F127-HPMC (20/1 wt%, respectively) can be used to create an efficient barrier against particle diffusion in comparison to conventional HEC hydrogels.
Collapse
|
16
|
Stumpo M, Anselmi C, Vauthier C, Mitri K, Hanno I, Huang N, Bouchemal K. Scale-up of polyamide and polyester Parsol® MCX nanocapsules by interfacial polycondensation and solvent diffusion method. Int J Pharm 2013; 454:678-85. [DOI: 10.1016/j.ijpharm.2013.06.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/03/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
|
17
|
May-Masnou A, Porras M, Maestro A, González C, María Gutiérrez J. Scale invariants in the preparation of reverse high internal phase ratio emulsions. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2013.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Thomas O, Lagarce F. Lipid Nanocapsules: A Nanocarrier Suitable for Scale-Up Process. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50084-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|