1
|
Araneda JF, Baumgarte M, Lange M, Maier AFG, Riegel SD. Identification of seven psychedelic 2,5-dimethoxy-phenylethyl-amine-based designer drugs via benchtop 1 H nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:66-72. [PMID: 34404110 DOI: 10.1002/mrc.5205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The dissemination of spectral information of new psychoactive substances (NPS) acquired on benchtop nuclear magnetic resonance (NMR) spectrometers is of high importance considering the emerging application of such portable and accessible instruments in forensic analyses. Seven members of the 2C-X series (2C-B, 2C-C, 2C-D, 2C-E, 2C-P, 2C-T2, and 2C-T7) of NPS were analyzed via 60 MHz 1 H benchtop NMR spectroscopy and their molecular structural relations are discussed with respect to the observed proton NMR spectra.
Collapse
Affiliation(s)
- Juan F Araneda
- Application Chemistry, Nanalysis Corp., Calgary, Alberta, Canada
| | - Marion Baumgarte
- Forensic Science Institute, State Criminal Police Office of Lower Saxony, Hanover, Germany
| | - Marie Lange
- Forensic Science Institute, State Criminal Police Office of Lower Saxony, Hanover, Germany
| | | | - Susanne D Riegel
- Application Chemistry, Nanalysis Corp., Calgary, Alberta, Canada
| |
Collapse
|
2
|
Nieto CT, Manchado A, Belda L, Diez D, Garrido NM. 2-Phenethylamines in Medicinal Chemistry: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020855. [PMID: 36677913 PMCID: PMC9864394 DOI: 10.3390/molecules28020855] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
A concise review covering updated presence and role of 2-phenethylamines in medicinal chemistry is presented. Open-chain, flexible alicyclic amine derivatives of this motif are enumerated in key therapeutic targets, listing medicinal chemistry hits and appealing screening compounds. Latest reports in discovering new bioactive 2-phenethylamines by research groups are covered too.
Collapse
|
3
|
Yoon KS, Cha HJ, Choi SO, Lee JM. 2-((2-(4-Iodo-2,5-dimethoxyphenyl)ethylamino)methyl)phenol (25I-NBOH) and 2-(((2-(4-chloro-2,5-dimethoxyphenyl)ethyl)amino)methyl)phenol (25C-NBOH) induce adverse effects on the cardiovascular system. Toxicol Lett 2022; 355:160-169. [PMID: 34843874 DOI: 10.1016/j.toxlet.2021.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Two new psychoactive substances (NPSs) classified as phenethylamines, namely 2-((2-(4-Iodo-2,5-dimethoxyphenyl)ethylamino)methyl)phenol (25I-NBOH) and 2-(((2-(4-chloro-2,5-dimethoxyphenyl)ethyl)amino)methyl)phenol (25C-NBOH), are being abused by people seeking recreational hallucinogens. These NPSs may cause serious health problems as their adverse effects are not known in most cases. Therefore, in the present study, we evaluated the cardiotoxicity of 25I-NBOH and 25C-NBOH using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, rat electrocardiography (ECG), Langendorff test, and human ether-a-go-go-related gene (hERG) assay. Furthermore, we analyzed the expression levels of p21 CDC42/RAC1-activated kinase 1 (PAK1), which is known to play various roles in the cardiovascular system. In the MTT assay, treatment with 25I-NBOH or 25C-NBOH dramatically decreased viability of H9c2 cardiomyocytes. Meanwhile, these two compounds significantly increased QT intervals and RR intervals in the rat ECG measurement. 25I-NBOH down-regulated the PAK1 protein expression in rat primary cardiomyocytes as well as H9c2 cells. However, 25C-NBOH had no effect on the PAK1 expression in H9c2 cells. In an in-depth study, 25I-NBOH inhibited potassium channels in the hERG assay, but in ex vivo test, the substance did not affect the left ventricular developed pressure (LVDP) and heart rate of the isolated rat hearts. Taken together, these results suggest that both 25I-NBOH and 25C-NBOH may have adverse cardiovascular effect. Further investigation would be needed to determine which factors mainly influence the relationship between PAK1 expression and cardiotoxicity.
Collapse
Affiliation(s)
- Kyung Sik Yoon
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Hye Jin Cha
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Sun Ok Choi
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Jin-Moo Lee
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| |
Collapse
|
4
|
Poulie CBM, Jensen AA, Halberstadt AL, Kristensen JL. DARK Classics in Chemical Neuroscience: NBOMes. ACS Chem Neurosci 2019; 11:3860-3869. [PMID: 31657895 PMCID: PMC9191638 DOI: 10.1021/acschemneuro.9b00528] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
N-Benzylphenethylamines, commonly known as NBOMes, are synthetic psychedelic compounds derived from the phenethylamine class of psychedelics (2C-X compounds), which originally have been derived from the naturally occurring alkaloid mescaline. Analogously to their parent compounds and other classical psychedelics, such as psilocybin and lysergic acid diethylamide (LSD), NBOMes are believed to exert their main pharmacological effects through activation of serotonin 2A (5-HT2A) receptors. Since their introduction as New Psychoactive Substances (NPSs) in 2010, NBOMes have been widely used for recreational purposes; this has resulted in numerous cases of acute toxicity, sometimes with lethal outcomes, leading to the classification of several NBOMes as Schedule I substances in 2013. However, in addition to their recreational use, the NBOMe class has yielded several important biochemical tools, including [11C]Cimbi-36, which is now being used in positron emission tomography (PET) studies of the 5-HT2A and 5-HT2C receptors in the mammalian brain, and 25CN-NBOH, one of the most selective 5-HT2A receptor agonists developed to date. In this Review, the history, chemistry, structure-activity relationships, ADME (absorption, distribution, metabolism, and excretion) properties, and safety profiles of NBOMes will be outlined and discussed.
Collapse
|
5
|
Mennie KM, Banik SM, Reichert EC, Jacobsen EN. Catalytic Diastereo- and Enantioselective Fluoroamination of Alkenes. J Am Chem Soc 2018; 140:4797-4802. [PMID: 29583001 PMCID: PMC5902804 DOI: 10.1021/jacs.8b02143] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stereoselective synthesis of syn-β-fluoroaziridine building blocks via chiral aryl iodide-catalyzed fluorination of allylic amines is reported. The method employs HF-pyridine as a nucleophilic fluoride source together with mCPBA as a stoichiometric oxidant, and affords access to arylethylamine derivatives featuring fluorine-containing stereocenters in high diastereo- and enantioselectivity. Catalyst-controlled diastereoselectivity in the fluorination of chiral allylic amines enabled the preparation of highly enantioenriched 1,3-difluoro-2-amines bearing three contiguous stereocenters. The enantioselective catalytic method was applied successfully to other classes of multifunctional alkene substrates to afford anti-β-fluoropyrrolidines, as well as a variety of 1,2-oxyfluorinated products.
Collapse
Affiliation(s)
- Katrina M. Mennie
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Steven M. Banik
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elaine C. Reichert
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric N. Jacobsen
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Abstract
This chapter will summarize structure-activity relationships (SAR) that are known for the classic serotonergic hallucinogens (aka psychedelics), focusing on the three chemical types: tryptamines, ergolines, and phenethylamines. In the brain, the serotonin 5-HT2A receptor plays a key role in regulation of cortical function and cognition, and also appears to be the principal target for hallucinogenic/psychedelic drugs such as LSD. It is one of the most extensively studied of the 14 known types of serotonin receptors. Important structural features will be identified for activity and, where possible, those that the psychedelics have in common will be discussed. Because activation of the 5-HT2A receptor is the principal mechanism of action for psychedelics, compounds with 5-HT2A agonist activity generally are quickly discarded by the pharmaceutical industry. Thus, most of the research on psychedelics can be related to activation of 5-HT2A receptors. Therefore, much of the discussion will include not only clinical or anecdotal studies, but also will consider data from animal models as well as a certain amount of molecular pharmacology where it is known.
Collapse
Affiliation(s)
- David E Nichols
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
7
|
Huang CY(D, Doyle AG. Electron-Deficient Olefin Ligands Enable Generation of Quaternary Carbons by Ni-Catalyzed Cross-Coupling. J Am Chem Soc 2015; 137:5638-41. [DOI: 10.1021/jacs.5b02503] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Abigail G. Doyle
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Skin permeation and comparative evaluation of gentisic acid ester derivatives as skin-lightening agents. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50034-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
|
10
|
Zhang S, Fan Y, Shi Z, Cheng S. DFT-based QSAR and Action Mechanism of Phenylalkylamine and Tryptamine Hallucinogens. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Kovacic P, Somanathan R. Novel, unifying mechanism for mescaline in the central nervous system: electrochemistry, catechol redox metabolite, receptor, cell signaling and structure activity relationships. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:181-90. [PMID: 20716904 PMCID: PMC2763256 DOI: 10.4161/oxim.2.4.9380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A unifying mechanism for abused drugs has been proposed previously from the standpoint of electron transfer. Mescaline can be accommodated within the theoretical framework based on redox cycling by the catechol metabolite with its quinone counterpart. Electron transfer may play a role in electrical effects involving the nervous system in the brain. This approach is in accord with structure activity relationships involving mescaline, abused drugs, catecholamines and etoposide. Inefficient demethylation is in keeping with the various drug properties, such as requirement for high dosage and slow acting. There is a discussion of receptor binding, electrical effects, cell signaling and other modes of action. Mescaline is a nonselective, seretonin receptor agonist. 5-HTP receptors are involved in the stimulus properties. Research addresses the aspect of stereochemical requirements. Receptor binding may involve the proposed quinone metabolite and/or the amino sidechain via protonation. Electroencephalographic studies were performed on the effects of mescaline on men. Spikes are elicited by stimulation of a cortical area. The potentials likely originate in nonsynaptic dendritic membranes. Receptor-mediated signaling pathways were examined which affect mescaline behavior. The hallucinogen belongs to the class of 2AR agonists which regulate pathways in cortical neurons. The research identifies neural and signaling mechanisms responsible for the biological effects. Recently, another hallucinogen, psilocybin, has been included within the unifying mechanistic framework. This mushroom constituent is hydrolyzed to the phenol psilocin, also active, which is subsequently oxidized to an ET o-quinone or iminoquinone.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182, USA.
| | | |
Collapse
|
12
|
Min JZ, Yamashita K, Toyo'oka T, Inagaki S, Higashi T, Kikura-Hanajiri R, Goda Y. Simultaneous and group determination methods for designated substances by HPLC with multi-channel electrochemical detection and their application to real samples. Biomed Chromatogr 2010; 24:1287-99. [DOI: 10.1002/bmc.1439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Min JZ, Hatanaka S, Toyo’oka T, Inagaki S, Kikura-Hanajiri R, Goda Y. Rapid, sensitive and simultaneous determination of fluorescence-labeled designated substances controlled by the Pharmaceutical Affairs Law in Japan by ultra-performance liquid chromatography coupled with electrospray-ionization time-of-flight mass spectrometry. Anal Bioanal Chem 2009; 395:1411-22. [DOI: 10.1007/s00216-009-3046-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 11/28/2022]
|
14
|
Simultaneous determination of 11 designated hallucinogenic phenethylamines by ultra-fast liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 873:187-94. [DOI: 10.1016/j.jchromb.2008.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/19/2008] [Accepted: 08/25/2008] [Indexed: 11/30/2022]
|
15
|
Blaazer A, Smid P, Kruse C. Structure-Activity Relationships of Phenylalkylamines as Agonist Ligands for 5-HT2AReceptors. ChemMedChem 2008; 3:1299-309. [DOI: 10.1002/cmdc.200800133] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Braden MR, Nichols DE. Assessment of the Roles of Serines 5.43(239) and 5.46(242) for Binding and Potency of Agonist Ligands at the Human Serotonin 5-HT2AReceptor. Mol Pharmacol 2007; 72:1200-9. [PMID: 17715398 DOI: 10.1124/mol.107.039255] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the relative importance of two serine residues located near the top of transmembrane helix 5 of the human 5-HT(2A) receptor, comparing the wild type with S5.43(239)A or S5.46(242)A mutations. Using the ergoline lysergic acid diethylamide (LSD), and a series of substituted tryptamine and phenethylamine 5-HT(2A) receptor agonists, we found that Ser5.43(239) is more critical for agonist binding and function than Ser5.46(242). Ser5.43(239) seems to engage oxygen substituents at either the 4- or 5-position of tryptamine ligands and the 5-position of phenylalkylamine ligands. Even when a direct binding interaction cannot occur, our data suggest that Ser5.43(239) is still important for receptor activation. Polar ring-substituted tryptamine ligands also seem to engage Ser5.46(242), but tryptamines lacking such a substituent may adopt an alternate binding orientation that does not engage this residue. Our results are consistent with the role of Ser5.43(239) as a hydrogen bond donor, whereas Ser5.46(242) seems to serve as a hydrogen bond acceptor. These results are consistent with the functional topography and utility of our in silico-activated homology model of the h5-HT(2A) receptor. In addition, being more distal from the absolutely conserved Pro5.50, a strong interaction with Ser5.43(239) may be more effective in straightening the kink in helix 5, a feature that is possibly common to all type A GPCRs that have polar residues at position 5.43.
Collapse
Affiliation(s)
- Michael R Braden
- Dept. of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, 575 Stadium Mall Drive, Purdue University, West Lafayette, IN 47907-2091, USA
| | | |
Collapse
|
17
|
Fantegrossi WE, Murnane KS, Reissig CJ. The behavioral pharmacology of hallucinogens. Biochem Pharmacol 2007; 75:17-33. [PMID: 17977517 DOI: 10.1016/j.bcp.2007.07.018] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/11/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
Until very recently, comparatively few scientists were studying hallucinogenic drugs. Nevertheless, selective antagonists are available for relevant serotonergic receptors, the majority of which have now been cloned, allowing for reasonably thorough pharmacological investigation. Animal models sensitive to the behavioral effects of the hallucinogens have been established and exploited. Sophisticated genetic techniques have enabled the development of mutant mice, which have proven useful in the study of hallucinogens. The capacity to study post-receptor signaling events has lead to the proposal of a plausible mechanism of action for these compounds. The tools currently available to study the hallucinogens are thus more plentiful and scientifically advanced than were those accessible to earlier researchers studying the opioids, benzodiazepines, cholinergics, or other centrally active compounds. The behavioral pharmacology of phenethylamine, tryptamine, and ergoline hallucinogens are described in this review, paying particular attention to important structure activity relationships which have emerged, receptors involved in their various actions, effects on conditioned and unconditioned behaviors, and in some cases, human psychopharmacology. As clinical interest in the therapeutic potential of these compounds is once again beginning to emerge, it is important to recognize the wealth of data derived from controlled preclinical studies on these compounds.
Collapse
Affiliation(s)
- William E Fantegrossi
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
18
|
Zhang Z, An L, Hu W, Xiang Y. 3D-QSAR study of hallucinogenic phenylalkylamines by using CoMFA approach. J Comput Aided Mol Des 2007; 21:145-53. [PMID: 17203365 DOI: 10.1007/s10822-006-9090-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 10/22/2006] [Indexed: 11/25/2022]
Abstract
The three-dimensional quantitative structure-activity relationship (3D-QSAR) has been studied on 90 hallucinogenic phenylalkylamines by the comparative molecular field analysis (CoMFA). Two conformations were compared during the modeling. Conformation I referred to the amino group close to ring position 6 and conformation II related to the amino group trans to the phenyl ring. Satisfactory results were obtained by using both conformations. There were still differences between the two models. The model based on conformation I got better statistical results than the one about conformation II. And this may suggest that conformation I be preponderant when the hallucinogenic phenylalkylamines interact with the receptor. To further confirm the predictive capability of the CoMFA model, 18 compounds with conformation I were randomly selected as a test set and the remaining ones as training set. The best CoMFA model based on the training set had a cross-validation coefficient q (2) of 0.549 at five components and non cross-validation coefficient R (2) of 0.835, the standard error of estimation was 0.219. The model showed good predictive ability in the external test with a coefficient R (pre) (2) of 0.611. The CoMFA coefficient contour maps suggested that both steric and electrostatic interactions play an important role. The contributions from the steric and electrostatic fields were 0.450 and 0.550, respectively.
Collapse
Affiliation(s)
- Zhuoyong Zhang
- Department of Chemistry, Capital Normal University, 105 Xisanhuan North, Beijing, PR China.
| | | | | | | |
Collapse
|
19
|
Fantegrossi WE. Reinforcing effects of methylenedioxy amphetamine congeners in rhesus monkeys: are intravenous self-administration experiments relevant to MDMA neurotoxicity? Psychopharmacology (Berl) 2007; 189:471-82. [PMID: 16555062 DOI: 10.1007/s00213-006-0320-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 01/01/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Many animal models relevant to the persistent effects of drugs of abuse necessitate the application of interspecies dose scaling procedures to approximate drug administration regimens in humans, but drug self-administration procedures differ in that they allow animal subjects to control their own drug intake. OBJECTIVES This report reviews the reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA), its enantiomers, and several structural analogs in rhesus monkeys, paying particular attention to the pharmacological mechanisms of such reinforcing effects, the development of structure activity relationships among these compounds, the stability of MDMA self-administration behavior over time, and the persistent effects of self-administered MDMA on monoamines. RESULTS The methylenedioxy amphetamine congeners MDMA, 3,4-methylenedioxyamphetamine, N-ethyl-3,4-methylenedioxyamphetamine, and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine function as reinforcers in rhesus monkeys, maintaining self-administration behavior greater than that engendered by contingent saline but less than that engendered by traditional psychostimulants. These findings are remarkable as structurally distinct serotonergic hallucinogen-like drugs do not maintain reliable self-administration in laboratory animals. During prolonged MDMA self-administration, MDMA-maintained responding progressively weakens, and MDMA eventually fails to maintain significant self-administration. The neurochemical correlates of this effect have not yet been identified. CONCLUSIONS Procedures in which MDMA and related compounds are self-administered can be established in rhesus monkeys. These techniques can be used to engender contingent MDMA exposure without resorting to controversial methods of interspecies dose scaling. As such, further application of self-administration methods may provide important new insights into the persistent effects of MDMA on brain and behavior in nonhuman primates.
Collapse
Affiliation(s)
- William E Fantegrossi
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Kikura-Hanajiri R, Hayashi M, Saisho K, Goda Y. Simultaneous determination of nineteen hallucinogenic tryptamines/β-calbolines and phenethylamines using gas chromatography–mass spectrometry and liquid chromatography–electrospray ionisation-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 825:29-37. [PMID: 16154520 DOI: 10.1016/j.jchromb.2005.01.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Revised: 01/20/2005] [Accepted: 01/26/2005] [Indexed: 11/23/2022]
Abstract
To investigate the trend of non-controlled drugs of abuse, simultaneous analytical methods were developed using GC-MS and LC-ESI-MS for 8 tryptamines/beta-carbolines, 6 phenethylamines of typically non-controlled substances in Japan, and, additionally, five legally controlled tryptamines and phenethylamines originally found in fungi or plants. Moreover, the proposed methods were applied to analyses of these drugs in 99 kinds of products (a total number of 123 products purchased at adult shops or via the Internet over the past 2 years in Japan), which potentially advertised psychotropic/psychoactive effects. The samples were extracted with methanol under ultrasonication. After centrifugation, the extracts were filtered prior to injections. GC-MS analysis was performed using a DB-5MS capillary column. Regarding the LC-ESI-MS analysis; the separation of the target drugs was optimized on an ODS column in acetonitrile/MeOH (7:3)-10 mM ammonium formate buffer (pH 3.5)/acetonitrile (95:5) by a linear gradient program and a quantitative analysis was carried out by the monitoring of each [M+H]+ in the positive ion mode of ESI-MS. As a result of the analyses using GC-MS and LC-ESI-MS, 5-MeO-DIPT (the synthetic substance known by the street name "Foxy") was found in 8 out of the 99 kinds of products. Additionally, AMT (from brown powder), DMT (from dried plant), harmine and harmaline (from dried plant) were also found in some of the 99 products. These analytical methods could be useful for the investigation of the distribution of the non-controlled psychotropic tryptamines/beta-carbolines and phenethylamines in the market.
Collapse
Affiliation(s)
- R Kikura-Hanajiri
- National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| | | | | | | |
Collapse
|
21
|
Abstract
Hallucinogens (psychedelics) are psychoactive substances that powerfully alter perception, mood, and a host of cognitive processes. They are considered physiologically safe and do not produce dependence or addiction. Their origin predates written history, and they were employed by early cultures in a variety of sociocultural and ritual contexts. In the 1950s, after the virtually contemporaneous discovery of both serotonin (5-HT) and lysergic acid diethylamide (LSD-25), early brain research focused intensely on the possibility that LSD or other hallucinogens had a serotonergic basis of action and reinforced the idea that 5-HT was an important neurotransmitter in brain. These ideas were eventually proven, and today it is believed that hallucinogens stimulate 5-HT(2A) receptors, especially those expressed on neocortical pyramidal cells. Activation of 5-HT(2A) receptors also leads to increased cortical glutamate levels presumably by a presynaptic receptor-mediated release from thalamic afferents. These findings have led to comparisons of the effects of classical hallucinogens with certain aspects of acute psychosis and to a focus on thalamocortical interactions as key to understanding both the action of these substances and the neuroanatomical sites involved in altered states of consciousness (ASC). In vivo brain imaging in humans using [(18)F]fluorodeoxyglucose has shown that hallucinogens increase prefrontal cortical metabolism, and correlations have been developed between activity in specific brain areas and psychological elements of the ASC produced by hallucinogens. The 5-HT(2A) receptor clearly plays an essential role in cognitive processing, including working memory, and ligands for this receptor may be extremely useful tools for future cognitive neuroscience research. In addition, it appears entirely possible that utility may still emerge for the use of hallucinogens in treating alcoholism, substance abuse, and certain psychiatric disorders.
Collapse
Affiliation(s)
- David E Nichols
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, IN 47907-2091, USA.
| |
Collapse
|
22
|
Arvanov VL, Liang X, Russo A, Wang RY. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex. Eur J Neurosci 1999; 11:3064-72. [PMID: 10510170 DOI: 10.1046/j.1460-9568.1999.00726.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.
Collapse
Affiliation(s)
- V L Arvanov
- Department of Psychiatry and Behavioral Science, SUNY at Stony Brook, NY 11794-8790, USA
| | | | | | | |
Collapse
|
23
|
Kirkpatrick-Steger K, Vander Linden S, Gormezano I. Effects of MDA upon differential serial compound conditioning and reflex modification of the rabbit's nictitating membrane response. Pharmacol Biochem Behav 1992; 41:333-42. [PMID: 1574522 DOI: 10.1016/0091-3057(92)90107-q] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present investigations sought to determine the effects of 3,4-methylenedioxyamphetamine (MDA) on: 1) differential conditioning of the rabbit's nictitating membrane response to the serial compounds A-X-US (tone-light-reinforced compound) and B-X (white noise-light-unreinforced compound) by examining differential responding to A and B and their conditional control over responding to X within the compounds (Experiment 1); and 2) the ability of the compound stimuli and their components to modify the amplitude of the unconditioned nictitating membrane response (Experiment 2). Experiment 1 revealed that MDA decremented differential responding to the serial compounds and their A and B components, while enhancing conditioned responding to the X component. In addition, Experiment 2 indicated that MDA attenuated reflex modification to the compounds and their A and B components, but facilitated reflex modification to X alone. The results of these experiments indicated that MDA operated to alter the intensity, distinctiveness, and persistence (short-term memory) of stimulus representations.
Collapse
|
24
|
Buchanan JF, Brown CR. 'Designer drugs'. A problem in clinical toxicology. MEDICAL TOXICOLOGY AND ADVERSE DRUG EXPERIENCE 1988; 3:1-17. [PMID: 3285124 DOI: 10.1007/bf03259928] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
'Designer drugs' are substances intended for recreational use which are derivatives of approved drugs so as to circumvent existing legal restrictions. The term as popularised by the lay press lacks precision. Contrary to the popular belief that 'designer drugs' are original creations, the majority of these agents are 'borrowed' from legitimate pharmaceutical research. They merely represent the most recent developments in the evolution of mind-altering chemicals. The most extensively studied class of psychoactive compounds is the phenylethylamines (mescaline analogues). This class includes catecholamines, therapeutic agents and numerous illicit derivatives. Subtle alterations of the phenylethylamine molecule give rise to a spectrum of pharmacological properties ranging from pure sympathomimetic stimulation to primarily psychoactive effects. Although most of these compounds are only of historical interest, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), and 3,4-methylenedioxymethamphetamine (MDMA) continue to be used recreationally. Many deaths have been ascribed to this class of compounds. In overdose the differences between these compounds blur and the clinical presentation is similar to that of amphetamine overdose characterised by tachycardia, hypertension, hyperthermia, diaphoresis, mydriasis, agitation, muscle rigidity, and hyper-reflexia. Death usually results from arrhythmias, hyperthermia or intracerebral haemorrhage. Treatment is aggressive and supportive with careful attention to temperature, blood pressure and seizure control. Synthetic opioid derivatives, which represent the second major class of 'designer drugs', are derivatives of fentanyl (e.g. alpha-methylfentanyl, 3-methylfentanyl) or pethidine (meperidine) and are extremely potent compounds responsible for numerous overdose deaths. Attempts to synthesise pethidine have resulted in the accidental production of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), a compound which is metabolised in the brain by the monoamine oxidase system to a toxic intermediate (MPP+) which selectively destroys the sustantia nigra, resulting in the rapid onset of severe Parkinsonian symptoms. Naloxone will antagonise the opiate effects of this drug class, although high doses may be required. Arylhexylamines constitute the third class of 'designer drugs'. The predominant member of this class is phencyclidine (PCP), a derivative of the anaesthetic ketamine. This unique class of psychoactive agents exhibits broad and complex pharmacological effects.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J F Buchanan
- San Francisco Regional Poison Control Center, San Francisco General Hospital, University of California
| | | |
Collapse
|
25
|
|
26
|
Arvidsson LE, Hacksell U, Glennon RA. Recent advances in central 5-hydroxytryptamine receptor agonists and antagonists. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1986; 30:365-471. [PMID: 3544048 DOI: 10.1007/978-3-0348-9311-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Abstract
The Drug Enforcement Administration classified the drug methylenedioxymethamphetamine, MDMA, also known as Ecstacy, as a Schedule I controlled substance on July 1, 1985. The controversy surrounding the classification of MDMA is related to the question of its efficacy as an adjunct to psychotherapy and the larger issue of how to regulate the production and use of designer drugs. The authors review the literature on MDMA and its predecessor, MDA, a substance that differs from MDMA by one methyl group.
Collapse
|
28
|
|
29
|
de Smet PA. A multidisciplinary overview of intoxicating enema rituals in the western hemisphere. JOURNAL OF ETHNOPHARMACOLOGY 1983; 9:129-66. [PMID: 6677814 DOI: 10.1016/0378-8741(83)90031-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
30
|
Grotjahn DB. Synthesis and characterization of 5H-1,3-dioxolo[4,5-f]indoleethylamines. J Heterocycl Chem 1983. [DOI: 10.1002/jhet.5570200438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Bailey K, Legault D. 13C NMR spectra and structure of mono-, di- and trimethoxyphenylethylamines and amphetamines. ACTA ACUST UNITED AC 1983. [DOI: 10.1002/omr.1270210611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Delliou D. 4-bromo-2,5-dimethoxyamphetamine: psychoactivity, toxic effects and analytical methods. Forensic Sci Int 1983; 21:259-67. [PMID: 6873782 DOI: 10.1016/0379-0738(83)90131-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
4-bromo-2,5-dimethoxyamphetamine (bromo-DMA) is a drug of special interest in Australia as it is available in forms which are seldom seen elsewhere in the world. Data of interest to the Forensic Chemist is summarized. The psychoactivity of bromo-DMA is discussed and a number of case histories involving higher doses are related. A description of dosage forms has been included and variations in drug concentration is discussed. Chemical properties and various methods of quantitative and qualitative analysis, including the use of high performance liquid chromatography, mass spectrometry and infra-red spectroscopy are listed.
Collapse
|
33
|
Ruffing DM, Domino EF. Interaction of synthetic opioid metenkephalin peptide analogs, Lilly 127623 and FK 33-824 with indole hallucinogens: antagonism of N,N-dimethyltryptamine- and LSD-induced disruption of food-rewarded bar pressing behavior in the rat. Psychopharmacology (Berl) 1983; 80:315-8. [PMID: 6413999 DOI: 10.1007/bf00432112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The selected opioid metenkephalin synthetic peptide analogs Lilly (LY) 127623 and FK 33-824 were tested for behavioral dose effects and potential interaction with N,N-dimethyltryptamine (DMT) and lysergic acid diethylamide-25 (LSD) in adult male Holtzman rats trained on a positive reinforcement fixed-ratio 4 (FR-4) behavioral bar pressing schedule, i.e., a reward of 0.01 ml sugar-sweetened evaporated milk was earned on every fourth bar press. DMT (3.2 mg/kg) and LSD (0.1 mg/kg), administered IP following a 0.9% NaCl 15-20-min control pretreatment, disrupted established food-rewarded FR-4 bar pressing in a consistent and reproducible manner. Animals pretreated IP with predetermined behaviorally noneffective doses of LY 127623 (0.01-0.32 mg/kg) and FK 33-824 (0.001-0.01 mg/kg) 15-20 min prior to receiving DMT demonstrated significant antagonism to DMT-induced disruption of FR-4 bar pressing, while doses of 0.10-0.32 mg/kg LY 127623 and 0.00032-0.0032 mg/kg FK 33-824 significantly antagonized LSD-induced behavioral effects.
Collapse
|
34
|
Glennon RA, Rosecrans JA. Indolealkylamine and phenalkylamine hallucinogens: a brief overview. Neurosci Biobehav Rev 1982; 6:489-97. [PMID: 6757811 DOI: 10.1016/0149-7634(82)90030-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Various indolealkylamine and phenalkylamine derivatives are hallucinogenic in man and/or are behaviorally active in animals. This overview is divided into two parts. The first part attempts to bring together information concerning the activity of indolealkylamines (i.e., tryptamines, alpha-methyltryptamines, N,N-dimethyltryptamines, N-alkyltryptamines, lysergic acid derivatives and beta-carbolines) and phenalkylamines (i.e., phenethylamines, phenylisopropylamines) along with major key references, and with emphasis on those agents not recently reviewed. The latter portion of this overview describes some of the work being conducted in our laboratories in an effort to elucidate the role of the neurotransmitter serotonin in the mechanism of action of various indolealkylamine and phenalkylamine hallucinogens.
Collapse
|
35
|
De Jong AP, Huggins F, Fournier D, Makriyannis A. Inhibition of [3H]5-HT binding to rat brain membranes by psychotomimetic amphetamines. Eur J Pharmacol 1982; 83:305-8. [PMID: 7173311 DOI: 10.1016/0014-2999(82)90266-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|