1
|
Guliy OI, Staroverov SA, Fomin AS, Zhnichkova EG, Kozlov SV, Lovtsova LG, Dykman LA. Polymeric Micelles for Targeted Drug Delivery System. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
2
|
Nemati M, Fathi-Azarbayjani A, Al-Salami H, Roshani Asl E, Rasmi Y. Bile acid-based advanced drug delivery systems, bilosomes and micelles as novel carriers for therapeutics. Cell Biochem Funct 2022; 40:623-635. [PMID: 35830577 DOI: 10.1002/cbf.3732] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus affects almost half a billion patients worldwide and results from either destruction of β-cells responsible for insulin secretion or increased tissue resistance to insulin stimulation and the reduction of glycemic control. Novel drug delivery systems can improve treatment efficacy in diabetic patients. The low aqueous solubility of most oral antidiabetic drugs decreases drug bioavailability; therefore, there is a demand for the use of novel methods to overcome this issue. The application of bile acids mixed micelles and bilosomes can provide an enhancement in drug efficacy. Bile acids are amphiphilic steroidal molecules that contain a saturated tetracyclic hydrocarbon cyclopentanoperhydrophenanthrene ring, and consist of three 6-membered rings and a 5-membered ring, a short aliphatic side chain, and a tough steroid nucleus. This review offers a comprehensive and informative data focusing on the great potential of bile acid, their salts, and their derivatives for the development of new antidiabetic drug delivery system.
Collapse
Affiliation(s)
- Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Anahita Fathi-Azarbayjani
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Elmira Roshani Asl
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Singh AK, Italiya KS, Narisepalli S, Chitkara D, Mittal A. Role of Chain Length and Degree of Unsaturation of Fatty Acids in the Physicochemical and Pharmacological Behavior of Drug-Fatty Acid Conjugates in Diabetes. J Med Chem 2021; 64:14217-14229. [PMID: 34581574 DOI: 10.1021/acs.jmedchem.1c00391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several drug-fatty acid (FA) prodrugs have been reported to exhibit desirable physicochemical and pharmacological profile; however, comparative beneficial effects rendered by different FAs have not been explored. In the present study, four different FAs (linoleic acid, oleic acid, palmitic acid, and α-lipoic acid) were selected based on their chain length and degree of unsaturation and conjugated to Lisofylline (LSF), an antidiabetic molecule to obtain different drug-FA prodrugs and characterized for molecular weight, hydrophobicity, purity, self-assembly, and efficacy in vitro and in vivo in type 1 diabetes model. Prodrugs demonstrated a 2- to 6-fold increase in the plasma half-life of LSF. Diabetic animals treated with prodrugs, once daily for 5 weeks, maintained a steady fasting blood glucose level with a significant increase in insulin level, considerable restoration of biochemical parameters, and preserved β-cells integrity. Among the different LSF-FA prodrugs, LSF-OA and LSF-PA demonstrated the most favorable physicochemical, systemic pharmacokinetic, and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Arihant Kumar Singh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Kishan S Italiya
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Saibhargav Narisepalli
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| |
Collapse
|
4
|
Yazdi JR, Tafaghodi M, Sadri K, Mashreghi M, Nikpoor AR, Nikoofal-Sahlabadi S, Chamani J, Vakili R, Moosavian SA, Jaafari MR. Folate targeted PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2020; 194:111203. [DOI: 10.1016/j.colsurfb.2020.111203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023]
|
5
|
Nanomaterials and nanocomposite applications in veterinary medicine. MULTIFUNCTIONAL HYBRID NANOMATERIALS FOR SUSTAINABLE AGRI-FOOD AND ECOSYSTEMS 2020. [PMCID: PMC7252256 DOI: 10.1016/b978-0-12-821354-4.00024-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nowadays, nanotechnology has made huge, significant advancements in biotechnology and biomedicine related to human and animal science, including increasing health safety, production, and the elevation of national income. There are various fields of nanomaterial applications in veterinary medicine such as efficient diagnostic and therapeutic tools, drug delivery, animal nutrition, breeding and reproduction, and valuable additives. Additional benefits include the detection of pathogens, protein, biological molecules, antimicrobial agents, feeding additives, nutrient delivery, and reproductive aids. There are many nanomaterials and nanocomposites that can be used in nanomedicine such as metal nanoparticles, liposomes, carbon nanotubes, and quantum dots. In the near future, nanotechnology research will have the ability to produce novel tools for improving animal health and production. Therefore, this chapter was undertaken to spotlight novel methods created by nanotechnology for application in the improvement of animal health and production. In addition, the toxicity of nanomaterials is fully discussed to avoid the suspected health hazards of toxicity for animal health safety.
Collapse
|
6
|
Peterson B, Weyers M, Steenekamp JH, Steyn JD, Gouws C, Hamman JH. Drug Bioavailability Enhancing Agents of Natural Origin (Bioenhancers) that Modulate Drug Membrane Permeation and Pre-Systemic Metabolism. Pharmaceutics 2019; 11:pharmaceutics11010033. [PMID: 30654429 PMCID: PMC6359194 DOI: 10.3390/pharmaceutics11010033] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022] Open
Abstract
Many new chemical entities are discovered with high therapeutic potential, however, many of these compounds exhibit unfavorable pharmacokinetic properties due to poor solubility and/or poor membrane permeation characteristics. The latter is mainly due to the lipid-like barrier imposed by epithelial mucosal layers, which have to be crossed by drug molecules in order to exert a therapeutic effect. Another barrier is the pre-systemic metabolic degradation of drug molecules, mainly by cytochrome P450 enzymes located in the intestinal enterocytes and liver hepatocytes. Although the nasal, buccal and pulmonary routes of administration avoid the first-pass effect, they are still dependent on absorption of drug molecules across the mucosal surfaces to achieve systemic drug delivery. Bioenhancers (drug absorption enhancers of natural origin) have been identified that can increase the quantity of unchanged drug that appears in the systemic blood circulation by means of modulating membrane permeation and/or pre-systemic metabolism. The aim of this paper is to provide an overview of natural bioenhancers and their main mechanisms of action for the nasal, buccal, pulmonary and oral routes of drug administration. Poorly bioavailable drugs such as large, hydrophilic therapeutics are often administered by injections. Bioenhancers may potentially be used to benefit patients by making systemic delivery of these poorly bioavailable drugs possible via alternative routes of administration (i.e., oral, nasal, buccal or pulmonary routes of administration) and may also reduce dosages of small molecular drugs and thereby reduce treatment costs.
Collapse
Affiliation(s)
- Bianca Peterson
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Morné Weyers
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Jan H Steenekamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Johan D Steyn
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
7
|
Bai DP, Lin XY, Huang YF, Zhang XF. Theranostics Aspects of Various Nanoparticles in Veterinary Medicine. Int J Mol Sci 2018; 19:ijms19113299. [PMID: 30352960 PMCID: PMC6274759 DOI: 10.3390/ijms19113299] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Nanoscience and nanotechnology shows immense interest in various areas of research and applications, including biotechnology, biomedical sciences, nanomedicine, and veterinary medicine. Studies and application of nanotechnology was explored very extensively in the human medical field and also studies undertaken in rodents extensively, still either studies or applications in veterinary medicine is not up to the level when compared to applications to human beings. The application in veterinary medicine and animal production is still relatively innovative. Recently, in the era of health care technologies, Veterinary Medicine also entered into a new phase and incredible transformations. Nanotechnology has tremendous and potential influence not only the way we live, but also on the way that we practice veterinary medicine and increase the safety of domestic animals, production, and income to the farmers through use of nanomaterials. The current status and advancements of nanotechnology is being used to enhance the animal growth promotion, and production. To achieve these, nanoparticles are used as alternative antimicrobial agents to overcome the usage alarming rate of antibiotics, detection of pathogenic bacteria, and also nanoparticles being used as drug delivery agents as new drug and vaccine candidates with improved characteristics and performance, diagnostic, therapeutic, feed additive, nutrient delivery, biocidal agents, reproductive aids, and finally to increase the quality of food using various kinds of functionalized nanoparticles, such as liposomes, polymeric nanoparticles, dendrimers, micellar nanoparticles, and metal nanoparticles. It seems that nanotechnology is ideal for veterinary applications in terms of cost and the availability of resources. The main focus of this review is describes some of the important current and future principal aspects of involvement of nanotechnology in Veterinary Medicine. However, we are not intended to cover the entire scenario of Veterinary Medicine, despite this review is to provide a glimpse at potential important targets of nanotechnology in the field of Veterinary Medicine. Considering the strong potential of the interaction between the nanotechnology and Veterinary Medicine, the aim of this review is to provide a concise description of the advances of nanotechnology in Veterinary Medicine, in terms of their potential application of various kinds of nanoparticles, secondly we discussed role of nanomaterials in animal health and production, and finally we discussed conclusion and future perspectives of nanotechnology in veterinary medicine.
Collapse
Affiliation(s)
- Ding-Ping Bai
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xin-Yu Lin
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yi-Fan Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
8
|
Abstract
With the rise in diabetes mellitus cases worldwide and lack of patient adherence to glycemia management using injectable insulin, there is an urgent need for the development of efficient oral insulin formulations. However, the gastrointestinal tract presents a formidable barrier to oral delivery of biologics. Here we report the development of a highly effective oral insulin formulation using choline and geranate (CAGE) ionic liquid. CAGE significantly enhanced paracellular transport of insulin, while protecting it from enzymatic degradation and by interacting with the mucus layer resulting in its thinning. In vivo, insulin-CAGE demonstrated exceptional pharmacokinetic and pharmacodynamic outcome after jejunal administration in rats. Low insulin doses (3-10 U/kg) brought about a significant decrease in blood glucose levels, which were sustained for longer periods (up to 12 hours), unlike s.c. injected insulin. When 10 U/kg insulin-CAGE was orally delivered in enterically coated capsules using an oral gavage, a sustained decrease in blood glucose of up to 45% was observed. The formulation exhibited high biocompatibility and was stable for 2 months at room temperature and for at least 4 months under refrigeration. Taken together, the results indicate that CAGE is a promising oral delivery vehicle and should be further explored for oral delivery of insulin and other biologics that are currently marketed as injectables.
Collapse
|
9
|
Gaowa A, Horibe T, Kohno M, Kawakami K. Bile Acid as an Effective Absorption Enhancer for Oral Delivery of Epidermal Growth Factor Receptor–Targeted Hybrid Peptide. J Pharm Sci 2018; 107:1322-1329. [DOI: 10.1016/j.xphs.2017.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/29/2023]
|
10
|
McGinn B, Morrison J. Investigations into the absorption of insulin and insulin derivatives from the small intestine of the anaesthetised rat. J Control Release 2016; 232:120-30. [PMID: 27084488 DOI: 10.1016/j.jconrel.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/09/2023]
|
11
|
Tah B, Pal P, Mishra S, Talapatra GB. Interaction of insulin with anionic phospholipid (DPPG) vesicles. Phys Chem Chem Phys 2014; 16:21657-63. [DOI: 10.1039/c4cp03028a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Noninvasive insulin delivery: the great potential of cell-penetrating peptides. Ther Deliv 2013; 4:315-26. [PMID: 23442079 DOI: 10.4155/tde.12.164] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Insulin, a potent therapeutic peptide used in the treatment of diabetes, is administered to patients via subcutaneous injections because of the poor pharmacokinetics associated with alternative routes of administration such as oral, nasal and pulmonary delivery. Noninvasive nasal and oral formulations are appealing to patients who need consecutive daily treatments of insulin. However, to achieve mucosal absorption of insulin via oral or nasal administration, two barriers must be overcome: the impermeability of insulin through the epithelial membranes and local digestion and enzymatic degradation. Cell-penetrating peptides (CPPs), which efficiently bring exogenous proteins and nucleic acids into cells, have great potential to facilitate insulin permeation from the intestinal lumen or nasal cavity into systemic circulation via efficient uptake by epithelial cells. In fact, the coadministration of insulin with the peptide penetratin, a typical CPP, increased intestinal and nasal insulin bioavailability to 35 and 50%, respectively. In this review, the authors describe recent findings using this novel CPP-based formulation for noninvasive delivery of insulin.
Collapse
|
13
|
Insulin complexes with PEGylated basic oligopeptides. J Colloid Interface Sci 2012; 384:61-72. [DOI: 10.1016/j.jcis.2012.06.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/23/2022]
|
14
|
Sung HW, Sonaje K, Feng SS. Nanomedicine for diabetes treatment. Nanomedicine (Lond) 2012; 6:1297-300. [PMID: 22026374 DOI: 10.2217/nnm.11.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
15
|
Maroni A, Zema L, Del Curto MD, Foppoli A, Gazzaniga A. Oral colon delivery of insulin with the aid of functional adjuvants. Adv Drug Deliv Rev 2012; 64:540-56. [PMID: 22086142 DOI: 10.1016/j.addr.2011.10.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/30/2011] [Accepted: 10/27/2011] [Indexed: 12/11/2022]
Abstract
Oral colon delivery is currently considered of importance not only for the treatment of local pathologies, such as primarily inflammatory bowel disease (IBD), but also as a means of accomplishing systemic therapeutic goals. Although the large bowel fails to be ideally suited for absorption processes, it may indeed offer a number of advantages over the small intestine, including a long transit time, lower levels of peptidases and higher responsiveness to permeation enhancers. Accordingly, it has been under extensive investigation as a possible strategy to improve the oral bioavailability of peptide and protein drugs. Because of a strong underlying rationale, most of these studies have focused on insulin. In the present review, the impact of key anatomical and physiological characteristics of the colon on its viability as a protein release site is discussed. Moreover, the main formulation approaches to oral colon targeting are outlined along with the design features and performance of insulin-based devices.
Collapse
|
16
|
Çelebi N, Yetkin G, Özer Ç, Can A, Gökçora N. Evaluation of microemulsion and liposomes as carriers for oral delivery of transforming growth factor alpha in rats. J Microencapsul 2012; 29:539-48. [DOI: 10.3109/02652048.2012.665091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nevin Çelebi
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University,
Etiler, Ankara, Turkey
| | - Gülay Yetkin
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University,
Etiler, Ankara, Turkey
| | - Çiğdem Özer
- Faculty of Medicine, Department of Physiology, Gazi University,
Beşevler, Ankara, Turkey
| | - Alp Can
- Faculty of Medicine, Department of Histology and Embryology, Ankara University,
Ankara, Turkey
| | - Nahide Gökçora
- Faculty of Medicine, Department of Nuclear Medicine, Gazi University,
Beşevler, Ankara, Turkey
| |
Collapse
|
17
|
Arginine end-functionalized poly(l-lysine) dendrigrafts for the stabilization and controlled release of insulin. J Colloid Interface Sci 2010; 351:433-41. [DOI: 10.1016/j.jcis.2010.07.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/22/2022]
|
18
|
Park JW, Kim SK, Al-Hilal TA, Jeon OC, Moon HT, Byun Y. Strategies for oral delivery of macromolecule drugs. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-3058-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Liu H, Tang R, Pan WS, Zhang Y, Liu H. Potential utility of various protease inhibitors for improving the intestinal absorption of insulin in rats. J Pharm Pharmacol 2010; 55:1523-9. [PMID: 14713363 DOI: 10.1211/0022357022052] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The aim of the investigation was to study the effects of protease inhibitors on the absorption of insulin in-situ from closed small and large intestinal loops in rats and to investigate the mechanism of various protease inhibitors in different intestinal loops. The intestinal absorption of insulin was evaluated by its hypoglycaemic effect and serum insulin level in the presence or absence of luminal contents. No marked hypoglycaemic effect was observed after administration of insulin alone in either region in the presence or absence of luminal contents. A significant hypoglycaemic effect of insulin was obtained in the large intestinal loop in the presence or absence of luminal contents when insulin was co-administered with bacitracin (20, 30 mM), sodium glycocholate (20, 40 mM), bestatin (29 mM), leupeptin (21 mM) and cystatin (0.8 mM). In contrast, there was no hypoglycaemic effect in the small intestinal loop in the presence of luminal contents following small intestinal co-administration of insulin with these protease inhibitors. The effectiveness of protease inhibitors was susceptible to their categories, concentrations and activity of proteolytic enzymes in different regions. The degree of improving insulin absorption in intestine was in the order of leupeptin > sodium glycocholate > bacitracin > bestatin > cystatin. At the same time, the percutaneous enhancement effect was observed in the presence of either sodium glycocholate or bacitracin. These results suggest that protease inhibitors could increase the insulin efficacy more effectively in the large intestine than in the small intestine.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmacy, Wuhan General Hospital, PO Box 430070, 627 Wu-luo Road, Wuhan, China.
| | | | | | | | | |
Collapse
|
20
|
Lane ME, Corrigan OI. Paracellular and transcellular pathways facilitate insulin permeability in rat gut. J Pharm Pharmacol 2010; 58:271-5. [PMID: 16451757 DOI: 10.1211/jpp.58.2.0016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The aim of this study was to conduct a systematic investigation of the absorption of insulin in the rat intestine in the presence of permeation enhancers and protease inhibitors. An in-situ perfused rat gut model was used for the co-perfusion of insulin and PEG 4000 in the presence or absence of bile salts, bile salt:fatty acid surfactant systems and protease inhibitors. Perfusion experiments were conducted for 180 min with perfusate and blood collection at regular intervals. Permeability coefficients for insulin were calculated from plasma insulin and PEG 4000 permeability coefficients were calculated from lumenal disappearance data. In the absence of enzyme inhibitors, insulin permeability was consistently lower than PEG 4000, but increased in proportion to PEG 4000 permeability. Large increases in insulin permeability were obtained for mixed micellar systems and protease inhibitors. In the presence of protease inhibitors and simple micelle systems, PEG 4000 permeability was three-fold greater than insulin permeability. In the presence of absorption enhancers, PEG 4000 permeability increased up to a maximum value of 3.63 times 10−6 cm s−1, a value five-fold less than that of the estimated aqueous boundary layer permeability for PEG 4000. This suggests that PEG 4000 permeability is primarily membrane controlled. Insulin permeability is enhanced to a maximum value of 9.17 times 10−6 cm s−1, suggesting that paracellular transport routes do not account exclusively for insulin permeation across the intestinal epithelium. The results add support to suggestions that routes other than the paracellular route may contribute to insulin absorption in rat gut.
Collapse
Affiliation(s)
- Majella E Lane
- Department of Pharmaceutics, School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
21
|
Zhou L, Chow MSS, Zuo Z. Effect of sodium caprate on the oral absorptions of danshensu and salvianolic acid B. Int J Pharm 2009; 379:109-18. [PMID: 19555749 DOI: 10.1016/j.ijpharm.2009.06.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/19/2009] [Accepted: 06/13/2009] [Indexed: 12/29/2022]
Abstract
The current study aims to investigate the effect of sodium caprate on the intestinal absorption and bioavailabilities of danshensu and salvianolic acid B, the major active components in Salvia miltiorrhiza Bge (Danshen). Biopharmaceutics and pharmacokinetics properties of the two compounds have been characterized by in vitro, in situ models as well as in vivo in rats. Based on the identified biopharmaceutics characteristics of the two compounds, effect of sodium carparate as absorption enhancer on the intestinal absorption and pharmacokinetics of danshensu and salvianolic acid B in pure compound form as well as extract form were investigated both in vitro and in vivo. Both danshensu and salvianolic acid B demonstrated very limited intestinal permeabilities, leading to oral bioavailabilities of only 11.09% and 3.90% in rats, respectively. Results from both in vitro and in vivo studies consistently indicated that sodium caprate could significantly enhance intestinal permeabilities as well as the in vivo bioavailabilities of both danshensu and salvianolic acid B. The current findings not only identified the usefulness of sodium caprate for the improved delivery of Danshen product but also demonstrated the importance of biopharmaceutics characterization in the dosage form development of traditional Chinese medicine.
Collapse
Affiliation(s)
- Limin Zhou
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, PR China
| | | | | |
Collapse
|
22
|
Kamei N, Morishita M, Takayama K. Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides. J Control Release 2009; 136:179-86. [PMID: 19250953 DOI: 10.1016/j.jconrel.2009.02.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 01/28/2009] [Accepted: 02/19/2009] [Indexed: 12/23/2022]
Abstract
Our previous reports showed that the absorption of therapeutic peptides and proteins was significantly improved by coadministration of cell-penetrating peptides (CPPs) as the physical mixture. However, the mechanisms for this improvement are not clear. In the present study, we verified the hypothesis that the electrostatic interaction between drug and CPP is related to the enhancing effect of the CPP on the intestinal absorption of therapeutic peptides and proteins. In this study, the intermolecular binding was analyzed by surface plasmon resonance (SPR)-based binding assay, and the effect of CPPs on the intestinal absorption of peptide drugs was examined by in situ absorption study using a rat intestinal loop. Among the 16 peptide drugs possessing different isoelectric points, it was observed that only gastrin, insulin and glucagon-like peptide-1 (GLP-1) bound to D-R8 (D-form arginine octamer, a typical CPP), and subsequently their intestinal absorption increased by coadministration of D-R8. In contrast, the intestinal absorption of other peptide drugs that did not bind to D-R8 was not affected in the presence of D-R8. Thus, this study suggests that intermolecular binding between drug and CPP is an important factor governing the enhancing effect of the CPP on the intestinal absorption of therapeutic peptides and proteins.
Collapse
Affiliation(s)
- Noriyasu Kamei
- Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, Shinagawa, Tokyo 142-8501, Japan
| | | | | |
Collapse
|
23
|
Bi R, Shao W, Wang Q, Zhang N. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery. J Drug Target 2009; 16:639-48. [PMID: 18982512 DOI: 10.1080/10611860802201134] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nowadays, growing attention has been paid to the pulmonary region as a target for the delivery of peptide and protein drugs, especially macromolecules with systemic effect like insulin, since the pulmonary route exhibits numerous benefits to be an alternative for repeated injection. Furthermore, encapsulation of insulin into liposomal carriers is an attractive way to increase drug retention time and control the drug release in the lung; however, its long-term stability during storage in the reservoir and the process of aerosolization might be suspected when practically applied. Thus, the aim of this study was to design and characterize dry powder inhalation of insulin-loaded liposomes prepared by novel spray-freeze-drying method for enhanced pulmonary delivery. Process variables such as compressed air pressure, pump speed, and concentration were optimized for parameters such as mean particle diameter, moisture content, and fine particle fraction of the produced powders. Influence of different kinds and amounts of lyoprotectants was also evaluated for the best preservation of the drug entrapped in the liposome bilayers after the dehydration-rehydration cycle. The in vivo study of intratracheal instillation of insulin-loaded liposomes to diabetic rats showed successful hypoglycemic effect with low blood glucose level and long-lasting period and a relative pharmacological bioavailability as high as 38.38% in the group of 8 IU/kg dosage.
Collapse
Affiliation(s)
- Ru Bi
- The Pharmaceutical College, Shandong University, Ji'nan, P. R. China
| | | | | | | |
Collapse
|
24
|
Permeation characteristics of oligoarginine through intestinal epithelium and its usefulness for intestinal peptide drug delivery. J Control Release 2008; 131:94-9. [PMID: 18692532 DOI: 10.1016/j.jconrel.2008.07.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 11/20/2022]
Abstract
Cell-penetrating peptides such as HIV-1 Tat and oligoarginine are attractive tools for the intracellular delivery of therapeutic macromolecules. Although we have found that oligoarginine enhances the intestinal absorption of therapeutic peptides, especially insulin, the mechanism underlying the ability of oligoarginine to increase intestinal drug absorption is unclear. In addition, there is no information about the permeation characteristics of these functional peptides through the biological intestinal membrane. Therefore, in this study the permeation characteristics of oligoarginine itself across the intestinal membrane were first determined to obtain the information about absorption enhancement mechanisms. Incubation at low temperature and coincubation with heparin reduced the tissue distribution and permeation of fluorescein-labeled oligoarginine (FL-d-R6) through the rat ileal membrane. These results suggest that the attachment of FL-d-R6 to cell-surface proteoglycans and energy-dependent endocytosis are involved in its permeation through the ileal epithelial membrane. Based on the characteristics of oligoarginine, we attempted to facilitate the intestinal permeation of the peptide drug, leuprolide, using the function of oligoarginine. However, leuprolide permeation was not achieved when leuprolide was applied with oligoarginine to mucosal side of rat ileal sheets or when a leuprolide-oligoarginine conjugate was administered. These findings emphasize that any strategy using oligoarginine to improve intestinal drug permeation requires an intermolecular interaction, such as an electrostatic interaction, and a covalent linkage between the macromolecular drug and oligoarginine may hamper the ability of oligoarginine to enhance intestinal epithelial permeation of therapeutic peptides and proteins.
Collapse
|
25
|
Wang J, Wang Z, Liu F, Zhao D. Preparation and in vitro Release Test of Insulin Loaded W/O Microemulsion. J DISPER SCI TECHNOL 2008. [DOI: 10.1080/01932690701758525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Morishita M, Kamei N, Ehara J, Isowa K, Takayama K. A novel approach using functional peptides for efficient intestinal absorption of insulin. J Control Release 2007; 118:177-84. [PMID: 17270307 DOI: 10.1016/j.jconrel.2006.12.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 12/10/2006] [Accepted: 12/14/2006] [Indexed: 12/01/2022]
Abstract
The aim of this study was to evaluate whether oligoarginine, a cell-penetrating peptide (CPP), can improve intestinal absorption of insulin in rats. Peptides composed of six (R(6)), eight (R(8)) and 10 (R(10)) residues of arginine were used as the CPP. No insulin absorption was observed following administration of insulin solution alone; however, insulin absorption increased dramatically after coadministration of the D-form of R(6) (D-R(6)) and the L-form of R(6) (L-R(6)) in a dose-dependent manner. The effects on insulin absorption were more pronounced for D-R(6) than for L-R(6). Among oligoarginines composed of six, eight, or 10 arginine residues, D-R(8) showed the strongest enhancing effects on insulin intestinal absorption. In contrast, intestinal absorption of other model hydrophilic macromolecules, interferon-beta and fluorescein isothiocyanate-labeled dextran 4400, was not affected by coadministration with oligoarginine. Pretreatment by the effective dose of L-R(6) did not induce lactate dehydrogenase leakage or histological damage, suggesting that oligoarginine has no untoward effect on the intestinal mucosa. Our data demonstrate that coadministration of oligoarginine increases intestinal insulin absorption markedly without causing detectable damage in cellular integrity and that the covalent binding between insulin and oligoarginine is not necessary for this effect. We conclude that oligoarginines are likely to become powerful tools for overcoming the low permeability of insulin through the epithelial cell membrane, the major barrier to oral insulin delivery.
Collapse
Affiliation(s)
- Mariko Morishita
- Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, Shinagawa Tokyo 142-8501, Japan.
| | | | | | | | | |
Collapse
|
27
|
Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm 2006; 327:153-9. [PMID: 16935443 DOI: 10.1016/j.ijpharm.2006.07.026] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Revised: 06/14/2006] [Accepted: 07/17/2006] [Indexed: 11/29/2022]
Abstract
The aim of this study was to design and characterize lectin-modified solid lipid nanoparticles (SLNs) containing insulin and to evaluate the potential of the lectin-modified colloidal carriers for oral administration of peptide and protein drugs. SLNs were prepared by three different methods. For comparison, some insulin-loaded SLNs were modified with wheat germ agglutinin-N-glutaryl-phosphatidylethanolamine (WGA-N-glut-PE). The particle size, zeta potential and entrapment efficiency of insulin-loaded SLNs were determined. Insulin-loaded SLNs prepared by an appropriate modification of the double dispersion method yielded the highest drug entrapment efficiency, which was more than 60%. In vivo experiments were carried out using insulin-loaded SLNs and WGA-modified SLNs prepared by this method. SLNs and WGA-modified SLNs protected insulin against degradation by digestive enzymes in vitro. The stabilizing effect of WGA-modified SLNs was greater than that observed in SLNs. After oral administration of insulin-loaded SLNs or WGA-modified SLNs to rats, the relative pharmacological bioavailabilities were 4.46% and 6.08%, and the relative bioavailabilities were 4.99% and 7.11%, respectively, in comparison to subcutaneous injection of insulin. These results demonstrated that SLNs and WGA-modified SLNs promoted the oral absorption of insulin.
Collapse
Affiliation(s)
- Na Zhang
- The Pharmaceutical College, Shandong University, 44 Wen hua Xi Lu, Ji'nan, Shandong Province, China
| | | | | | | | | | | |
Collapse
|
28
|
Jain D, Majumdar DK, Panda AK. Insulin loaded eudragit L100 microspheres for oral delivery: preliminary in vitro studies. J Biomater Appl 2006; 21:195-211. [PMID: 16443624 DOI: 10.1177/0885328206060436] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eudragit L100 microspheres were prepared using water-in-oil-in water (w/o/w) emulsion-solvent evaporation with polysorbate 20 as dispersing agent in the internal aqueous phase, and PVA/PVP as stabilizer in the external aqueous phase. Smaller internal and external aqueous phases provided higher drug encapsulation. The PVA-stabilized microspheres having maximum drug encapsulation (84.5 2.8%) released 7% insulin at pH 1.0 in 2 h. In phosphate buffer (pH 7.4), microspheres showed an initial burst release of 21% in 1 h with additional 35% release in the next 5 h. The smaller the volumes of internal and external aqueous phases, the lower the initial burst release. The release of drug from microspheres followed Higuchi kinetics. Scanning electron microscopy of PVA stabilized microspheres demonstrated spherical particles with smooth surface and laser diffractometry revealed a mean particle size (V(m)) of 59.11 30 m.
Collapse
Affiliation(s)
- Deepti Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Formerly College of Pharmacy (University of Delhi) Pushp Vihar, Sector-III, New Delhi-110 017, India
| | | | | |
Collapse
|
29
|
Morishita M, Goto T, Takayama K, Peppas N. Oral insulin delivery systems based on complexation polymer hydrogels. J Drug Deliv Sci Technol 2006. [DOI: 10.1016/s1773-2247(06)50003-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Katsuma M, Watanabe S, Kawai H, Takemura S, Sako K. Effects of absorption promoters on insulin absorption through colon-targeted delivery. Int J Pharm 2006; 307:156-62. [PMID: 16289574 DOI: 10.1016/j.ijpharm.2005.09.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 11/24/2022]
Abstract
The aim of this study were to investigate the effect of sodium glycocholate (GC-Na) as an absorption promoter and the effects of the co-administration of GC-Na and various absorption promoters on orally administered insulin absorption utilizing a colon-targeted delivery system. The system containing insulin and GC-Na (CDS) was administered to dogs, and plasma glucose and insulin levels were then measured at 24h after administration. For CDS, the C(max) in plasma glucose level was significantly higher than a reference formulation without GC-Na. The pharmacological availability for CDS was not significantly higher than the reference formulation. In contrast, CDS with poly(ethylene oxide) as a gelling agent (CDSP) showed prolonged hypoglycemia effects. The pharmacological availability was 5.5% and significantly different from the reference formulation. The absolute bioavailability for CDS was 0.25%, and for CDSP it was 0.42%. Consequently, the results of this study demonstrated that colon-specific delivery of insulin with GC-Na was more effective in increasing hypoglycemic effects after oral administration, and the combination of GC-Na and poly(ethylene oxide) tended to prolong the colonic absorption of insulin and might be more effective for improvement of orally administered insulin absorption utilizing the colon-targeted delivery system.
Collapse
Affiliation(s)
- Masataka Katsuma
- Pharmaceutical Technology Administration, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan.
| | | | | | | | | |
Collapse
|
31
|
Cilek A, Celebi N, Tirnaksiz F, Tay A. A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: Investigation of hypoglycemic effects in non-diabetic and STZ-induced diabetic rats. Int J Pharm 2005; 298:176-85. [PMID: 15950411 DOI: 10.1016/j.ijpharm.2005.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/06/2005] [Accepted: 04/23/2005] [Indexed: 11/21/2022]
Abstract
The aim of this study was to develop a microemulsion formulation providing an improved efficacy of orally administered insulin. The microemulsions were prepared using Labrafil M 1944 CS, Phospholipon 90 G (lecithin), absolute alcohol and bi-distilled water. The microemulsions of recombinant human (rh)-insulin and aqueous solution (200 IU/kg) were administered intragastrically by a canulla to diabetic and non-diabetic rats. Aprotinin (2500 KIU/g) was added as the enzyme inhibitor to the formulation. Upon the administration of intragastric rh-insulin solution (IS) to non-diabetic rats, the plasma glucose and insulin levels were not changed significantly. Therefore, the hypoglycemic effect caused by subcutaneous rh-insulin solution (SC), microemulsion containing rh-insulin (IME) and microemulsion containing rh-insulin and aprotinin (IMEA) were analyzed in diabetic rats. The area above the plasma glucose levels time curves (AAC), minimum glucose concentration (Cmin) and time to Cmin (tmin) were derived from the plasma glucose profiles. IME and IMEA caused approximately 30% decrease in plasma glucose levels. The decrease in the plasma glucose levels continued after the 90th min. The highest AAC value was obtained when IMEA was administered to rats. The maximum plasma insulin concentration (Cmax), time to reach Cmax (tmax), terminal half-life (t(1/2)), area under the plasma concentration-time curve (AUC), mean residence time (MRT) and elimination rate constant (k(el)) values were also calculated. It was observed that t(1/2) values varied between 0.53 and 1.31h. No significant difference could be found between the pharmacokinetic parameters of the IME and IMEA administered groups. Addition of aprotinin to the microemulsion containing rh-insulin increased bioavailability when compared to those not containing it, although the difference is not significant.
Collapse
Affiliation(s)
- A Cilek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | | | | | | |
Collapse
|
32
|
Jain D, Panda AK, Majumdar DK. Eudragit S100 entrapped insulin microspheres for oral delivery. AAPS PharmSciTech 2005; 6:E100-7. [PMID: 16353953 PMCID: PMC2750417 DOI: 10.1208/pt060116] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of this research was to investigate whether Eudragit S100 microspheres have the potential to serve as an oral carrier for peptide drugs like insulin. Microspheres were prepared using water-in oil-in water emulsion solvent evaporation technique with polysorbate 20 as a dispersing agent in the internal aqueous phase and polyvinyl alcohol (PVA)/polyvinyl pyrrolidone as a stabilizer in the external aqueous phase. The use of smaller internal aqueous-phase volume (50 microL) and external aqueous-phase volume (25 mL) containing PVA in the manufacturing process resulted in maximum encapsulation efficiency (81.8% +/- 0.9%). PVA-stabilized microspheres having maximum drug encapsulation released 2.5% insulin at pH 1.0 in 2 hours. In phosphate buffer (pH 7.4), microspheres showed an initial burst release of 22% in 1 hour with an additional 28% release in the next 5 hours. The smaller the volumes of internal and external aqueous phase, the lower the initial burst release. The release of drug from microspheres followed Higuchi kinetics. Scanning electron microscopy of PVA-stabilized microspheres demonstrated spherical particles with smooth surface, and laser diffractometry revealed a mean particle size of 32.51 +/- 20 microm. Oral administration of PVA stabilized microspheres in normal albino rabbits (equivalent to 6.6 IU insulin/kg of animal weight) demonstrated a 24% reduction in blood glucose level, with maximum plasma glucose reduction of 76 +/- 3.0% in 2 hours and effect continuing up to 6 hours. The area under the percentage glucose reduction-time curve was 93.75%. Thus, our results indicate that Eudragit S100 microspheres on oral administration can protect insulin from proteolytic degradation in the gastrointestinal tract and produce hypoglycemic effect.
Collapse
Affiliation(s)
- Deepti Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Amulya K. Panda
- National Institute of Immunology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Dipak K. Majumdar
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| |
Collapse
|
33
|
Lane ME, O'driscoll CM, Corrigan OI. Quantitative estimation of the effects of bile salt surfactant systems on insulin stability and permeability in the rat intestine using a mass balance model. J Pharm Pharmacol 2005; 57:169-75. [PMID: 15720779 DOI: 10.1211/0022357055434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The oral delivery of peptides and proteins is compromised by chemical and proteolytic instability as well as by permeability limitations. The aim of this study was to delineate the relative contributions of simple bile salt and bile salt:fatty acid mixed micellar systems to protein stability vs permeability enhancement in the rat intestine. Insulin disappearance from the rat intestine was evaluated when administered in simple micellar systems of sodium cholate (NaC), sodium taurocholate (NaTC) and sodium glycocholate (NaGC), and in mixed micellar systems of these bile salts and linoleic acid (LA). In-vitro stability studies were used to evaluate the extent of insulin degradation in the different micellar systems. After correction for insulin degradation in all systems a mass balance model was used to estimate the fractions of insulin absorbed for all systems. Mass balance estimates for the extent of insulin absorption in control perfusion systems were consistent with previously reported predictions of the model for ileal insulin absorption. Mass balance estimates for NaGC suggested no significant effects on the fraction of insulin absorbed relative to control. However, insulin absorption was estimated to occur to a significantly greater extent for NaTC simple micellar systems and was coincident with increased permeability of the hydrophilic marker molecule PEG 4000. The mass balance model estimated higher fractions of insulin absorbed for all mixed micellar systems in line with enhanced plasma insulin levels and higher PEG 4000 permeabilities for these systems.
Collapse
|
34
|
Avadi MR, Jalali A, Sadeghi AMM, Shamimi K, Bayati KH, Nahid E, Dehpour AR, Rafiee-Tehrani M. Diethyl methyl chitosan as an intestinal paracellular enhancer: ex vivo and in vivo studies. Int J Pharm 2005; 293:83-9. [PMID: 15778047 DOI: 10.1016/j.ijpharm.2004.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2004] [Revised: 11/09/2004] [Accepted: 12/12/2004] [Indexed: 11/19/2022]
Abstract
Chitosan exhibits favorable biological properties such as no toxicity, biocompatibility and biodegradability; therefore, it has attracted great attention in both pharmaceutical and biomedical fields. Chitosan exhibits poor solubility at pH values above 6 that prevents enhancing effects at the sites of absorption of drugs. In the present work, N-diethyl methyl chitosan (DEMC) was prepared and the enhancing effect of this polymer was investigated. Ex vivo studies have shown a significant increase in absorption of brilliant blue in the presence of diethyl methyl chitosan in comparison with chitosan. DEMC with positive charges is able to interact with tight junctions of colon epithelial cells and hence increases permeability of brilliant blue across the tight junctions. In vivo investigations have exhibited the absorption enhancer effects of DEMC on the colon absorption of insulin in normal and diabetic rats. The insulin absorption from the rat's colon was evaluated by its hypoglycemic effect. A significant decrease in blood glucose was observed, when mixture of insulin and DEMC was introduced in ascending colon of rats.
Collapse
Affiliation(s)
- M R Avadi
- Department of Pharmaceutics, School of Pharmacy, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dongowski G, Fritzsch B, Giessler J, Härtl A, Kuhlmann O, Neubert RHH. The influence of bile salts and mixed micelles on the pharmacokinetics of quinine in rabbits. Eur J Pharm Biopharm 2005; 60:147-51. [PMID: 15848066 DOI: 10.1016/j.ejpb.2005.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 12/09/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
The bioavailability of orally administered drugs can be influenced by interactions with food components and by physico-chemical conditions in the upper gastrointestinal tract. Normally, bile salts enhance the transport of lipophilic drugs across mucosal membranes. Bile salts are able to form stable mixed micelles consisting of fatty acids and phospholipids. Conventional micellar systems are known to solubilize lipophilic drugs having a low bioavailability. The influence of bile salts and mixed micelles on the pharmacokinetics of the lipophilic drug quinine was investigated in rabbits. Female rabbits were given intraduadenally quinine (5 mg/kg body weight) without and with incorporation into the micellar or mixed micellar systems. Blood was collected every 30 min for 6 h. In plasma, concentration of quinine was measured using HPLC. The plasma concentration-time profiles of quinine were significantly lower within the first 2 h after administration in presence of both the sodium salt of glycodeoxycholic acid (above the critical micellar concentration) as well as of mixed micellar systems consisting of glycodeoxycholic acid and palmitic acid and/or lecithin. The pharmacokinetic parameters AUC (relative bioavailability) and c(max) of quinine were significantly decreased by micellar systems in rabbits. These mixed micellar systems lower and not as expected, increase the absorption of quinine in vivo. Therefore, quinine should be orally administered at least 1h before food intake, particularly before fat intake.
Collapse
Affiliation(s)
- Gerhard Dongowski
- Research Group Food Chemistry and Preventive Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Zhang N, Ping QN, Huang GH, Xu WF. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharm 2005; 294:247-59. [PMID: 15814248 DOI: 10.1016/j.ijpharm.2005.01.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 01/10/2005] [Accepted: 01/17/2005] [Indexed: 01/03/2023]
Abstract
The aim of this study was to design and characterize lectin-modified liposomes containing insulin and to evaluate the potential of these modified colloidal carriers for oral administration of peptide and protein drugs. Wheat germ agglutinin (WGA), tomato lectin (TL), or Ulex europaeus agglutinin 1 (UEA1) were conjugated by coupling their amino groups to carbodiimide-activated carboxylic groups of N-glutaryl-phosphatidylethanolamine (N-glut-PE). Insulin liposomes dispersions were prepared by the reverse-phase evaporation technique and modified with the lectin-N-glut-PE conjugates. Lectin-modified liposomes were characterized according to particles size, zeta potential and entrapment efficiency. The hypoglycemic effect indicated by pharmacological bioavailability of insulin liposomes modified with WGA, TL and UEA1 were 21.40, 16.71 and 8.38% in diabetic mice as comparison with abdominal cavity injection of insulin, respectively. After oral administration of the insulin liposomes modified with WGA, TL and UEA1 to rats, the relative pharmacological bioavailabilities were 8.47, 7.29 and 4.85%, the relative bioavailability were 9.12, 7.89 and 5.37% in comparison with subcutaneous injection of insulin, respectively. In the two cases, no remarkable hypoglycemic effects were observed with the conventional insulin liposomes. These results confirmed that lectin-modified liposomes promote the oral absorption of insulin due to the specific-site combination on GI cell membrane.
Collapse
Affiliation(s)
- Na Zhang
- The Pharmaceutical College, Shandong University, 44 Wen Hua Xi Lu, Ji'nan, Shandong Province, China
| | | | | | | |
Collapse
|
37
|
Lee S, Lee J, Lee DY, Kim SK, Lee Y, Byun Y. A new drug carrier, Nalpha-deoxycholyl-L: -lysyl-methylester, for enhancing insulin absorption in the intestine. Diabetologia 2005; 48:405-11. [PMID: 15739118 DOI: 10.1007/s00125-004-1658-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 10/28/2004] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The development of an orally active insulin formulation will offer great advantages over conventional injectable insulin therapy in the treatment of patients with diabetes mellitus. Since insulin absorption in the intestine is restricted by the natural physiological characteristics of insulin, we developed a small synthetic compound, Nalpha-deoxycholyl-L: -lysyl-methylester (DCK), as an insulin carrier to enhance oral delivery. METHODS Streptozotocin-induced diabetic rats orally received single doses of insulin (42 U/kg) or insulin/DCK formulation (10, 21, 30 and 42 U/kg) under fasting conditions. Blood glucose levels and plasma insulin concentrations were measured for 6 h following the administration of the agents. An OGTT was also performed immediately after the administration of the oral insulin/DCK formulation. RESULTS The administration of 21, 30 and 42 U/kg (based on insulin activity) of insulin/DCK formulation reduced plasma glucose levels by up to 33.0% (median; range 30.6-70.2%), 78.5% (39.4-86.8%) and 75.2% (67.0-87.4%), respectively, compared with baseline levels. Furthermore, plasma insulin concentrations were observed to rapidly increase. In the OGTT, the insulin/DCK formulation reduced the AUC0-240 for glucose by 30.8% (22.3-54.9%) (p<0.01), and stabilized glycaemia for up to 4 h. CONCLUSIONS/INTERPRETATION The results of this study demonstrate that the insulin/DCK formulation can be absorbed in the intestine and that it is biologically efficacious. We therefore suggest that this oral formulation could be used as an alternative to injectable insulin with enhanced clinical effects.
Collapse
Affiliation(s)
- S Lee
- Center for Cell and Macromolecular Therapy, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | | | | | | | | | |
Collapse
|
38
|
Magee GA, French J, Gibbon B, Luscombe C. Bile salt/lecithin mixed micelles optimized for the solubilization of a poorly soluble steroid molecule using statistical experimental design. Drug Dev Ind Pharm 2003; 29:441-50. [PMID: 12737537 DOI: 10.1081/ddc-120018379] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bile salts and lecithin combine physiologically to form mixed micelles which aid the solubilization and absorption of dietary fats and drug molecules. In this series of experiments, we have shown how experimental design procedures aid the optimization of a formulation incorporating a bile salt, lecithin, and water with fluticasone propionate (FP) as the model poorly soluble drug. The initial inclusion of a categorical variable ruled out the use of classic response surface designs; therefore the experimental design was constructed using a d-optimal selection from a candidate set of all possible experimental combinations. A separate 2-factor central composite design was used to determine the optimum lecithin and bile salt concentrations over an extended range after the categorical variable had been eliminated. It has been demonstrated that an increase in either lecithin or cholic acid concentration produces an increase in solubility of FP, while sodium taurocholate appears to depress the solubility of FP compared with the other two bile salts. The increase in solubility associated with the increase in bile salt and lecithin is further demonstrated by a linear relationship between FP solubility and the total lipid in the formulation. The influence of molar ratio of lecithin to bile salt in the formulation is also significant. The physical properties of the mixed micellar system (solution turbidity and viscosity ranking) were used to further discriminate between formulations. The optimization showed that the dominant effect was the lecithin, which improves the solubilizing characteristics of the formulation with increasing concentration. The effect of salt concentration is less marked though slightly quadratic in nature. The overall increase in solubility demonstrated was from <1 microg/mL in water to 205 microg/mL in the optimized mixed micellar system.
Collapse
Affiliation(s)
- Gavin A Magee
- Pharmaceutical Development, GlaxoSmithKline R&D, Ware, UK.
| | | | | | | |
Collapse
|
39
|
Udata C, Patel J, Pal D, Hejchman E, Cushman M, Mitra AK. Enhanced transport of a novel anti-HIV agent--cosalane and its congeners across human intestinal epithelial (Caco-2) cell monolayers. Int J Pharm 2003; 250:157-68. [PMID: 12480282 DOI: 10.1016/s0378-5173(02)00523-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Cosalane is a potent inhibitor of HIV replication with activity against a broad range of viral targets. However, oral bioavailability of this highly lipophilic compound is extremely poor (<1%). The purpose of this study is to screen a variety of permeation enhancers (cyclodextrin derivatives, cremophor EL, bile salts and mixed micelles) for their ability to enhance the transport of cosalane and its analogs/prodrugs across Caco-2 cell monolayers. METHODS Cosalane and its different analogs/prodrugs were synthesized and their physicochemical properties were determined. Caco-2 cells were cultured at a density of 66,000 cells/cm(2) either on collagen coated clear polyester membranes or Transwell inserts. Side-bi-side diffusion cells and Transwell inserts were employed to study for the transport of cosalane and its analogs/prodrugs with various permeation enhancers across Caco-2 cell monolayers. RESULTS Permeabilities of EH-3-39, EH-3-55 and EH-3-57 significantly improved compared to that of cosalane in the presence of bile salt, sodium desoxycholate. Among the various cyclodextrins studied, hydroxypropyl beta cyclodextrin (HP-beta-CD) and dimethyl beta cyclodextrin (DM-beta-CD) exhibited 22.3-fold and 19-fold permeability enhancement of cosalane respectively across Caco-2 cell monolayers. Sodium desoxycholate (10 mM) also showed a remarkable (105-fold) enhancement on the permeability of cosalane (P(app) 11.72+/-3.31 x 10(-6) cm/s) without causing any measurable cellular damage. Cremophor EL resulted in higher transport of 14C mannitol. The mechanism of enhancement effect can be mainly attributed to the alteration of membrane fluidity by cyclodextrin and opening of tight junctions by cremophor EL. CONCLUSIONS Among the enhancers tested, 10 mM sodium desoxycholate and HP-beta-CD appear to be viable candidates for further development of an oral formulation of cosalane and its congeners.
Collapse
|
40
|
Mikov M, Kuhajda K, Kandrac J. Current aspects of pharmacologic application of bile acids. ACTA ACUST UNITED AC 2003; 56:237-42. [PMID: 14565046 DOI: 10.2298/mpns0306237m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Effects of bile acids and their salts on absorption of other substances Bile acids and their salts increase intestinal absorption of lipids and transmembrane and paracellular transfer of small and endogenous and exogenous polar molecules. It has been established that they are good promotores of insulin absorption through skin and nasal mucose, and of blood-brain barrier transfer of salycilates and quinine. Effects of bile acids and their salts on absorption of other substances and their potential action It has been established that combination of bile acids with amphotericin B has potential Leishmanicideal effect and combination with ciprofloxacine has improved its antibacterial activity against Pseudomonas aeruginosa in vitro. Bile acids pharmacodynamic effects Bile acids have analgesic and hypoglycemic effect They also have anti-HIV effect probably suppressing virus transmission from cell to cell. Conclusion New studies of natural bile acids and new synthetic bile acids have revealed that they are not only adjuvants to existing active principles in pharmaceutical forms, but they can act as new therapeutic agents. However, it is necessary to study their possible mechanisms, but they are not crucial for their therapeutic application. Toxicological and pharmacological studies will determine the role of newly synthetized bile acids and their salts in current therapy.
Collapse
Affiliation(s)
- Momir Mikov
- Zavod za farmakologiju, toksikologiju i klinicku farmakologiju, Medicinski fakultet, Novi Sad.
| | | | | |
Collapse
|
41
|
Eiamtrakarn S, Itoh Y, Kishimoto J, Yoshikawa Y, Shibata N, Murakami M, Takada K. Gastrointestinal mucoadhesive patch system (GI-MAPS) for oral administration of G-CSF, a model protein. Biomaterials 2002; 23:145-52. [PMID: 11762832 DOI: 10.1016/s0142-9612(01)00089-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new gastrointestinal mucoadhesive patch system (GI-MAPS) has been designed for the oral delivery of protein drugs. The system consists of four layered films, 3.0 x 3.0 mm2, contained in an enteric capsule. The 40 microm backing layer is made of a water-insoluble polymer, ethyl cellulose (EC). The surface layer is made of an enteric pH-sensitive polymer such as hydroxypropylmethylcellulose phthalate (HP-55), Eudragit L100 or S100 and was coated with an adhesive layer. The middle layer, drug-containing layer. made of cellulose membrane is attached to the EC backing layer by a heating press method. Both drug and pharmaceutical additives including an organic acid, citric acid, and a non-ionic surfactant, polyoxyethylated castor oil derivative (HCO-60), were formulated in the middle layer. The surface layer was attached to the middle layer by an adhesive layer made of carboxyvinyl polymer (Hiviswako 103). Fluorescein (FL), 30mg, was first used as a model drug for oral administration of GI-MAPS having different surface layers in beagle dogs. The plasma FL concentration vs. time profiles demonstrated that the targeting of the systems was obtained, because the Tmax, the time when plasma FL concentrations reaches to its maximum lelev, was 2.33+/-0.82 h for HP-55 system, 3.33+/-0.41 h for Eudragit L100 system and 5.00+/-0.00 h for Eudragit S100 system. The same three kinds of GI-MAPSs containing 125 microg of recombinant human granulocyte colony-stimulating factor (G-CSF) were prepared and orally administered to dogs and the increase in total white blood cell (WBC) counts were measured as the pharmacological index for G-CSF. Comparison with the total increase of WBCs after iv injection of the same amount of G-CSF (125 microg) indicated the pharmacological availabilities (PA) of G-CSF were 23%, 5.5% and 6.0% for Eudragit L100, HP-55 and Eudragit S100 systems. By decreasing the amount of HCO-60 and citric acid, the PA of G-CSF decreased. These results suggest the usefulness of GI-MAPS for the oral administration of proteins.
Collapse
Affiliation(s)
- S Eiamtrakarn
- Department of Pharmaceutics and Pharmacokinetics, Kyoto Pharmaceutical University, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Radwan MA. Enhancement of absorption of insulin-loaded polyisobutylcyanoacrylate nanospheres by sodium cholate after oral and subcutaneous administration in diabetic rats. Drug Dev Ind Pharm 2001; 27:981-9. [PMID: 11763477 DOI: 10.1081/ddc-100107680] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polyisobutylcyanoacrylate (PIBCA) nanospheres were employed as biodegradable polymeric carriers for oral (p.o.) and subcutaneous (s.c.) delivery of insulin. The polymerization technique used was able to hold 65%-95% of insulin added 30 min after initiation of polymerization. The percentage drug loading was monomer concentration dependent. Insulin adsorption to the nanospheres was measured by radioimmunoassay. Although Pluronic F68 (0.5%) did not significantly alter the in vitro insulin degradation half-life T50%, sodium cholate (0.5%) increased the degradation T50% of insulin by 56% (from 13.6 +/- 1.6 to 22.1 +/- 2 min). This study also investigated the in vivo performance of insulin-loaded PIBCA in aqueous suspension with or without sodium cholate (0.5%) and Pluronic F68 (0.5%) surfactants after oral and subcutaneous administration to alloxan-induced diabetic rats. Insulin absorption was evaluated by its hypoglycemic effect. Insulin associated with PIBCA nanospheres retains its biological activity up to 15 h and 24 h after oral and subcutaneous administrations, respectively. Administered orally insulin-loaded (75 U/kg) nanospheres, in the presence of surfactants, significantly reduced the mean blood glucose level from 392 +/- 32 to 80 +/- 13 mg/dl within 2 h and maintained it at 100 mg/dl or less for more than 8 h. On the other hand, the subcutaneous administration of insulin-loaded (25 U/kg) nanospheres significantly decreased the blood glucose level from 406 +/- 33 to 88.5 +/- 12.8 mg/dl within 1 h, and the lowered glucose level was maintained at 100 mg/dl or less for more than 12 h; it returned to its initial value 24 h after administration. Insulin-loaded nanospheres with surfactants showed significant (P < .05) pharmacological availability (PA%) of 37.6% +/- 3.7% and 65.2% +/- 2.7% after oral and subcutaneous dosages, respectively. The existence of surfactants with PIBCA nanospheres improved the oral PA% by 49.2%. These findings suggest that the developed PIBCA, in the presence of surfactants, would be useful not only in improving insulin gastrointestinal absorption, but also in sustaining its systemic action by lowering the blood glucose to an acceptable level.
Collapse
Affiliation(s)
- M A Radwan
- Department of Clinical Pharmacy, College of Pharmacy, Science and Medical Studies, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
43
|
Radwan MA, Aboul-Enein HY. The effect of absorption enhancers on the initial degradation kinetics of insulin by alpha-chymotrypsin. Int J Pharm 2001; 217:111-20. [PMID: 11292547 DOI: 10.1016/s0378-5173(01)00595-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The goal of this investigation was to establish a fast method to screen various insulin absorption enhancers by following their effect on the initial kinetics of insulin incubated with alpha-chymotrypsin at 37 degrees C. A simple, sensitive and reproducible reversed phase high performance liquid chromatography (HPLC) method has been developed to carry out this goal. Linear responses (r > 0.999) were observed over the range of 0.4-4 U/ml for insulin. There was no significant difference (P < 0.05) between inter- and intra-day studies for insulin. The mean relative standard deviations (RSD%) of the results of within-day precision and accuracy of insulin were 12%. The assay was sensitive to detect the existence of any metabolite due to the addition of any absorption enhancers, even if it was not seen with insulin alone. Three metabolites (A-C) were detected only when insulin was incubated with alpha-chymotrypsin at 37 degrees C. Metabolite D was observed when either glycocholic acid (0.5, 1%) or taurochenodeoxycholate (0.5, 1%) was incubated with insulin in the absence of alpha-chymotrypsin at 37 degrees C. The compounds that significantly increased insulin T50% were glycyrrhizic acid (0.5%) > deoxycholic acid (1%) > deoxycholic acid (0.5%) > glycyrrhizic acid (1%) > cholic acid (0.5, 1%). Capric acid (0.5%), hydroxypropyl-alpha-cyclodextrin (0.5, 1%) and dimethyl-alpha-cyclodextrin (0.5, 1, 5%) did not significantly affect insulin T50%. The bile salts increased insulin T50% in this order: deoxycholate > cholate > glycocholate > taurocholate > taurodeoxycholate > taurochenodeoxycholate > glycodeoxycholate. The results obtained would support the feasibility of utilizing such method for screening any compound incorporated in insulin formulation. These compounds should be used in the minimum possible concentration to avoid or minimize insulin degradation.
Collapse
Affiliation(s)
- M A Radwan
- Department of Clinical Pharmacy, College of Pharmacy, Science and Medical Studies, Department for Women Students, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia.
| | | |
Collapse
|
44
|
Michael S, Thöle M, Dillmann R, Fahr A, Drewe J, Fricker G. Improvement of intestinal peptide absorption by a synthetic bile acid derivative, cholylsarcosine. Eur J Pharm Sci 2000; 10:133-40. [PMID: 10727879 DOI: 10.1016/s0928-0987(99)00093-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential of the nontoxic bile salt derivative, cholylsarcosine, to enhance the intestinal absorption of peptides was investigated in vitro and in situ. The permeation of the two model peptides octreotide and vasopressin-[arg(8)CT>/=CS, whereas ursodeoxycholic acid exhibited no absorption enhancement. Determination of the cytotoxic potential of the bile salts revealed the same rank order. In rats, octreotide and desmopressin were absorbed from the gastrointestinal-tract with moderate absorption efficiency. Coadministration of bile salts resulted in an increased absorption efficiency. The effect of CS was similar to that of CT. In conclusion, CS shows absorption enhancement properties and a relatively low cytotoxicity. It offers an alternative as absorption enhancer as compared to conventional bile acids which may have a potential cocarcinogenic risk.
Collapse
Affiliation(s)
- S Michael
- Institut für Pharmazeutische Technologie und Biopharmazie, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Chao AC, Nguyen JV, Broughall M, Griffin A, Fix JA, Daddona PE. In vitro and in vivo evaluation of effects of sodium caprate on enteral peptide absorption and on mucosal morphology. Int J Pharm 1999; 191:15-24. [PMID: 10556736 DOI: 10.1016/s0378-5173(99)00213-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sodium salts of medium-chain fatty acids, sodium caprate (C10) in particular, have been used as absorption-enhancing agents to promote transmucosal drug absorption. In this study, we conducted both in vitro and in vivo experiments to investigate the effects of C10 on intestinal permeabilities and mucosal morphology. Mucosal addition of C10 (13-25 mM) reduced the transepithelial electric resistance (TEER) of cultured monolayers of the human intestinal cell line Caco-2 by 40-65% and, upon removal of C10, a marked tendency of TEER recovery was recorded. C10 added mucosally at 13-50 mM increased the transports of mannitol and polyethylene glycol (PEG) 900 across Caco-2 in a dose-dependent manner. In contrast, the transport of a model D-decapeptide was maximally enhanced with 20-25 mM C10. No noticeable morphological alteration of the Caco-2 monolayers was observed after a 1-h mucosal pretreatment with C10. Co-delivery with C10 (0.05-0.5 mmol/kg) into the rat terminal ileum increased the D-decapeptide bioavailability (BA) dose-dependently. With 0.5 mmol/kg C10 co-administered, D-decapeptide percent BA was elevated from 2 to 11%. Following a 1-h incubation with 0.5 mmol/kg C10 (in liquid or powder form) non-invasively delivered into the rectal lumen, no signs of histological change in the rectal mucosa were detected. These results demonstrate that C10 can promote intestinal absorption of a small peptide without causing detrimental alterations of the intestinal mucosa. C10 thus seems to be a good candidate as an enhancing agent for improving the oral BA of small therapeutic peptides.
Collapse
Affiliation(s)
- A C Chao
- Biological Sciences, ALZA Corporation, 950 Page Mill Road, Palo Alto, CA 94303-0802, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rubinstein A, Tirosh B, Baluom M, Nassar T, David A, Radai R, Gliko-Kabir I, Friedman M. The rationale for peptide drug delivery to the colon and the potential of polymeric carriers as effective tools. J Control Release 1997. [DOI: 10.1016/s0168-3659(96)01582-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Affiliation(s)
- J Brange
- Novo Nordisk A/S, Bagsvaerd, Denmark
| | | |
Collapse
|
48
|
Abstract
In spite of significant efforts in academic and commercial laboratories, major breakthroughs in oral peptide and protein formulation have not been achieved. The major barriers to developing oral formulations for peptides and proteins include poor intrinsic permeability, lumenal and cellular enzymatic degradation, rapid clearance, and chemical and conformational stability. Pharmaceutical approaches to address these barriers, which have been successful with traditional, small, organic drug molecules, have not readily translated into effective peptide and protein formulations. The success achieved by Sandoz with cyclosporin formulations remains one clear example of what can be achieved, although it is likely that effective oral formulations for peptides and proteins will remain highly compound specific. Although the challenges are significant, the potential therapeutic benefit remains high, particularly with the increasing identification of potential peptide and protein drug candidates emerging from the biotechnology arena. Successful formulations will most likely require a systematic and careful merger of formulation and design delivery systems which maximize the potential for absorption across the epithelial cell layer.
Collapse
Affiliation(s)
- J A Fix
- Alza Corporation, Palo Alto, California 94303, USA
| |
Collapse
|
49
|
Abstract
The development of oral formulations for the effective delivery of peptides and proteins has been an elusive target. Although some success has been achieved (e.g., with cyclosporine), progress has been slow compared with what has been achieved with more traditional, organic drug molecules. Poor membrane permeability, enzymatic instability, and large molecular size are three factors that have remained major hurdles for peptide formulators. Absorption-enhancing agents that have been effective, at least in research environments, with smaller drug candidates, have also shown some limited efficacy in small animal models with certain peptides. In most cases, however, effective formulations have only achieved fairly low peptide absorption (< 10%) and have also resulted in significant alterations in the normal cellular morphology of the gastrointestinal tract, at least on a transient basis. Both literature and current data are reviewed in this report. Taken as a whole, the data suggest that the successful development of oral peptide formulations remains a significant challenge. Where successes are achieved, they will most likely be on a case-by-case basis and will reflect a balance between absorption-promoting efficacy of the formulation and the extent to which transient alteration of cell or tissue morphology occurs.
Collapse
Affiliation(s)
- J A Fix
- ALZA Corporation, Palo Alto, California 94303, USA
| |
Collapse
|