1
|
Tuma J, Chen YJ, Collins MG, Paul A, Li J, Han H, Sharma R, Murthy N, Lee HY. Lipid Nanoparticles Deliver mRNA to the Brain after an Intracerebral Injection. Biochemistry 2023; 62:3533-3547. [PMID: 37729550 PMCID: PMC10760911 DOI: 10.1021/acs.biochem.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Neurological disorders are often debilitating conditions with no cure. The majority of current therapies are palliative rather than disease-modifying; therefore, new strategies for treating neurological disorders are greatly needed. mRNA-based therapeutics have great potential for treating such neurological disorders; however, challenges with delivery have limited their clinical potential. Lipid nanoparticles (LNPs) are a promising delivery vector for the brain, given their safer toxicity profile and higher efficacy. Despite this, very little is known about LNP-mediated delivery of mRNA into the brain. Here, we employ MC3-based LNPs and successfully deliver Cre mRNA and Cas9 mRNA/Ai9 sgRNA to the adult Ai9 mouse brain; greater than half of the entire striatum and hippocampus was found to be penetrated along the rostro-caudal axis by direct intracerebral injections of MC3 LNP mRNAs. MC3 LNP Cre mRNA successfully transfected cells in the striatum (∼52% efficiency) and hippocampus (∼49% efficiency). In addition, we demonstrate that MC3 LNP Cas9 mRNA/Ai9 sgRNA edited cells in the striatum (∼7% efficiency) and hippocampus (∼3% efficiency). Further analysis demonstrates that MC3 LNPs mediate mRNA delivery to multiple cell types including neurons, astrocytes, and microglia in the brain. Overall, LNP-based mRNA delivery is effective in brain tissue and shows great promise for treating complex neurological disorders.
Collapse
Affiliation(s)
- Jan Tuma
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00 Plzen, Czech Republic
| | - Yu-Ju Chen
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| | - Michael G. Collins
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| | - Abhik Paul
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| | - Jie Li
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Hesong Han
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Rohit Sharma
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| |
Collapse
|
2
|
Mocanu CA, Fuior EV, Voicu G, Rebleanu D, Safciuc F, Deleanu M, Fenyo IM, Escriou V, Manduteanu I, Simionescu M, Calin M. P-selectin targeted RAGE-shRNA lipoplexes alleviate atherosclerosis-associated inflammation. J Control Release 2021; 338:754-772. [PMID: 34530051 DOI: 10.1016/j.jconrel.2021.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
The receptor for advanced glycation end products (RAGE) plays a central role in the chronic inflammatory process associated with atherosclerosis development. We aimed to develop lipoplexes carrying RAGE-short hairpin (sh) RNA, targeted to the adhesion molecule P-selectin, selectively expressed on the surface of activated endothelium (Psel-lipo/shRAGE) to down-regulate RAGE expression as a therapeutic strategy for atherosclerosis. In vitro, Psel-lipo/shRAGE lipoplexes were efficiently taken up by activated endothelial cells (EC), decreased the expression of RAGE protein, and proved to be functional by reducing the monocyte adhesion to activated EC. In ApoE-deficient mice, the targeted lipoplexes accumulated specifically and efficiently transfected the aorta. The repeated administration of Psel-lipo/shRAGE lipoplexes, twice per week for one month: i) reduced the expression of RAGE protein in the aorta by decreasing the expression of NF-kB and TNF-α; ii) diminished the plasma levels of TNF-α, IL6, IL-1β, and MCP-1; iii) inhibited the atherosclerotic plaque development and iv) had no significant adverse effects. In conclusion, the newly developed Psel-lipo/shRAGE lipoplexes reduce the inflammatory processes associated with RAGE signaling and the progression of atherosclerosis in ApoE-deficient mice. Downregulation of RAGE employing these lipoplexes may represent a promising new targeted therapy to block atherosclerosis progression.
Collapse
Affiliation(s)
- Cristina Ana Mocanu
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Elena Valeria Fuior
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Geanina Voicu
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Daniela Rebleanu
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Florentina Safciuc
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Mariana Deleanu
- "Liquid and Gas Chromatography" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Ioana Madalina Fenyo
- "Gene Regulation and Molecular Therapies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | | | - Ileana Manduteanu
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Maya Simionescu
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania.
| |
Collapse
|
3
|
Abstract
The relevance of using nude mouse models for evaluating drug delivery to human tumors has recently been questioned by numerous researchers. While the immune response is known to play a critical role in cancer, this study assesses the effect of using immunocompromised "nude" mice on drug delivery. By inoculating both nude and immunocompetent mice with a mouse mammary carcinoma cell line (4T1), differences in the "first pass effect", distribution, and reporter gene expression due to the use of the nude mouse model could be elucidated. Our results indicate that initial tumor deposition (5 min) was slightly lower in nude mice but comparable after 24 h. In addition, some small differences in tissue deposition/accumulation and reporter gene expression were observed between the two mouse models. The results with this one tumor model suggest that delivery studies conducted in nude mice can provide comparable results to those in immunocompetent mouse models.
Collapse
|
4
|
Abstract
Research in the field of nonviral gene delivery is in the initial stages relative to the more commonly known viral systems. However, nonviral systems may, in the near future overcome some of the problems inherent to currently employed viral gene delivery systems. These problems range from limited payload capacity and general production issues to immune and toxic reactions, as well as the potential for catastrophic viral recombination. Self-assembling complexes of nucleic acids and synthetic polymers, commonly referred to as `polyplexes', are formed as the result of electrostatic interactions between the negatively charged phosphate groups of the DNA and the positively charged groups of the polycation. A wide array of polycations are available for such studies, including those with linear, branched, dendritic and block or graft copolymer architectures. These polycations vary greatly in chemical composition as well as the number of repeating units, providing for a wide range of different polyplexes that can be easily assembled. Some of the current gene delivery systems are described which serve as potential reagents in the field of polymer-based gene delivery.
Collapse
Affiliation(s)
- Catherine L. Gebhart
- Department of Pharmaceutical Sciences College of Pharmacy University of Nebraska Medical Center 986025, Nebraska Medical Center Omaha, NE 68198-6025, USA
| | - Alexander V. Kabanov
- Department of Pharmaceutical Sciences College of Pharmacy University of Nebraska Medical Center 986025, Nebraska Medical Center Omaha, NE 68198-6025, USA
| |
Collapse
|
5
|
Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S. Therapeutic face of RNAi: in vivo challenges. Expert Opin Biol Ther 2014; 15:269-85. [PMID: 25399911 DOI: 10.1517/14712598.2015.983070] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION RNA interference is a sequence-specific gene silencing phenomenon in which small interfering RNAs (siRNAs) can trigger gene transcriptional and post-transcriptional silencing. This phenomenon represents an emerging therapeutic approach for in vivo studies by efficient delivery of specific synthetic siRNAs against diseases. Therefore, simultaneous development of synthetic siRNAs along with novel delivery techniques is considered as novel and interesting therapeutic challenges. AREAS COVERED This review provides a basic explanation to siRNA signaling pathways and their therapeutic challenges. Here, we provide a comprehensive explanation to failed and successful trials and their in vivo challenges. EXPERT OPINION Specific, efficient and targeted delivery of siRNAs is the major concern for their in vivo administrations. Also, anatomical barriers, drug stability and availability, immunoreactivity and existence of various delivery routes, different genetic backgrounds are major clinical challenges. However, successful administration of siRNA-based drugs is expected during foreseeable features. But, their systemic applications will depend on strong targeted drug delivery strategies.
Collapse
Affiliation(s)
- Hojat Borna
- Baqiyatallah University of Medical Sciences, Chemical Injuries Research Center , Tehran , Iran
| | | | | | | |
Collapse
|
6
|
Khargharia S, Baumhover NJ, Crowley ST, Duskey J, Rice KG. The uptake mechanism of PEGylated DNA polyplexes by the liver influences gene expression. Gene Ther 2014; 21:1021-8. [DOI: 10.1038/gt.2014.81] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/03/2014] [Accepted: 07/25/2014] [Indexed: 12/19/2022]
|
7
|
Mannosylated chitosan nanoparticles for delivery of antisense oligonucleotides for macrophage targeting. BIOMED RESEARCH INTERNATIONAL 2014; 2014:526391. [PMID: 25057492 PMCID: PMC4098891 DOI: 10.1155/2014/526391] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022]
Abstract
The therapeutic potential of antisense oligonucleotides (ASODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study focuses on designing mannosylated low molecular weight (LMW) chitosan nanoconstructs for safe ODNs delivery by macrophage targeting. Mannose groups were coupled with LMW chitosan and characterized spectroscopically. Mannosylated chitosan ODN nanoparticles (MCHODN NPs) were formulated by self-assembled method using various N/P ratio (moles of amine groups of MCH to phosphate moieties of ODNs) and characterized for gel retardation assay, physicochemical characteristics, cytotoxicity and transfection efficiency, and antisense assay. Complete complexation of MCH/ODN was achieved at charge ratio of 1:1 and above. On increasing the N/P ratio of MCH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) increased. MCHODN NPs displayed much higher transfection efficiency into Raw 264.7 cells (bears mannose receptors) than Hela cells and no significant toxicity was observed at all MCH concentrations. Antisense assay revealed that reduction in lipopolysaccharide (LPS) induced serum TNF-α is due to antisense activity of TJU-2755 ODN (sequence complementary to 3′-UTR of TNF-α). These results suggest that MCHODN NPs are acceptable choice to improve transfection efficiency in vitro and in vivo.
Collapse
|
8
|
Abstract
Prostate cancer is the second leading cause of cancer related death in American men. Androgen deprivation therapy (ADT) is used to treat patients with aggressive prostate cancers. After androgen deprivation therapy, prostate cancers slowly progress to an androgen-independent status. Taxanes (e.g., docetaxel) are used as standard treatments for androgen-independent prostate cancers. However, these chemotherapeutic agents will eventually become ineffective due to the development of drug resistance. A microRNA (miRNA) is a small noncoding RNA molecule, which can regulate gene expression at the post-transcription level. miRNAs elicit their effects by binding to the 3'-untranslated region (3'-UTR) of their target mRNAs, leading to the inhibition of translation or the degradation of the mRNAs. miRNAs have received increasing attention as targets for cancer therapy, as they can target multiple signaling pathways related to tumor progression, metastasis, invasion, and chemoresistance. Emerging evidence suggests that aberrant expression of miRNAs can lead to the development of resistant prostate cancers. Here, we discuss the roles of miRNAs in the development of resistant prostate cancers and their involvement in various drug resistant mechanisms including androgen signaling, apoptosis avoidance, multiple drug resistance (MDR) transporters, epithelialmesenchymal transition (EMT), and cancer stem cells (CSCs). In addition, we also discuss strategies for treating resistant prostate cancers by targeting specific miRNAs. Different delivery strategies are also discussed with focus on those that have been successfully used in human clinical trials.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University , Hampton, Virginia 23668, United States
| | | |
Collapse
|
9
|
Shim MS, Chang SS, Kwon YJ. Stimuli-responsive siRNA carriers for efficient gene silencing in tumors via systemic delivery. Biomater Sci 2014; 2:35-40. [DOI: 10.1039/c3bm60187k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Alam S, Khan ZI, Mustafa G, Kumar M, Islam F, Bhatnagar A, Ahmad FJ. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomedicine 2012; 7:5705-18. [PMID: 23180965 PMCID: PMC3497894 DOI: 10.2147/ijn.s35329] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) nanoparticles of thymoquinone (TQ) were prepared by the ionic gelation method and are characterized on the basis of surface morphology, in vitro or ex vivo release, dynamic light scattering, and X-ray diffractometry (XRD) studies. Dynamic laser light scattering and transmission electron microscopy confirmed the particle diameter was between 150 to 200 nm. The results showed that the particle size of the formulation was significantly affected by the drug:CS ratio, whereas it was least significantly affected by the tripolyphosphate:CS ratio. The entrapment efficiency and loading capacity of TQ was found to be 63.3% ± 3.5% and 31.23% ± 3.14%, respectively. The drug-entrapment efficiency and drug-loading capacity of the nanoparticles appears to be inversely proportional to the drug:CS ratio. An XRD study proves that TQ dispersed in the nanoparticles changes its form from crystalline to amorphous. This was further confirmed by differential scanning calorimetry thermography. The flat thermogram of the nanoparticle data indicated that TQ formed a molecular dispersion within the nanoparticles. Optimized nanoparticles were evaluated further with the help of scintigraphy imaging, which ascertains the uptake of drug into the brain. Based on maximum concentration, time-to-maximum concentration, area-under-curve over 24 hours, and elimination rate constant, intranasal TQ-loaded nanoparticles (TQ-NP1) proved more effective in brain targeting compared to intravenous and intranasal TQ solution. The high drug-targeting potential and efficiency demonstrates the significant role of the mucoadhesive properties of TQ-NP1.
Collapse
Affiliation(s)
- Sanjar Alam
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi, India.
| | | | | | | | | | | | | |
Collapse
|
11
|
Hyaluronic acid-bearing lipoplexes: physico-chemical characterization and in vitro targeting of the CD44 receptor. J Control Release 2012; 162:545-52. [PMID: 22820451 DOI: 10.1016/j.jconrel.2012.07.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 12/31/2022]
Abstract
The mechanism by which hyaluronic acid (HA)-bearing lipoplexes target the A549 lung cancer cell line was evaluated. For this purpose, cationic liposomes targeting the CD44 receptor were designed thanks to the incorporation in their composition of a conjugate between high molecular weight HA and the lipid DOPE (HA-DOPE). Liposomes containing HA-DOPE were complexed at different lipids:DNA ratios with a reporter plasmid encoding the green fluorescent protein (GFP). Diameter, zeta potential, lipoplex stability and DNA protection from nucleases have been determined. Lipids:DNA ratios of 2, 4 and 6 provided a diameter around 250 nm with a zeta potential of -30 mV. The strength of lipids:DNA interaction and the fraction of DNA protected from enzymatic degradation increased with the lipids:DNA ratio. 2D-immunoelectrophoresis demonstrated the low capacity to activate the C3 fraction of the complement system of any of these three ratios, with and without HA-DOPE. Transfection efficiency in the presence of 0, 10 and 15% of HA-DOPE or unconjugated HA, was determined on the CD44-expressing A549 cells by flow cytometry. Lipoplexes at a lipids:DNA ratio of 2 containing 10% (w/w) of HA-DOPE were the most efficient for transfection. The maximal level of GFP expression was obtained after 6h of incubation demonstrating a slow transfection kinetics of lipoplexes. Finally, lipoplex cellular uptake, measured indirectly by the level of transfection using flow cytometry and validated by fluorescence microscopy, was shown to be mediated by the CD44 receptor and caveolae. These results demonstrate the strong specificity of DNA targeting through the CD44 receptor using HA of high molecular weight as a ligand.
Collapse
|
12
|
Abstract
PEGylated polyacridine peptides bind to plasmid DNA with high affinity to form unique polyplexes that possess a long circulatory half-life and are hydrodynamically (HD)-stimulated to produce efficient gene expression in the liver of mice. We previously demonstrated that (Acr-Lys)6-Cys-PEG5kDa stabilizes a 1 μg pGL3 dose for up to 1 hr in the circulation, resulting in HD-stimulated (saline only) gene expression in the liver, equivalent in magnitude to direct-HD dosing of 1 μg of pGL3 (Fernandez C.A. et al. Gene Therapy 2011). In the present study we report that increasing the spacing of Acr with either 4 or 5 Lys residues, dramatically increases the stability of PEGylated polyacridine peptide polyplexes in the circulation allowing maximal HD-stimulated expression for up to 5 hrs post-DNA administration. Co-administration of a decoy dose of 9 μg of non-expressing DNA polyplex with 1 μg of pGL3 polyplex further extended the HD-stimulated expression to 9 hrs. This structure-activity relationship study defines the PEGylated polyacridine peptide requirements for maintaining fully transfection competent plasmid DNA in the circulation for 5 hrs and provides an understanding as to why polyplexes or lipoplexes prepared with PEI, chitosan or Lipofectamine are inactive within 5 min following i.v. dosing.
Collapse
|
13
|
Wong SP, Argyros O, Harbottle RP. Vector systems for prenatal gene therapy: principles of non-viral vector design and production. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 891:133-67. [PMID: 22648771 DOI: 10.1007/978-1-61779-873-3_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy vectors based on viruses are the most effective gene delivery systems in use today and although efficient at gene transfer their potential toxicity (Hacein-Bey-Abina et al., Science 302:415-419, 2003) provides impetus for the development of safer non-viral alternatives. An ideal vector for human gene therapy should deliver sustainable therapeutic levels of gene expression without affecting the viability of the host at either the cellular or somatic level. Vectors, which comprise entirely human elements, may provide the most suitable method of achieving this. Non-viral vectors are attractive alternatives to viral gene delivery systems because of their low toxicity, relatively easy production, and great versatility. The development of more efficient, economically prepared, and safer gene delivery vectors is a crucial prerequisite for their successful clinical application and remains a primary strategic task of gene therapy research.
Collapse
Affiliation(s)
- Suet Ping Wong
- Faculty of Medicine, Molecular and Cellular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
14
|
Shim MS, Kwon YJ. Dual mode polyspermine with tunable degradability for plasmid DNA and siRNA delivery. Biomaterials 2011; 32:4009-20. [PMID: 21371749 DOI: 10.1016/j.biomaterials.2011.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
Stimuli-responsive degradability is an indispensable design component for polymeric gene carriers. In order to obtain enhanced, non-cytotoxic, and molecularly tunable nonviral gene delivery, spermine, a bioavailable small cationic molecule, was polymerized with diacrylate cross-linkers with or without acid-degradable ketal linkages for controlled dual mode-degradability (i.e., differential degradations in the endosome and the cytosol). The effects of ketal to ester ratios in the polymeric backbone on degradation rate, condensation of both plasmid DNA and siRNA, cellular uptake, intracellular disassembly, and consequent DNA transfection and RNA interference efficiency in vitro and in vivo were investigated. Limited nucleic acid complexation and cellular uptake but efficient intracellular release of nucleic acids were obtained with poly(spermine ketal ester) (PSKE), the most acid-degradable polyspermine. In contrast, poly(spermine ester) (PSE), which is not acid-degradable, demonstrated efficient nucleic acid complexation and cellular uptake but inefficient intracellular release of nucleic acids. The highest in vitro DNA transfection was obtained by the random co-polymer of PSKE and PSE at an equal ratio (PSKE-PSE), attributed to its balanced DNA complexation and acid-responsive release efficiency, while efficient siRNA unpackaging by PSKE resulted in the highest gene silencing efficiency. Preliminary in vivo studies demonstrated that the highest DNA transfection was obtained by using PSE, while both PSKE and PSE silenced GFP expression at the similar level. In conclusion, dual mode-degradable polyspermine is a non-cytotoxic nonviral gene carrier, and its acid-degradability can be molecularly tuned for differentially controlled transfection and gene silencing in vitro and in vivo.
Collapse
Affiliation(s)
- Min Suk Shim
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
15
|
Kher G, Trehan S, Misra A. Antisense Oligonucleotides and RNA Interference. CHALLENGES IN DELIVERY OF THERAPEUTIC GENOMICS AND PROTEOMICS 2011. [PMCID: PMC7150054 DOI: 10.1016/b978-0-12-384964-9.00007-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Al-Allaf FA, Coutelle C, Waddington SN, David AL, Harbottle R, Themis M. LDLR-Gene therapy for familial hypercholesterolaemia: problems, progress, and perspectives. Int Arch Med 2010; 3:36. [PMID: 21144047 PMCID: PMC3016243 DOI: 10.1186/1755-7682-3-36] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 12/13/2010] [Indexed: 12/03/2022] Open
Abstract
Coronary artery diseases (CAD) inflict a heavy economical and social burden on most populations and contribute significantly to their morbidity and mortality rates. Low-density lipoprotein receptor (LDLR) associated familial hypercholesterolemia (FH) is the most frequent Mendelian disorder and is a major risk factor for the development of CAD. To date there is no cure for FH. The primary goal of clinical management is to control hypercholesterolaemia in order to decrease the risk of atherosclerosis and to prevent CAD. Permanent phenotypic correction with single administration of a gene therapeutic vector is a goal still needing to be achieved. The first ex vivo clinical trial of gene therapy in FH was conducted nearly 18 years ago. Patients who had inherited LDLR gene mutations were subjected to an aggressive surgical intervention involving partial hepatectomy to obtain the patient's own hepatocytes for ex vivo gene transfer with a replication deficient LDLR-retroviral vector. After successful re-infusion of transduced cells through a catheter placed in the inferior mesenteric vein at the time of liver resection, only low-level expression of the transferred LDLR gene was observed in the five patients enrolled in the trial. In contrast, full reversal of hypercholesterolaemia was later demonstrated in in vivo preclinical studies using LDLR-adenovirus mediated gene transfer. However, the high efficiency of cell division independent gene transfer by adenovirus vectors is limited by their short-term persistence due to episomal maintenance and the cytotoxicity of these highly immunogenic viruses. Novel long-term persisting vectors derived from adeno-associated viruses and lentiviruses, are now available and investigations are underway to determine their safety and efficiency in preparation for clinical application for a variety of diseases. Several novel non-viral based therapies have also been developed recently to lower LDL-C serum levels in FH patients. This article reviews the progress made in the 18 years since the first clinical trial for gene therapy of FH, with emphasis on the development, design, performance and limitations of viral based gene transfer vectors used in studies to ameliorate the effects of LDLR deficiency.
Collapse
Affiliation(s)
- Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Al-Abedia Campus, P, O, Box 715, Makkah 21955, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
17
|
Peng L, Gao Y, Xue YN, Huang SW, Zhuo RX. Cytotoxicity and in vivo tissue compatibility of poly(amidoamine) with pendant aminobutyl group as a gene delivery vector. Biomaterials 2010; 31:4467-76. [DOI: 10.1016/j.biomaterials.2010.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/10/2010] [Indexed: 12/11/2022]
|
18
|
Charoensit P, Kawakami S, Higuchi Y, Yamashita F, Hashida M. Enhanced growth inhibition of metastatic lung tumors by intravenous injection of ATRA-cationic liposome/IL-12 pDNA complexes in mice. Cancer Gene Ther 2010; 17:512-22. [PMID: 20414324 DOI: 10.1038/cgt.2010.12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin 12 (IL-12) is a proinflammatory cytokine with antitumor activity. All-trans-retinoic acid (ATRA) exerts antitumor effects by regulating a variety of gene expressions, including tumor necrosis factor receptor 1 (TNFR1), increases the number of TNFR1 and potentiates TNF-alpha-induced apoptosis in cancer cells. In this study, ATRA-incorporated cationic liposome (ATRA-cationic liposome)/IL-12 plasmid DNA (pDNA) complexes were prepared to improve therapeutic efficacy of cationic liposome/IL-12 pDNA complexes in a mouse model of metastatic lung tumor after intravenous injection. IL-12 production in lungs by ATRA-cationic liposome/IL-12 pDNA complexes was comparable with that by cationic liposome/IL-12 pDNA complexes. The number of metastatic tumor cells (colon26/Luc) was quantitatively evaluated by measuring luciferase activity. ATRA-cationic liposome/IL-12 pDNA complexes reduced the number of colon26/Luc cells and tumor nodules in lungs. ATRA-cationic liposome/IL-12 pDNA complexes significantly prolonged the survival time of mice, whereas cationic liposome/IL-12 pDNA only slightly prolonged it. ATRA-cationic liposome/IL-12 pDNA complexes increased the TNFR1 mRNA upregulation and the number of apoptotic cells in the lung. Moreover, reduced serum alanine transaminase (ALT) and aspartate transaminase (AST) activities were observed in mice treated with ATRA-cationic liposome/IL-12 pDNA complexes. These results suggest that intravenous injection of ATRA-cationic liposome/IL-12 pDNA complexes is an effective method for the treatment of lung metastasis in mice.
Collapse
Affiliation(s)
- P Charoensit
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
19
|
Gene therapy: a pharmacokinetic/pharmacodynamic modelling overview. Pharm Res 2010; 27:1487-97. [PMID: 20387096 DOI: 10.1007/s11095-010-0136-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022]
Abstract
Since gene therapy started over 20 years ago, more than one-thousand clinical trials have been carried out. Nonviral vectors present interesting properties for their clinical application, but their efficiency in vivo is relatively low, and further improvements in these vectors are needed. Elucidating how nonviral vectors behave at the intracellular level is enlightening for vector improvement and optimization. Model-based approach is a powerful tool to understand and describe the different processes that gene transfer systems should overcome inside the body. Model-based approach allows for proposing and predicting the effect of parameter changes on the overall gene therapy response, as well as the known application of the pharmacokinetic/pharmacodynamic modelling in conventional therapies. The objective of this paper is to critically review the works in which the time-course of naked or formulated DNA have been quantitatively studied or modelled.
Collapse
|
20
|
Kuriyama S, Taguchi Y, Watanabe K, Nishimura K, Yanagibashi K, Katayama Y, Niidome T. Stability of DNA/Td3717 complexes for gene transfection, defined by the size and polydispersity of the complex. Bioorg Med Chem 2009; 17:7643-6. [DOI: 10.1016/j.bmc.2009.09.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/25/2009] [Accepted: 09/26/2009] [Indexed: 11/26/2022]
|
21
|
Yoshida H, Nishikawa M, Yasuda S, Mizuno Y, Toyota H, Kiyota T, Takahashi R, Takakura Y. TLR9-dependent systemic interferon-β production by intravenous injection of plasmid DNA/cationic liposome complex in mice. J Gene Med 2009; 11:708-17. [DOI: 10.1002/jgm.1348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Kuramoto Y, Kawakami S, Zhou S, Fukuda K, Yamashita F, Hashida M. Mannosylated cationic liposomes/CpG DNA complex for the treatment of hepatic metastasis after intravenous administration in mice. J Pharm Sci 2009; 98:1193-7. [PMID: 18623219 DOI: 10.1002/jps.21475] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Immunotherapy using immunostimulatory CpG DNA could be a promising new therapeutic approach to combat refractory hepatic metastasis. In this study, we report the use of a conventional cationic liposomes/CpG DNA complex (Bare/CpG DNA lipoplex) and a mannosylated cationic liposomes/CpG DNA complex (Man/CpG DNA lipoplex) for effective inhibition of hepatic metastasis in mice. After intravenous administration of Bare/CpG DNA lipoplex, higher amounts of IL-12 and IFN-gamma were produced in serum or liver compared with naked CpG DNA, and their production was increased further by Man/CpG DNA lipoplex. Then, Bare/CpG DNA lipoplex and Man/CpG DNA lipoplex were administered intravenously to hepatic metastasis model mice, and the numbers of tumor cells (colon26/Luc) were quantitatively assayed. The number of tumor cells in Man/CpG DNA lipoplex-treated mice was same as those in Bare/CpG DNA lipoplex-treated mice. These results suggest that intravenous administration of not only Bare/CpG DNA lipoplex but also Man/CpG DNA lipoplex could be an efficient immunotherapy for hepatic metastasis.
Collapse
Affiliation(s)
- Yukari Kuramoto
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Yoshida H, Nishikawa M, Yasuda S, Mizuno Y, Takakura Y. Cellular activation by plasmid DNA in various macrophages in primary culture. J Pharm Sci 2009; 97:4575-85. [PMID: 18228575 DOI: 10.1002/jps.21302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Macrophages are an important group of cells responsible for the inflammatory response to unmethylated CpG dinucleotide (CpG motif) in plasmid DNA (pDNA) via Toll-like receptor 9 (TLR9). This finding is primarily based on in vitro studies. Previous in vivo studies also have suggested that tissue macrophages are involved in inflammatory cytokine release in the circulation following intravenous administration of pDNA to mice. However, the relationship between the in vitro and in vivo studies has not been sufficiently clarified. To gain insight into which types of cells are responsible for the production of cytokines upon interaction with pDNA, peritoneal macrophages, splenic macrophages, hepatic nonparenchymal cells (NPCs) including Kupffer cells and mesangial cells were isolated from mice. All types of primary cultured cells, except for mesangial cells, express TLR9 at varying levels. Splenic macrophages and hepatic NPCs were activated to produce tumor necrosis factor-alpha (TNF-alpha) by naked pDNA, whereas peritoneal macrophages and mesangial cells were not. pDNA complexed with N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethyl-ammonium chloride/cholesterol liposome induced TNF-alpha in the splenic macrophages but not in the other cell types. These results indicate that splenic macrophages and hepatic NPCs are closely involved in TNF-alpha production in response to pDNA.
Collapse
Affiliation(s)
- Hiroyuki Yoshida
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
24
|
Zhu L, Lu Y, Miller DD, Mahato RI. Structural and formulation factors influencing pyridinium lipid-based gene transfer. Bioconjug Chem 2009; 19:2499-512. [PMID: 19053309 DOI: 10.1021/bc8004039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of pyridinium lipids containing a heterocyclic ring and a nitrogen atom were synthesized to determine the structure-activity relationship for gene delivery. Pyrylium chloroaluminate was synthesized by monoacylation of mesityl oxide and converted into pyrylium hexafluorophosphate, which was used as the key intermediate for reaction with different primary amines, to yield hydroxyethylpyridinium hexafluorophosphate and aminoethylpyridinium hexafluorophosphate. Acylation of these pyridinium salts with different types of fatty acid chlorides afforded the final pyridinium lipids, which were mixed with a co-lipid, such as L-alpha-dioleoylphosphatidylethanolamine (DOPE) and cholesterol (Chol) to prepare cationic liposomes by sonication. These liposomes were mixed with plasmid DNA encoding enhanced green fluorescent protein (pCMS-EGFP) or luciferase (pcDNA3-Luc) and transfected into Chinese hamster ovary (CHO) cells. Several factors including hydrophobic anchor chain length, anchor chain type, configuration of double bond, linker type, co-lipid type, cationic lipid/co-lipid molar ratio, charge ratio (N/P), and cell type had significant influence on transfection efficiency and cytotoxicity. Pyridinium lipids with amide linker showed significantly higher transfection efficiency compared to their ester counterparts. Liposomes prepared at a 1:1 molar ratio of pyridinium lipid and co-lipid showed higher transfection efficiency when either DOPE or cholesterol was used as a co-lipid to prepare cationic liposomes for complex formation with plasmid DNA at 3:1(+/-) charge ratio. Pyridinium liposomes based on a hydrophobic anchor chain length of 16 showed higher transfection efficiency and lower cytotoxicity. The pyridinium lipid with a trans-configuration of the double bond in the fatty acid chain showed higher transfection efficiency than its counterpart with cis-configuration at the same fatty acid chain length. In the presence of serum, C16:0 and Lipofectamine significantly decreased their transfection efficiencies, which were completely lost at a serum concentration of 30% and higher, while C16:1 trans-isomer still had high transfection efficiency under these conditions. In conclusion, pyridinium lipids showed high transfection efficiency and have the potential to be used as transfection reagents in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Zhu
- University of Tennessee Health Science Center, Memphis, Tennessee 38103-3308, USA
| | | | | | | |
Collapse
|
25
|
Kako K, Nishikawa M, Yoshida H, Takakura Y. Effects of inflammatory response on in vivo transgene expression by plasmid DNA in mice. J Pharm Sci 2008; 97:3074-83. [PMID: 18064709 DOI: 10.1002/jps.21254] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To examine the effects of inflammatory response to plasmid DNA (pDNA) on transgene expression, serum tumor necrosis factor-alpha (TNF-alpha) was measured after intravenous injection of pDNA or calf thymus DNA (CT DNA) in the naked or complexed form with cationic liposomes (lipoplex). pDNA with many CpG motifs induced TNF-alpha production regardless of the forms. No significant TNF-alpha production was detected when CT DNA or methylated pDNA was injected. Clodronate liposomes and dexamethasone were used to deplete phagocytes or to inhibit inflammatory responses, respectively. Transient depletion of phagocytes, such as liver Kupffer cells and splenic macrophages, by clodronate liposomes slightly altered the tissue distribution of (32)P-pDNA lipoplex, but significantly reduced the TNF-alpha production and transgene expression. Dexamethasone significantly inhibited the initial transgene expression, but increased the duration of the expression slightly. Use of NF-kappaB activity-dependent plasmid vector suggested that the inhibition of NF-kappaB activation is involved in the reduced expression by these treatments. These findings indicate that tissue macrophages are closely involved in the CpG motif-dependent TNF-alpha production. It is also suggested that TNF-alpha activates NF-kappaB and increases transgene expression by pDNA having many NF-kappaB binding sites, but TNF-alpha also reduces transgene expression at later time periods, leading to short-term transgene expression.
Collapse
Affiliation(s)
- Keiko Kako
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
26
|
Mori A, Chonn A, Choi LS, Israels A, Monck MA, Cullis PR. Stabilization and Regulated Fusion of Liposomes Containing a Cationic Lipid Using Amphipathic Polyethyleneglycol Derivatives. J Liposome Res 2008. [DOI: 10.3109/08982109809035526] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Litzinger DC. Limitations of Cationic Liposomes for Antisense Oligonucleotide Delivery in Vivo. J Liposome Res 2008. [DOI: 10.3109/08982109709035481] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049609026022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Whateley TL. Literature Alerts. Drug Deliv 2008. [DOI: 10.3109/10717549609031183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Wang SL, Yu FB, Jiang TY, Sun CS, Wang T, Zhang JH. Design and synthesis of novel galactosylated polymers for liposomes as gene drug carriers targeting the hepatic asialoglycoprotein receptor. J Drug Target 2008; 16:233-42. [PMID: 18365885 DOI: 10.1080/10611860801902609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The 18-mer oligodeoxynucleotides (ODNs) that can inhibit survivin gene expression were selected as a model gene drug to study hepatic-targeting drug delivery system. Novel galactosylated polymers (cholesteryloxycarbonylamino) ethylamine-alpha,beta-polyasparthydrazied (CHE-PAHy-Lacs), which target asialoglycoprotein receptor on hepatic parenchymal cells (PC), were designed and synthesized as non-toxic, non-antigenic and non-teratogenic ligands for liposomes. The liposomes incorporating different CHE-PAHy-Lacs were prepared and characterized by zeta potential and particle size analyzer. The drug encapsulation efficiency was measured by gel filtration method. 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate was used as a marker for all the liposome preparations in the in vivo experiments. The CHE-PAHy-Lac liposomes produced a significant improvement in the encapsulation efficiency of ODNs (28.73-51.37%) compared with conventional liposomes (9.88%). The in vivo results showed that the liposomes incorporating CHE-PAHy-Lac, which contained about 30% (w/w) galactosyl residues, exhibited marked accumulation in the liver and hepatic PC. These results suggest that the novel galactosylated polymers used for liposomes have a great potential as a gene delivery system for hepatic targeting.
Collapse
Affiliation(s)
- Si Ling Wang
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Nishikawa M, Takakura Y, Hashida M. Pharmacokinetic considerations regarding non-viral cancer gene therapy. Cancer Sci 2008; 99:856-62. [PMID: 18294288 PMCID: PMC11158855 DOI: 10.1111/j.1349-7006.2008.00774.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cancer gene therapy, in which pharmacologically active compounds are administered to cancer patients in a genetic form, has been examined not only in animals but also in cancer patients. Viral vector-induced severe side effects in patients have greatly underscored the importance of non-viral gene transfer methods. Even though the importance of pharmacokinetics is undoubtedly understood in the development of anticancer therapies, its importance has been less well recognized in non-viral cancer gene therapy. When transgene products express their activity within transduced cells, such as herpes simplex virus type 1 thymidine kinase and short hairpin RNA, the pharmacokinetics of the vectors and the expression profiles of the transgenes will determine the efficacy of gene transfer. The percentage of cells transduced is highly important if few by-stander effects are expected. If transgene products are secreted from cells into the blood circulation, such as interferons and interleukins, the pharmacokinetics of transgenes becomes a matter of significant importance. Then, any approach to increasing the level and duration of transgene expression will increase the therapeutic effects of cancer gene therapy. Here we review the pharmacokinetics of both non-viral vectors and transgene products, and discuss what should be done to achieve safer and more effective non-viral cancer gene therapy.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
32
|
Cavallaro G, Licciardi M, Mandracchia D, Pitarresi G, Giammona G. Hydrophilic and hydrophobic copolymers of a polyaspartylhydrazide bearing positive charges as vector for gene therapy. POLYM INT 2008. [DOI: 10.1002/pi.2393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Yao J, Zhou JP, Ping QN, Lu Y, Chen L. Distribution of nobiletin chitosan-based microemulsions in brain following i.v. injection in mice. Int J Pharm 2008; 352:256-62. [DOI: 10.1016/j.ijpharm.2007.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 08/21/2007] [Accepted: 10/15/2007] [Indexed: 11/15/2022]
|
34
|
del Pozo-Rodríguez A, Delgado D, Solinís MA, Gascón AR, Pedraz JL. Solid lipid nanoparticles: Formulation factors affecting cell transfection capacity. Int J Pharm 2007; 339:261-8. [PMID: 17467205 DOI: 10.1016/j.ijpharm.2007.03.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 03/06/2007] [Indexed: 11/29/2022]
Abstract
Since solid lipid nanoparticles (SLNs) were introduced as non-viral transfection systems, very few reports of their use for gene delivery have been published. In this work different formulations based on SLN-DNA complexes were formulated in order to evaluate the influence of the formulation components on the "in vitro" transfection capacity. SLNs composed by the solid lipid Precirol ATO 5, the cationic lipid DOTAP and the surfactant Tween 80, and SLN-DNA complexes prepared at different DOTAP/DNA ratios were characterized by studying their size, surface charge, DNA protection capacity, transfection and cell viability in HEK293 cultured cells. The incorporation of Tween 80 allowed for the reduction of the cationic lipid concentration. The formulations prepared at DOTAP/DNA ratios 7/1, 5/1 and 4/1 provided almost the same transfection levels (around 15% transfected cells), without significant differences between them (p>0.05). Other assayed formulations presented lower transfection. Transfection activity was dependent on the DOTAP/DNA ratio since it influences the DNA condensation into the SLNs. DNA condensation is a crucial factor which conditions the transfection capacity of SLNs, because it influences DNA delivery from nanoparticles, gene protection from external agents and DNA topology.
Collapse
Affiliation(s)
- A del Pozo-Rodríguez
- Pharmacy and Pharmaceutical Technology Laboratory, Pharmacy Faculty, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | | | | | | | | |
Collapse
|
35
|
Yonenaga Y, Mori A, Fujimoto A, Nagayama S, Tachibana T, Onodera H, Uemoto S. The administration of naked plasmid DNA into the liver induces antitumor innate immunity in a murine liver metastasis model. J Gene Med 2007; 9:299-307. [PMID: 17397091 DOI: 10.1002/jgm.1013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Gene therapy is a promising strategy against advanced cancer; however, the safety of viral vectors and the effectiveness of non-viral vectors have not yet been established. Recently, a hydrodynamics-based procedure was reported to be an effective and safe method to deliver and transduce DNA into the liver. Herein, we propose a strategy for liver metastasis by a hydrodynamics-based procedure to deliver naked non-coding plasmid DNA (pDNA) into the liver as an immunocompetent organ. METHODS AND RESULTS Mice received a rapid intravenous (i.v.) injection of naked pDNA in a large volume of saline (0.1 ml/g body weight). The single administration of a naked non-coding pDNA by the hydrodynamics-based procedure before tumor cell inoculation strongly suppressed liver metastasis formation. However, the usual i.v. injection (200 microl/body) of the same dose of naked pDNA could not suppress liver metastasis formation. Following the methylation of CpG sequences within the pDNA using CpG methylase, injection of the methylated pDNA by the hydrodynamics-based procedure could not suppress liver metastasis formation. Gadolinium chloride pretreatment did not interfere with this antitumor effect, but anti-asialo GM1 antiserum treatment did. These findings indicated that natural killer (NK) cells, not Kupffer cells, were involved in this antitumor effect. The NK cytotoxic activities of liver mononuclear cells were strongly enhanced after receiving a naked pDNA by the hydrodynamics-based procedure. CONCLUSIONS These observations suggest that unmethylated CpG motifs in pDNA stimulated immune cells, resulting in the activation of NK cells in the liver to suppress liver metastases in a murine model.
Collapse
Affiliation(s)
- Yoshikuni Yonenaga
- Department of Surgery, Graduate School of Medicine Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wu J, Lee A, Lu Y, Lee RJ. Vascular targeting of doxorubicin using cationic liposomes. Int J Pharm 2007; 337:329-35. [PMID: 17275230 DOI: 10.1016/j.ijpharm.2007.01.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/29/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
Tumor vessel has been recognized as an important target for anticancer therapy. Cationic liposomes have been shown to selectively target tumor endothelial cells, thus can potentially be used as a carrier for chemotherapy agents. In this study, cationic liposomes containing 20 mol% cationic lipid dimethyl dioctadecyl ammonium bromide (DDAB) and loaded with doxorubicin (DOX) were prepared and characterized. The cationic liposomal DOX showed 10.8 and 9.1 times greater cytotoxicity than control PEGylated liposomal DOX in KB oral carcinoma and L1210 murine lymphocytic leukemia cells, and 7.7- and 6.8-fold greater cytotoxicity compared to control neutral non-PEGylated liposomal DOX, repectively, in these two cell lines. Although cationic liposomal DOX had higher tumor accumulation at 30 min after intravenous administration compared to control liposomes (p<0.05), DOX uptake of these liposomes at 24h post-injection was similar to that of PEGylated liposomal DOX (p>0.05) and approximately twice the levels of the free drug and non-PEGylated liposomes. In a murine tumor model generated using L1210 cells, increased survival rate was obtained with cationic liposomal DOX treatment compared to free DOX (p<0.01), neutral liposome control (p<0.01), as well as PEGylated liposomes (p<0.05). In conclusion, the cationic liposomal DOX formulation produced superior in vitro cytotoxicity and in vivo antitumor activity, and warrants further investigation.
Collapse
Affiliation(s)
- Jun Wu
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
37
|
Charoensit P, Kawakami S, Higuchi Y, Hashida M. Incorporation of all-trans retinoic acid into lipoplexes inhibits nuclear factor κB activation mediated liver injury induced by lipoplexes in mice. J Gene Med 2007; 10:61-9. [DOI: 10.1002/jgm.1117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
38
|
Fujiwara T, Akita H, Furukawa K, Ushida T, Mizuguchi H, Harashima H. Impact of convective flow on the cellular uptake and transfection activity of lipoplex and adenovirus. Biol Pharm Bull 2006; 29:1511-5. [PMID: 16819202 DOI: 10.1248/bpb.29.1511] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An in vitro cell culture model that mimics in vivo extracellular environment would be useful in developing in vivo gene delivery system. In the present study, a parallel flow model was applied to investigate the impact of convective flow on cellular uptake and transfection activity in endothelial cells. LipofectAMINE PLUS and adenovirus were used as model vectors, which bind cells via electrostatic- and ligand-receptor interactions, respectively. Whereas a convective flow increased the total amount of vector passing through the flow chamber by 3 orders of magnitude, uptake was increased by less than 10-fold, suggesting that the flow severely inhibited cellular uptake by reducing the retention time in the chamber and/or by diminishing the affinity between the cell and vector. Moreover, the uptake of both vectors was increased in a shear stress-dependent manner to a comparable extent, suggesting that the effect of flow on the cellular uptake was not significant. In contrast, transfection efficiency (TE), expressed as the transfection activity normalized by the cellular uptake of vectors was dramatically stimulated by shear stress, only when LipofectAMINE PLUS was used. Since the activities of the CMV promoter were unaffected by a shear stress, it is possible that altered intracellular trafficking may responsible for the improvement in lipoplex-mediated TE, presumably related to the cellular uptake pathway.
Collapse
Affiliation(s)
- Takahiro Fujiwara
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Lonez C, Vandenbranden M, Ouali M, Legat A, Ruysschaert JM, Elouahabi A. Free diC14-amidine liposomes inhibit the TNF-alpha secretion induced by CpG sequences and lipopolysaccharides: role of lipoproteins. Mol Membr Biol 2006; 23:227-34. [PMID: 16785206 DOI: 10.1080/09687860600574436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It has been shown that a preinjection of diC14-amidine cationic liposomes decreased TNF-alpha secretion induced by lipoplexes intravenous injection. We showed here that free cationic liposomes inhibit CpG sequences- or lipopolysaccharides-induced TNF-alpha secretion by macrophages. Surprisingly, this effect was strictly dependent on serum. Free cationic liposomes alone did not reveal any anti-inflammatory activity. Low-density lipoproteins and triglyceride-rich lipoproteins were identified as the serum components that confer to the liposomes an anti-inflammatory activity. Lipid fractions of these lipoproteins were able to reproduce the effect of the total lipoproteins and could inhibit, in association with diC14-amidine liposomes, the CpG-induced TNF-alpha secretion. Serum components confer to cationic liposomes new properties that can be used to modulate the inflammatory response directed against CpG sequences and lipopolysaccharides.
Collapse
Affiliation(s)
- Caroline Lonez
- Laboratory of Structure and Function of Biological Membranes, Center of Structural Biology and Bioinformatics, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
40
|
Denoyelle S, Polidori A, Brunelle M, Vuillaume PY, Laurent S, ElAzhary Y, Pucci B. Synthesis and preliminary biological studies of hemifluorinated bifunctional bolaamphiphiles designed for gene delivery. NEW J CHEM 2006. [DOI: 10.1039/b513944a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Fletcher S, Ahmad A, Perouzel E, Heron A, Miller AD, Jorgensen MR. In Vivo Studies of Dialkynoyl Analogues of DOTAP Demonstrate Improved Gene Transfer Efficiency of Cationic Liposomes in Mouse Lung. J Med Chem 2005; 49:349-57. [PMID: 16392819 DOI: 10.1021/jm0507227] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel set of dialkynoyl analogues of the cationic, gene delivery lipid DOTAP (1) was synthesized. Structure-activity studies demonstrate that replacement of the cis-double bonds of DOTAP with triple bonds in varying positions alters both the physical properties of the resultant cationic liposome-DNA complexes and their biological functionalities, both in vitro and in vivo. Particularly, in vivo studies demonstrate that pDNA transfection of mouse lung endothelial cells with lead analogue DS(14-yne)TAP (4):cholesterol lipoplexes exhibits double the transfection level with less associated toxicity relative to the well-established DOTAP:cholesterol system. In fact, 4:cholesterol delivers up to 3 times the dose of pDNA in mice than can be tolerated by DOTAP, leading to nearly 3 times greater marker-gene expression. X-ray diffraction studies suggest that lipoplexes containing analogue 4 display increased stability at physiological temperatures. Our results thus suggest that analogue 4 is a potentially strong candidate for the gene therapy of lung tumors.
Collapse
|
42
|
Haas J, Ravi Kumar MNV, Borchard G, Bakowsky U, Lehr CM. Preparation and characterization of chitosan and trimethyl-chitosan-modified poly-(epsilon-caprolactone) nanoparticles as DNA carriers. AAPS PharmSciTech 2005; 6:E22-30. [PMID: 16353959 PMCID: PMC2750407 DOI: 10.1208/pt060106] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of this research was to prepare poly-(epsilon-caprolactone) (PCL) particles by an emulsion-diffusion-evaporation method using a blend of poly-(vinyl alcohol) and chitosan derivatives as stabilizers. The chitosan derivatives used were chitosan hydrochloride and trimethyl chitosans (TMC) with varying degrees of quaternization. Particle characteristics-size, zeta potential, surface morphology, cytotoxicity, and transfection efficiency-were investigated. The developed method yields PCL nanoparticles in the size range of 250 to 300 nm with a positive surface charge (2.5 to 6.8 mV). The cytotoxicity was found to be moderate and virtually independent of the stabilizers' concentration with the exception of the highly quaternized TMC (degree of substitution 66%) being significantly more toxic. In immobilization experiments with gel electrophoresis, it could be shown that these cationic nanoparticles (NP) form stable complexes with DNA at a NP:DNA ratio of 3:1. These nanoplexes showed a significantly higher transfection efficiency on COS-1 cells than naked DNA.
Collapse
Affiliation(s)
- Jochen Haas
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Building 8.1, 66123 Saarbrücken, Germany
| | - M. N. V Ravi Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, 160 062 Punjab, India
| | - Gerrit Borchard
- Division of Pharmaceutical Technology, LACDR, Leiden University, 2300 RA Leiden, The Netherlands
| | - Udo Bakowsky
- Department of Pharmaceutical Technology and Biopharmacy, Philipps University of Marburg, 35032 Marburg, Germany
| | - Claus-Michael Lehr
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Building 8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
43
|
Narang AS, Thoma L, Miller DD, Mahato RI. Cationic lipids with increased DNA binding affinity for nonviral gene transfer in dividing and nondividing cells. Bioconjug Chem 2005; 16:156-68. [PMID: 15656587 DOI: 10.1021/bc049818q] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effect of headgroup structure on catonic lipid-mediated transfection was investigated with either a (i) tertiary amine, (ii) quaternary amine with a hydroxyl, or (iii) quaternary amine with mesylate as headgroups. Liposomes were formulated using cholesterol or dioleoyl phosphatidyl ethanolamine (DOPE) as colipids, and transfection efficiencies were determined in rapidly dividing colon carcinoma (CT 26) and rat aortic smooth muscle (RASM) cells as well as in nondividing human pancreatic islets using luciferase and green fluorescent protein expression plasmids, pcDNA3-Luc and pCMS-EGFP, respectively. Liposome/pDNA complexes were evaluated for DNA conformational state by circular dichroism (CD), DNA condensation by electrophoretic mobility shift assay (EMSA), particle size and zeta potential by laser diffraction technique, and surface morphology by transmission electron microscopy (TEM). Encouraging transfection results were obtained with the mesylate headgroup based lipid in liposome formulations with DOPE as a colipid, which were higher than the commercially available Lipofectamine formulation. We hypothesize that the additional hydrogen bonding or covalent interactions of the headgroup with the plasmid DNA, leading to higher binding affinity of the cationic lipids to pDNA, results in higher transfection. This hypothesis is supported by TEM observations where elongated complexes were observed and more lipid was seen associated with the DNA.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
44
|
Funhoff AM, Monge S, Teeuwen R, Koning GA, Schuurmans-Nieuwenbroek NME, Crommelin DJA, Haddleton DM, Hennink WE, van Nostrum CF. PEG shielded polymeric double-layered micelles for gene delivery. J Control Release 2005; 102:711-24. [PMID: 15681092 DOI: 10.1016/j.jconrel.2004.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
A combination of A-B and B-C block copolymers was used to encapsulate DNA inside pEG coated particles, where A is a cationic block (poly(dimethylaminoethyl methacrylate), pDMAEMA) for DNA binding and condensation, B is a hydrophobic block (poly(butylmethacrylate), pBMA) and C is a polyethylene glycol (pEG) block. The AB and BC block copolymers were synthesized by transition metal mediated radical polymerization. The AB block copolymer had a fixed pBMA molecular weight of 3800 g/mol and a varying pDMAEMA molecular weight (from 22 to 65 kg/mol), the BC block copolymer had a fixed composition (pBMA 9000 g/mol; pEG 2000 g/mol). Plasmid DNA containing particles were made via a detergent dialysis method. By this method, particles of approximately 120 nm, as determined by dynamic light scattering (DLS), with a near neutral charge were formed, independent of the DMAEMA block size. DLS measurements and gel electrophoresis indicated that the particles were very stable in cell culture medium at 37 degrees C and resistant to anionic exchange by poly-l-aspartic acid. The particles were able to transfect COS-7 and OVCAR-3 cells with minor toxicity if incubated for 1 or 4 h; incubation for 24 h resulted in an increased toxicity. This paper shows that small polyplexes with near neutral charge can be obtained via a convenient detergent dialysis method using pDMAEMA-b-pBMA and pBMA-b-pEG. These particles may be interesting for in vivo experiments where particles with high positive charges have adverse interactions with blood components.
Collapse
Affiliation(s)
- Arjen M Funhoff
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pupo E, Padrón A, Santana E, Sotolongo J, Quintana D, Dueñas S, Duarte C, de la Rosa MC, Hardy E. Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique. J Control Release 2005; 104:379-96. [PMID: 15907587 DOI: 10.1016/j.jconrel.2005.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
High-pressure homogenization-extrusion (HPHE) is a method that can be used for downsizing large lipid vesicles with commercially available instrumentation (e.g., from Avestin Inc., Canada), which covers a full range of processing capacities from laboratory (0.5-3.5 mL) to large-scale continuous (1-1000 L/h) production. Consequently, the feasibility (at the laboratory scale) of using HPHE for producing DNA-loaded liposomes by the conventional dehydration-rehydration method was explored. HPHE-generated small unilamellar vesicles had a mean size in the range of 27-76 nm depending on the number of processing cycles and lipid (PC:DOPE:DOTAP or PC:DOPE:Ethyl-DOPC, 1:0.5:0.5, mol/mol) formulation. The size could be further regulated by the pore size (50 or 100 nm) of the extrusion membrane. Using plasmids for the V3 loop of HIV-1, and the capsid, E1 and E2 of hepatitis C, entrapment yields of 72-98.2% into dehydrated-rehydrated vesicles (DRV) were obtained over a wide range (0.309-2.5 mg) of DNA quantities. Most of the plasmid DNA was retained by liposomes even in the presence of sodium dodecyl sulfate (from 0.05% to 0.3%) and efficiently protected from nuclease-mediated degradation. Although the encapsulation process slightly decreased (in the range of 42.8-65.7%) the relative abundance of plasmid super coiled isoforms, the transfection efficiency of monkey kidney COS-7 cells with the plasmid DNA extracted from liposomes (9+/-0.4%) was similar to that of the non-treated DNA (8.7+/-0.2%), using the commercial SuperFect(R) Transfection Reagent. Also, it was found that an appreciable loss of lipid mass-either associated with the HPHE or the dehydration-rehydration steps-occurs during the liposome manufacturing process. These results at the bench scale are a useful reference for planning pilot or large-scale manufacture of DNA vaccine-containing liposomes.
Collapse
Affiliation(s)
- Elder Pupo
- Division of Formulation Development, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu J, Wu GY, Zern MA. The prospects of hepatic drug delivery and gene therapy. Expert Opin Investig Drugs 2005; 7:1795-817. [PMID: 15991930 DOI: 10.1517/13543784.7.11.1795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Liver targeted therapy is designed to deliver a substance preferentially to the organ in order to increase the accumulation, improve the therapeutic effect and reduce toxicity to other organs. The aim of selective targeting is to deliver a substance to a specific cell type in the liver. A variety of vehicles have been designed and further modified for selective targeting of therapeutics to the liver. The targeting properties and strategies of commonly used agents, such as liposomes, microspheres and recombinant chylomicrons, are discussed. Viral and non-viral vectors, such as cationic liposomes, reconstituted chylomicron remnants, adenoviruses, adeno-associated viruses, retroviruses, and SV-40, are currently being evaluated for the delivery of DNA to the liver. New developments in improving the targeting efficiency of the available vectors while avoiding their disadvantages have made their use in clinical trials of various genetic disorders possible. For viral hepatitis, antisense and ribozyme techniques are being employed with selective targeting approaches. A commonly employed current strategy for targeting hepatocellular carcinoma cells is to make the tumour cells convert non-toxic 'prodrugs' to toxic metabolites in situ, achieving a high concentration of the toxic product in the local milieu, while avoiding systemic toxicity. Although gene therapy itself is in its infancy, some encouraging results have been developed in studies of familial hypercholesterolaemia, haemophilia, alpha1-antitrypsin deficiency and Crigler-Najjar syndrome. The potential strengths as well as the problems with these studies are discussed.
Collapse
Affiliation(s)
- J Wu
- Department of Medicine, Division of Gastroenterology & Hepatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-5083, USA.
| | | | | |
Collapse
|
47
|
Ahn CH, Chae SY, Bae YH, Kim SW. Synthesis of biodegradable multi-block copolymers of poly(L-lysine) and poly(ethylene glycol) as a non-viral gene carrier. J Control Release 2005; 97:567-74. [PMID: 15212887 DOI: 10.1016/j.jconrel.2004.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2003] [Accepted: 04/02/2004] [Indexed: 10/26/2022]
Abstract
Biodegradable and non-toxic multi-block copolymers based on poly(L-lysine) and poly(ethylene glycol) were synthesized. Synthesized copolymers showed almost negligible cytotoxicity above 95% cell viability and transfection efficiency compared to the PLL homopolymer with molecular weight of 25,700. Biodegradation under physiological conditions revealed that the molecular weight of copolymers decreased to 20% of the initial molecular weight within 72 h. Transfection efficiencies of copolymers were not affected by the presence of serum, while that of PLL homopolymer decreased to the level of naked DNA in the presence of serum. Based on the results, the new copolymers are believed to be a potentially efficient carrier for the delivery of bioactive agents.
Collapse
Affiliation(s)
- Cheol-Hee Ahn
- School of Materials Science and Engineering, Hyperstructured Organic Materials Research Center, Seoul National University, Seoul 151-742, South Korea.
| | | | | | | |
Collapse
|
48
|
Nishikawa M, Takakura Y, Hashida M. Pharmacokinetics of Plasmid DNA-Based Non-viral Gene Medicine. ADVANCES IN GENETICS 2005; 53PA:47-68. [PMID: 16243060 DOI: 10.1016/s0065-2660(05)53003-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-viral gene therapy can be realized by optimization of the pharmacokinetic properties of both the vector and the encoded therapeutic protein. A major obstacle to its successful clinical application is the limited ability of plasmid DNA, the most convenient gene-coding compound, to distribute within the body after in vivo administration. Under normal conditions, plasmid DNA and its non-viral vector complexes have difficulty in passing through various anatomical and biological barriers. These characteristics greatly limit the number and distribution of cells transduced with the vector, because transgene expression only occurs in cells that are reached by the vector. New approaches to the design of vectors as well as the methods of administration, such as electroporation and a hydrodynamic delivery, have increased the transgene expression in vivo, suggesting that improved distribution of plasmid DNA is possible by these approaches. In this chapter, the basic pharmacokinetic properties of naked plasmid DNA under normal conditions are first reviewed, then the properties of both naked and complexed plasmid DNA are discussed under conditions where significant transgene expression takes place.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism Graduate School of Pharmaceutical Sciences Kyoto University, Sakyo‐ku, Kyoto 606–8501, Japan
| | | | | |
Collapse
|
49
|
Kabanov A, Zhu J, Alakhov V. Pluronic Block Copolymers for Gene Delivery. NON-VIRAL VECTORS FOR GENE THERAPY, SECOND EDITION: PART 1 2005; 53PA:231-261. [PMID: 16243066 DOI: 10.1016/s0065-2660(05)53009-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amphiphilic block copolymers of poly(ethylene oxide) and poly(propylene oxide) called Pluronic or poloxamer are commercially available pharmaceutical excipients. They recently attracted considerable attention in gene delivery applications. First, they were shown to increase the transfection with adenovirus and lentivirus vectors. Second, they were shown to increase expression of genes delivered into cells using non-viral vectors. Third, the conjugates of Pluronic with polycations, were used as DNA-condensing agents to form polyplexes. Finally, it was demonstrated that they can increase regional expression of the naked DNA after its injection in the skeletal and cardiac muscles or tumor. Therefore, there is substantial evidence that Pluronic block copolymers can improve gene expression with different delivery routes and different types of vectors, including naked DNA. These results and possible mechanisms of Pluronic effects are discussed. At least in some cases, Pluronic can act as biological adjuvants by activating selected signaling pathways, such as NF-kappaB, and upregulating the transcription of the genes.
Collapse
Affiliation(s)
- Alexander Kabanov
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center Omaha, Nebraska 68198
| | | | | |
Collapse
|
50
|
Schatzlein AG, Zinselmeyer BH, Elouzi A, Dufes C, Chim YTA, Roberts CJ, Davies MC, Munro A, Gray AI, Uchegbu IF. Preferential liver gene expression with polypropylenimine dendrimers. J Control Release 2005; 101:247-58. [PMID: 15588909 DOI: 10.1016/j.jconrel.2004.08.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Previously, the lower generation (DAB 8-generation 2 and DAB 16-generation 3) polypropylenimine dendrimers have been shown to be effective gene delivery systems in vitro. In the current work, we sought to: (a) test the effect of the strength of the carrier, DNA electrostatic interaction on gene transfer and (b) to study the in vivo gene transfer activity of these low molecular weight (<1687 Da) non-amphiphilic plain and quaternary ammonium gene carriers. Towards this aim, methyl quaternary ammonium derivatives of DAB 4 (generation 1), DAB 8, DAB 16 and DAB 32 (generation 4) were synthesised to give Q4, Q8, Q16 and Q32, respectively. Quaternisation of DAB 8 proved to be critical in improving DNA binding, as evidenced by data from the ethidium bromide exclusion assay and dendrimer-DNA colloidal stability data. This improved colloidal stability had a major effect on vector tolerability, as Q8-DNA formulations were well tolerated on intravenous injection while a similar DAB 8-DNA dose was lethally toxic by the same route. Quaternisation also improved the in vitro cell biocompatibility of DAB 16-DNA and DAB 32-DNA dendrimer complexes by about 4-fold but not that of the lower generation DAB 4-DNA and DAB 8-DNA formulations. In contrast to previous reports with non-viral gene delivery systems, the intravenous administration of DAB 16-DNA and Q8-DNA formulations resulted in liver targeted gene expression as opposed to the lung targeted gene expression obtained with the control polymer-Exgen 500 [linear poly(ethylenimine)] and a lung avoidance hypothesis is postulated. We conclude that the polypropylenimine dendrimers are promising gene delivery systems which may be used to target the liver and avoid the lung and also that molecular modifications conferring colloidal stability on gene delivery formulations have a profound effect on their tolerability on intravenous administration.
Collapse
Affiliation(s)
- Andreas G Schatzlein
- Department of Medical Oncology, Cancer Research UK Beatson Laboratory, University of Glasgow, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|