1
|
Fernández A, Martillanes S, Lodolini EM, Martínez M, Arias-Calderón R, Martín-Vertedor D. Effect of elaboration process, crop year and irrigation on acrylamide levels of potential table olive varieties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7580-7589. [PMID: 37483099 DOI: 10.1002/jsfa.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/24/2023] [Accepted: 07/22/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Table olives are widely consumed in the Mediterranean diet, and several typical Spanish and Portuguese varieties could potentially be used as such. In order to ensure a good-quality product, the effect of different factors such as elaboration processes, irrigation conditions, crop year and their crossover interaction on acrylamide content and antioxidant compounds needs to be deeply studied. RESULTS When looking through irrigation, regulated deficit irrigation (RDI) presented lower acrylamide levels than rainfed conditions for 'Cordovil de Elvas', 'Picual' and 'Verdeal Alentejana'. No significant interactions were found between the type of irrigation and elaboration style for 'Arbequina' and 'Koroneiki' varieties. Although RDI had the largest concentration of total phenols, antioxidant activity was also the highest. The table olives harvested in the crop year of 2019 showed lower levels of acrylamide due to a significant relationship between the crop year and irrigation conditions. CONCLUSIONS Novel varieties to be marketed should be taken into consideration for table olive elaboration. The impact of the crop year on the bioactive value of table olives and crossover interactions relies strongly in climatological conditions. Last but not least, the benefit of selecting the best irrigation and elaboration methods is crucial to ensure desirable acrylamide levels. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonio Fernández
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Badajoz, Spain
| | - Sara Martillanes
- MED - Mediterranean Institute for Agriculture, Environment and Development & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
- Departamento de Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Badajoz, Spain
| | - Enrico Maria Lodolini
- Research Centre for Olive, Fruit and Citrus Crop, Council for Agricultural Research and Economics, Rome, Italy
| | - Manuel Martínez
- Departamento de Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Badajoz, Spain
- Research Institute of Agricultural Resources (INURA), Campus Universitario, Badajoz, Spain
| | | | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Badajoz, Spain
- Research Institute of Agricultural Resources (INURA), Campus Universitario, Badajoz, Spain
| |
Collapse
|
2
|
Combining Zeolites with Early-Maturing Annual Legume Cover Crops in Rainfed Orchards: Effects on Yield, Fatty Acid Composition and Polyphenolic Profile of Olives and Olive Oil. Molecules 2023; 28:molecules28062545. [PMID: 36985518 PMCID: PMC10054706 DOI: 10.3390/molecules28062545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Under climate change threats, there is a growing need to adapt the conventional agronomic practices used in rainfed olive orchards by sustainable practices, in order to ensure adequate crop yield and olive oil quality and to preserve soil health. Therefore, for two years, the effects of conventional tillage practice (T) and two sustainable soil management strategies, a leguminous cover crop (LC) and its combination with natural zeolites (ZL), on the yield, fatty acid composition, polyphenolic profile and quality indices of olive fruits and oil were evaluated. Crop yield was significantly increased by LC and ZL in the first year. Although in the second year no significant differences were verified, the cumulative yield increased significantly by 31.6% and 35.5% in LC and ZL trees, respectively. LC enhanced the moisture and size of olives, while ZL increased, in general, the concentrations of oleuropein, verbascoside, caffeic acid and epicatechin, as well the oleic/linoleic ratio in fruits and the levels of 3,4-dihydroxyphenylglycol, tyrosol, verbascoside and caffeic acid in olive oil. Despite the higher concentration of total phenols in the fruits and oil from T trees in the warmer and dryer year, the quality of the oil decreased, mainly when compared with ZL, as evidenced by the peroxide value and K232 and K270 coefficients. In short, both sustainable soil management strategies appear to be promising practices to implement in olive orchards under rainfed conditions, but the innovative strategy of combining zeolites with legume cover crops, first reported in the present study, confers advantages from a nutritional and technological point of view. Nevertheless, studies subjected to the long-term use of these practices should be conducted to ensure the sustainability of the crop yield and olive oil quality.
Collapse
|
3
|
Cirillo A, Graziani G, De Luca L, Cepparulo M, Ritieni A, Romano R, Di Vaio C. Minor Variety of Campania Olive Germplasm ("Racioppella"): Effects of Kaolin on Production and Bioactive Components of Drupes and Oil. PLANTS (BASEL, SWITZERLAND) 2023; 12:1259. [PMID: 36986947 PMCID: PMC10054000 DOI: 10.3390/plants12061259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The effects of climate change have a great impact on the Mediterranean regions which are experiencing an increase in drought periods with extreme temperatures. Among the various solutions reported to reduce the damage caused by extreme environmental conditions on olive plants, the application of anti-transpirant products is widespread. In an increasingly current scenario of climate change, this study was designed to evaluate the effect of kaolin on the quantitative and qualitative parameters of drupes and oil in a little-known olive cultivar known as "Racioppella", belonging to the autochthonous germplasm of Campania (Southern Italy). To this purpose, the determination of maturation index, olive yield/plant, and bioactive components analysis (anthocyanins, carotenoids, total polyphenols, antioxidant activity, and fatty acids) were carried out. Kaolin applications showed no statistically significant differences in terms of production/plant while a significant increase in the drupe oil content was observed. Kaolin treatments resulted in increased anthocyanins (+24%) and total polyphenols (+60%) content and at the same time a significant increase in the antioxidant activity (+41%) of drupes was recorded. As far as oil is concerned, the results showed an increase in monounsaturated fatty acids, oleic and linoleic acids, and total polyphenols (+11%). On the basis of the results obtained, we can conclude that kaolin treatment can be considered as a sustainable solution to improve qualitative parameters in olive drupes and oil.
Collapse
Affiliation(s)
- Aurora Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Marco Cepparulo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Claudio Di Vaio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
4
|
Perez‐Arcoiza A, Luisa Hernández M, Dolores Sicardo M, Hernandez‐Santana V, Diaz‐Espejo A, Martinez‐Rivas JM. Carbon supply and water status regulate fatty acid and triacylglycerol biosynthesis at transcriptional level in the olive mesocarp. PLANT, CELL & ENVIRONMENT 2022; 45:2366-2380. [PMID: 35538021 PMCID: PMC9545970 DOI: 10.1111/pce.14340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/14/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The relative contribution of carbon sources generated from leaves and fruits photosynthesis for triacylglycerol biosynthesis in the olive mesocarp and their interaction with water stress was investigated. With this aim, altered carbon source treatments were combined with different irrigation conditions. A higher decrease in mesocarp oil content was observed in fruits under girdled and defoliated shoot treatment compared to darkened fruit conditions, indicating that both leaf and fruit photosynthesis participate in carbon supply for oil biosynthesis being leaves the main source. The carbon supply and water status affected oil synthesis in the mesocarp, regulating the expression of DGAT and PDAT genes and implicating DGAT1-1, DGAT2, PDAT1-1, and PDAT1-2 as the principal genes responsible for triacylglycerol biosynthesis. A major role was indicated for DGAT2 and PDAT1-2 in well-watered conditions. Moreover, polyunsaturated fatty acid content together with FAD2-1, FAD2-2 and FAD7-1 expression levels were augmented in response to modified carbon supply in the olive mesocarp. Furthermore, water stress caused an increase in DGAT1-1, DGAT1-2, PDAT1-1, and FAD2-5 gene transcript levels. Overall, these data indicate that oil content and fatty acid composition in olive fruit mesocarp are regulated by carbon supply and water status, affecting the transcription of key genes in both metabolic pathways.
Collapse
Affiliation(s)
- Adrián Perez‐Arcoiza
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC)SevilleSpain
| | - M. Luisa Hernández
- Department of Biochemistry and Molecular Biology of Plant ProductsInstituto de la Grasa (IG‐CSIC)SevilleSpain
- Present address:
Department of Plant Biochemistry and Molecular Biology, Institute of Plant Biochemistry and PhotosynthesisUniversity of Seville‐CSICSevilleSpain
| | - M. Dolores Sicardo
- Department of Biochemistry and Molecular Biology of Plant ProductsInstituto de la Grasa (IG‐CSIC)SevilleSpain
| | - Virginia Hernandez‐Santana
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC)SevilleSpain
- Laboratory of Plant Molecular EcophysiologyInstituto de Recursos Naturales y Agrobiología (IRNAS, CSIC)SevilleSpain
| | - Antonio Diaz‐Espejo
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC)SevilleSpain
- Laboratory of Plant Molecular EcophysiologyInstituto de Recursos Naturales y Agrobiología (IRNAS, CSIC)SevilleSpain
| | - José M. Martinez‐Rivas
- Department of Biochemistry and Molecular Biology of Plant ProductsInstituto de la Grasa (IG‐CSIC)SevilleSpain
| |
Collapse
|
5
|
Martín-Vertedor D, Fernández A, Mesías M, Martínez M, Martín-Tornero E. Identification of mitigation strategies to reduce acrylamide levels during the production of black olives. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Romero H, Pott DM, Vallarino JG, Osorio S. Metabolomics-Based Evaluation of Crop Quality Changes as a Consequence of Climate Change. Metabolites 2021; 11:461. [PMID: 34357355 PMCID: PMC8303867 DOI: 10.3390/metabo11070461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022] Open
Abstract
Fruit composition determines the fruit quality and, consequently, consumer acceptance. As fruit quality can be modified by environmental conditions, it will be impacted by future alterations produced by global warming. Therefore, agricultural activities will be influenced by the changes in climatological conditions in cultivable areas, which could have a high socioeconomic impact if fruit production and quality decline. Currently, different stresses are being applied to several cultivated species to evaluate their impact on fruit metabolism and plant performance. With the use of metabolomic tools, these changes can be precisely measured, allowing us to determine changes in the patterns of individual compounds. As these changes depend on both the stress severity and the specific species involved and even on the specific cultivar, individual analysis must be conducted. To date, the most-studied crops have mainly been crops that are widely cultivated and have a high socioeconomic impact. In the near future, with the development of these metabolomic strategies, their implementation will be extended to other species, which will allow the adaptation of cultivation conditions and the development of varieties with high adaptability to climatological changes.
Collapse
Affiliation(s)
- Helena Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain; (H.R.); (D.M.P.)
| | - Delphine M. Pott
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain; (H.R.); (D.M.P.)
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Malaga, Spain;
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain; (H.R.); (D.M.P.)
| |
Collapse
|
7
|
Araújo M, Prada J, Mariz-Ponte N, Santos C, Pereira JA, Pinto DCGA, Silva AMS, Dias MC. Antioxidant Adjustments of Olive Trees ( Olea Europaea) under Field Stress Conditions. PLANTS 2021; 10:plants10040684. [PMID: 33916326 PMCID: PMC8066335 DOI: 10.3390/plants10040684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023]
Abstract
Extreme climate events are increasingly frequent, and the 2017 summer was particularly critical in the Mediterranean region. Olive is one of the most important species of this region, and these climatic events represent a threat to this culture. However, it remains unclear how olive trees adjust the antioxidant enzymatic system and modulate the metabolite profile under field stress conditions. Leaves from two distinct adjacent areas of an olive orchard, one dry and the other hydrated, were harvested. Tree water status, oxidative stress, antioxidant enzymes, and phenolic and lipophilic metabolite profiles were analyzed. The environmental conditions of the 2017 summer caused a water deficit in olive trees of the dry area, and this low leaf water availability was correlated with the reduction of long-chain alkanes and fatty acids. Hydrogen peroxide (H2O2) and superoxide radical (O2•–) levels increased in the trees collected from the dry area, but lipid peroxidation did not augment. The antioxidant response was predominantly marked by guaiacol peroxidase (GPOX) activity that regulates the H2O2 harmful effect and by the action of flavonoids (luteolin-7-O-glucuronide) that may act as reactive oxygen species scavengers. Secoiridoids adjustments may also contribute to stress regulation. This work highlights for the first time the protective role of some metabolite in olive trees under field drought conditions.
Collapse
Affiliation(s)
- Márcia Araújo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
- Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - João Prada
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - Nuno Mariz-Ponte
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - Conceição Santos
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
- Correspondence: ; Tel.: +351-239-240-752
| |
Collapse
|
8
|
Hernández ML, Moretti S, Sicardo MD, García Ú, Pérez A, Sebastiani L, Martínez-Rivas JM. Distinct Physiological Roles of Three Phospholipid:Diacylglycerol Acyltransferase Genes in Olive Fruit with Respect to Oil Accumulation and the Response to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:751959. [PMID: 34868139 PMCID: PMC8632719 DOI: 10.3389/fpls.2021.751959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 05/13/2023]
Abstract
Three different cDNA sequences, designated OepPDAT1-1, OepPDAT1-2, and OepPDAT2, encoding three phospholipid:diacylglycerol acyltransferases (PDAT) have been isolated from olive (Olea europaea cv. Picual). Sequence analysis showed the distinctive features typical of the PDAT family and together with phylogenetic analysis indicated that they encode PDAT. Gene expression analysis in different olive tissues showed that transcript levels of these three PDAT genes are spatially and temporally regulated and suggested that, in addition to acyl-CoA:diacylglycerol acyltransferase, OePDAT1-1 may contribute to the biosynthesis of triacylglycerols in the seed, whereas OePDAT1-2 could be involved in the triacylglycerols content in the mesocarp and, therefore, in the olive oil. The relative contribution of PDAT and acyl-CoA:diacylglycerol acyltransferase enzymes to the triacylglycerols content in olive appears to be tissue-dependent. Furthermore, water regime, temperature, light, and wounding regulate PDAT genes at transcriptional level in the olive fruit mesocarp, indicating that PDAT could be involved in the response to abiotic stresses. Altogether, this study represents an advance in our knowledge on the regulation of oil accumulation in oil fruit.
Collapse
Affiliation(s)
- M. Luisa Hernández
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
| | - Samuele Moretti
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - M. Dolores Sicardo
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
| | - Úrsula García
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
| | - Ana Pérez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
| | - Luca Sebastiani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - José M. Martínez-Rivas
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
- *Correspondence: José M. Martínez-Rivas,
| |
Collapse
|
9
|
Industrial Strategies to Reduce Acrylamide Formation in Californian-Style Green Ripe Olives. Foods 2020; 9:foods9091202. [PMID: 32878306 PMCID: PMC7555664 DOI: 10.3390/foods9091202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
Acrylamide, a compound identified as a probable carcinogen, is generated during the sterilization phase employed during the processing of Californian-style green ripe olives. It is possible to reduce the content of this toxic compound by applying different strategies during the processing of green ripe olives. The influence of different processing conditions on acrylamide content was studied in three olives varieties (“Manzanilla de Sevilla”, “Hojiblanca”, and “Manzanilla Cacereña”). Olives harvested during the yellow–green stage presented higher acrylamide concentrations than green olives. A significant reduction in acrylamide content was observed when olives were washed with water at 25 °C for 45 min (25% reduction) and for 2 h (45% reduction) prior to lye treatment. Stone olives had 21–26% higher acrylamide levels than pitted olives and 42–50% higher levels than sliced olives in the three studied varieties. When calcium chloride (CaCl2) was added to the brine and brine sodium chloride (NaCl) increased from 2% to 4%, olives presented higher concentrations of this contaminant. The addition of additives did not affect acrylamide levels when olives were canned without brine. Results from this study are very useful for the table olive industry to identify critical points in the production of Californian-style green ripe olives, thus, helping to control acrylamide formation in this foodstuff.
Collapse
|
10
|
Hyperspectral Reflectance as a Basis to Discriminate Olive Varieties—A Tool for Sustainable Crop Management. SUSTAINABILITY 2020. [DOI: 10.3390/su12073059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Worldwide sustainable development is threatened by current agricultural land change trends, particularly by the increasing rural farmland abandonment and agricultural intensification phenomena. In Mediterranean countries, these processes are affecting especially traditional olive groves with enormous socio-economic costs to rural areas, endangering environmental sustainability and biodiversity. Traditional olive groves abandonment and intensification are clearly related to the reduction of olive oil production income, leading to reduced economic viability. Most promising strategies to boost traditional groves competitiveness—such as olive oil differentiation through adoption of protected denomination of origin labels and development of value-added olive products—rely on knowledge of the olive varieties and its specific properties that confer their uniqueness and authenticity. Given the lack of information about olive varieties on traditional groves, a feasible and inexpensive method of variety identification is required. We analyzed leaf spectral information of ten Portuguese olive varieties with a powerful data-mining approach in order to verify the ability of satellite’s hyperspectral sensors to provide an accurate olive variety identification. Our results show that these olive varieties are distinguishable by leaf reflectance information and suggest that even satellite open-source data could be used to map them. Additional advantages of olive varieties mapping were further discussed.
Collapse
|