1
|
Ferrández-Gómez B, Jordá JD, Cerdán M, Sánchez-Sánchez A. Enhancing Salt Stress Tolerance in Tomato ( Solanum lycopersicum L.) through Silicon Application in Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1415. [PMID: 38794485 PMCID: PMC11125711 DOI: 10.3390/plants13101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Soil salinization poses a significant threat to agricultural productivity, necessitating innovative agronomic strategies to mitigate its impact. This study focuses on improving salt stress resistance in tomato plants through the application of silicon (Si) in roots. A greenhouse experiment was carried out under normal conditions (control, and 1 and 4 mM Si) and under salinity stress (salt control, and 1 and 4 mM Si). Various parameters were analyzed in leaves and roots. Under normal conditions, tomato plants grown in non-saline conditions exhibited some toxicity when exposed to Na2SiO3. As for the experiments under salt stress conditions, Si mitigated oxidative damage, preserving root cell membrane integrity. The concentration of malondialdehyde was reduced by 69.5%, that of proline was reduced by 56.4% and there was a 57.6% decrease in catalase activity for tomato plants treated with 1 mM Si under salt stress. Furthermore, Fe uptake and distribution, under salt conditions, increased from 91 to 123 mg kg-1, the same concentration as that obtained for the normal control. In all cases, the lower dose produced better results under normal conditions than the 4 mM dose. In summary, this research provides a potential application of Si in non-fertigated crop systems through a radicular pathway.
Collapse
Affiliation(s)
- Borja Ferrández-Gómez
- Department of Biochemistry and Molecular Biology, Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain; (B.F.-G.); (J.D.J.); (M.C.)
| | - Juana D. Jordá
- Department of Biochemistry and Molecular Biology, Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain; (B.F.-G.); (J.D.J.); (M.C.)
- Institute for Environmental Studies Ramon Margalef, University of Alicante, 03690 Alicante, Spain
| | - Mar Cerdán
- Department of Biochemistry and Molecular Biology, Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain; (B.F.-G.); (J.D.J.); (M.C.)
| | - Antonio Sánchez-Sánchez
- Department of Biochemistry and Molecular Biology, Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain; (B.F.-G.); (J.D.J.); (M.C.)
| |
Collapse
|
2
|
Rady MS, Ghoneim IM, Feleafel MN, Hassan SM. Potassium silicate and vinasse enhance biometric characteristics of perennial sweet pepper (Capsicum annuum) under greenhouse conditions. Sci Rep 2024; 14:11248. [PMID: 38755228 PMCID: PMC11099072 DOI: 10.1038/s41598-024-61454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
An effective strategy for enhancing fruit production continuity during extended sweet pepper season involves adopting innovative biostimulants such as potassium silicate (PS) and vinasse. Adjusting PS and vinasse concentrations are crucial for maintaining the balance between vegetative and fruit growth, particularly in sweet pepper with a shallow root system, to sustain fruiting over prolonged season. However, the interaction between PS and vinasse and the underlying physiological mechanisms that extend the sweet pepper season under greenhouse conditions remain unclear. This study aimed to investigate the impact of PS and vinasse treatments on the yield and biochemical constituents of perennial pepper plants cultivated under greenhouse conditions. For two consecutive seasons [2018/2019 and 2019/2020], pepper plants were sprayed with PS (0, 0.5, and 1 g/l) and drenched with vinasse (0, 1, 2, and 3 l/m3). To estimate the impact of PS and vinasse on the growth, yield, and biochemical constituents of pepper plants, fresh and dry biomass, potential fruit yield, and some biochemical constituents were evaluated. Results revealed that PS (0.5 g/l) coupled with vinasse (3 l/m3) generated the most remarkable enhancement, in terms of plant biomass, total leaf area, total yield, and fruit weight during both growing seasons. The implementation of vinasse at 3 l/m3 with PS at 0.5 and 1 g/l demonstrated the most pronounced augmentation in leaf contents (chlorophyll index, nitrogen and potassium), alongside improved fruit quality, including total soluble solid and ascorbic acid contents, of extended sweet pepper season. By implementing the optimal combination of PS and vinasse, growers can significantly enhance the biomass production while maintaining a balance in fruiting, thereby maximizing the prolonged fruit production of superior sweet pepper under greenhouse conditions.
Collapse
Affiliation(s)
- Mahmoud S Rady
- Department of Vegetable Crops, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
- Plant and Environmental Sciences Department, Coastal Research and Education Center, Clemson University, Charleston, SC, 29414, USA.
| | - Ibrahim M Ghoneim
- Department of Vegetable Crops, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mostafa N Feleafel
- Department of Vegetable Crops, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Shimaa M Hassan
- Department of Vegetable Crops, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| |
Collapse
|
3
|
Amirfakhrian Z, Abdossi V, Mohammadi Torkashvand A, Weisany W, Ghanbari Jahromi M. Co-applied magnesium nanoparticles and biochar modulate salinity stress via regulating yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31806-31817. [PMID: 38637482 DOI: 10.1007/s11356-024-33329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
While previous studies have addressed the desirable effects of biochar (BC) or magnesium nanoparticles (Mg NPs) on salinity stress individually, there is a research gap regarding their simultaneous application. Additionally, the specific mechanisms underlying the effects of BC and Mg NPs on salinity in Physalis alkekengi L. remain unclear. This study aimed to investigate the synergistic effects of BC and Mg NPs on P. alkekengi L. under salinity stress conditions. A pot experiment was conducted with salinity at 100 and 200 mM sodium chloride (NaCl), as well as soil applied BC (4% v/v) and foliar applied Mg NPs (500 mg L-1) on physiological and biochemical properties of P. alkekengi L. The results represented that salinity, particularly 200 mM NaCl, significantly reduced plant yield (58%) and total chlorophyll (Chl, 36%), but increased superoxide dismutase (SOD, 82%) and catalase (CAT, 159%) activity relative to non-saline conditions. However, the co-application of BC and Mg NPs mitigated these negative effects and improved fruit yield, Chl, anthocyanin, and ascorbic acid. It also decreased the activity of antioxidant enzymes. Salinity also altered the fatty acid composition, increasing saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs), while decreasing monounsaturated fatty acids (MUFAs). The heat map analysis showed that fruit yield, anthocyanin, Chl, and CAT were sensitive to salinity. The findings can provide insights into the possibility of these amendments as sustainable strategies to mitigate salt stress and enhance plant productivity in affected areas.
Collapse
Affiliation(s)
- Zahra Amirfakhrian
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Abdossi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Weria Weisany
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Kabadayı SN, Sadiq NB, Hamayun M, Park NI, Kim HY. Impact of Sodium Silicate Supplemented, IR-Treated Panax Ginseng on Extraction Optimization for Enhanced Anti-Tyrosinase and Antioxidant Activity: A Response Surface Methodology (RSM) Approach. Antioxidants (Basel) 2023; 13:54. [PMID: 38247479 PMCID: PMC10812770 DOI: 10.3390/antiox13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Ginseng has long been widely used for its therapeutic potential. In our current study, we investigated the impact of abiotic stress induced by infrared (IR) radiations and sodium silicate on the upregulation of antioxidant and anti-tyrosinase levels, as well as the total phenolic and total flavonoid contents of the Korean ginseng (Panax ginseng C.A. Meyer) variety Yeonpoong. The RSM-based design was used to optimize ultrasonic-assisted extraction time (1-3 h) and temperature (40-60 °C) for better anti-tyrosinase activity and improved antioxidant potential. The optimal extraction results were obtained with a one-hour extraction time, at a temperature of 40 °C, and with a 1.0 mM sodium silicate treatment. We recorded maximum anti-tyrosinase (53.69%) and antioxidant (40.39%) activities when RSM conditions were kept at 875.2 mg GAE/100 g TPC, and 3219.58 mg catechin/100 g. When 1.0 mM sodium silicate was added to the media and extracted at 40 °C for 1 h, the highest total ginsenoside content (368.09 mg/g) was recorded, with variations in individual ginsenosides. Ginsenosides Rb1, Rd, and F2 were significantly affected by extraction temperature, while Rb2 and Rc were influenced by the sodium silicate concentration. Moreover, ginsenoside F2 increased with the sodium silicate treatment, while the Rg3-S content decreased. Interestingly, higher temperatures favored greater ginsenoside diversity while sodium silicate impacted PPD-type ginsenosides. It was observed that the actual experimental values closely matched the predicted values, and this agreement was statistically significant at a 95% confidence level. Our findings suggest that the application of IR irradiation in hydroponic systems can help to improve the quality of ginseng sprouts when supplemented with sodium silicate in hydroponic media. Optimized extraction conditions using ultrasonication can be helpful in improving antioxidant and anti-tyrosinase activity.
Collapse
Affiliation(s)
- Seda Nur Kabadayı
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
| | - Nooruddin Bin Sadiq
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Abdi MJ, Ghanbari Jahromi M, Mortazavi SN, Kalateh Jari S, Nazarideljou MJ. Foliar-applied silicon and selenium nanoparticles modulated salinity stress through modifying yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100513-100525. [PMID: 37632614 DOI: 10.1007/s11356-023-29450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Soil salinity is a major environmental problem owing to its negative impact on agricultural productivity and sustainability. Nanoparticles (NPs) have recently been highlighted for their ability to alleviate salinity stress. The current study aimed to alleviate salt stress by using silicon (Si) and selenium (Se) NPs on the growth and physiological attributes of Physalis alkekengi L. Plants were irrigated with saline water at 50, 100, and 200 mM NaCl, and Si NPs (200 mg L-1) and Se NPs (50 mg L-1) were sprayed on leaves three times in a pot experiment in 2022. Leaf chlorophyll (Chl) content, antioxidant capacity, and fatty acid (FA) profile of fruits were measured to find the effects of NPs and salinity in the plants. Salinity at 50 mM did not significantly differ from the control, but at 100-200 mM, salt stress had a substantial impact on the majority of traits. Compared with non-saline conditions, 200 mM NaCl led to decreases in shoot weight (40%), fruit weight (30%), Chl a (30%), Chl b (39%), anthocyanin (31%), ascorbic acid (16%), total phenolic content (TPC, 11%) but increases in total soluble solids (TSS, 79%), titration acidity (TA, 17%), and TSS/TA (52%) in plants without spraying the NPs. However, Si and Se NPs modulated salinity stress by increasing shoot and fruit weight, Chl content, anthocyanin, and TPC, and with decreasing TSS and TSS/TA. Salinity elevated polyunsaturated fatty acids (PUFAs) and lowered monounsaturated fatty acids (MUFAs). According to multivariate analysis, 50 mM and control were found to be in the same cluster, whereas 100 and 200 mM were shown to be in different clusters. Foliar application of Si and Se NPs at 200 and 50 mg L-1, respectively, can be recommended for mitigating salt stress at 100-200 mM NaCl in P. alkekengi L. Plants. Farmers can use the findings to increase the ability of Si and Se NPs to protect plants against salt.
Collapse
Affiliation(s)
- Mohammad Javad Abdi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sepideh Kalateh Jari
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
6
|
Roșca M, Mihalache G, Stoleru V. Tomato responses to salinity stress: From morphological traits to genetic changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1118383. [PMID: 36909434 PMCID: PMC10000760 DOI: 10.3389/fpls.2023.1118383] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Tomato is an essential annual crop providing human food worldwide. It is estimated that by the year 2050 more than 50% of the arable land will become saline and, in this respect, in recent years, researchers have focused their attention on studying how tomato plants behave under various saline conditions. Plenty of research papers are available regarding the effects of salinity on tomato plant growth and development, that provide information on the behavior of different cultivars under various salt concentrations, or experimental protocols analyzing various parameters. This review gives a synthetic insight of the recent scientific advances relevant into the effects of salinity on the morphological, physiological, biochemical, yield, fruit quality parameters, and on gene expression of tomato plants. Notably, the works that assessed the salinity effects on tomatoes were firstly identified in Scopus, PubMed, and Web of Science databases, followed by their sifter according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline and with an emphasis on their results. The assessment of the selected studies pointed out that salinity is one of the factors significantly affecting tomato growth in all stages of plant development. Therefore, more research to find solutions to increase the tolerance of tomato plants to salinity stress is needed. Furthermore, the findings reported in this review are helpful to select, and apply appropriate cropping practices to sustain tomato market demand in a scenario of increasing salinity in arable lands due to soil water deficit, use of low-quality water in farming and intensive agronomic practices.
Collapse
|
7
|
El Moukhtari A, Carol P, Mouradi M, Savoure A, Farissi M. Silicon improves physiological, biochemical, and morphological adaptations of alfalfa (Medicago sativa L.) during salinity stress. Symbiosis 2021. [DOI: 10.1007/s13199-021-00814-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Karagiannis E, Michailidis M, Skodra C, Molassiotis A, Tanou G. Silicon influenced ripening metabolism and improved fruit quality traits in apples. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:270-277. [PMID: 34130037 DOI: 10.1016/j.plaphy.2021.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The benefits of silicon against abiotic stress in different annual plant species have been described in many studies, however the regulation of ripening of fruit tree crops by silicon remains largely uncharacterized. Therefore, the present study aimed to explore the impact of foliar silicon application in the apple (cv. 'Fuji') fruit ripening traits along with the effect of silicon in the nutrient and metabolic changes in the fully expanded leaves, annual shoots, fruit outer pericarp (peel) and fruit mesocarp (skin) tissues. Data indicated that fruit firmness and apple peel color attributes, such as redness (a*) and percentage of red-blushed surface were induced by silicon application. Moreover, several fruit ripening traits, such as titratable acidity, soluble solid content and respiration rate were unaffected by silicon. Endogenous silicon level in leaves shoots and peel tissues were increased by exogenously applied silicon while several elements (i.e., P, Mg, Mn, Fe and Cu) were altered in the tested tissues that exposed to silicon. In addition, silicon increased the accumulation of total phenolic and total anthocyanin compounds in the various apple tissues. The level of various primary metabolites including sorbitol, fructose, maltose cellobiose, malic acid, phosphoric acid and gluconic acid was also notably affected by silicon in a tissue-specific manner. Overall, this study provides a valuable resource for future research, aiming in the elucidation of the role of silicon in fruit tree physiology.
Collapse
Affiliation(s)
- Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001, Thessaloniki, Greece.
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001, Thessaloniki, Greece.
| | - Christina Skodra
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001, Thessaloniki, Greece.
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001, Thessaloniki, Greece.
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DEMETER, Thessaloniki, 57001, Greece.
| |
Collapse
|
9
|
Traversari S, Pistelli L, Del Ministro B, Cacini S, Costamagna G, Ginepro M, Marchioni I, Orlandini A, Massa D. Combined effect of silicon and non-thermal plasma treatments on yield, mineral content, and nutraceutical proprieties of edible flowers of Begonia cucullata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1014-1021. [PMID: 34273738 DOI: 10.1016/j.plaphy.2021.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/21/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Edible flowers are becoming popular as a nutraceutical and functional food that can contribute to human nutrition with high antioxidant molecules and mineral elements. While comparative studies between different flower species have been performed, less is known about the best agronomical practices to increase yield and nutraceutical proprieties of blooms. Silicon stimulates plant resistance against stress and promotes plant growth while non-thermal plasma (NTP) technology has been applied for the disinfection and decontamination of water, as well as for increasing plant production and quality. The application of silicon and NTP technology through nutrient solution and spraying was investigated in edible flowers given that the combination of these treatments may play a role in promoting their nutritional and nutraceutical proprieties. The treatments were applied on two varieties of Begonia cucullata Willd. (white and red flowers) to explore their effects on different flower pigmentations. Plants with red flowers showed higher nutraceutical proprieties than the white ones but yielded a lower flower number. While the NTP treatment did not improve flower yield and quality, the silicon treatment increased anthocyanins and dry weight percentage in red flowers. NTP treatment increased zinc concentration, while it decreased potassium, magnesium, and manganese, and increased silicon concentration in white flowers. The combination of silicon and NTP showed negative effects on some nutraceutical proprieties of red flowers thus highlighting that the two treatments cannot be combined in edible flower production. In conclusion, the positive effect of silicon use in edible flower production has been demonstrated while the NTP technology showed contrasting results and its use should be explored in greater depth, including a consideration of its role in biotic attack prevention and reduced chemical input.
Collapse
Affiliation(s)
- Silvia Traversari
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51017, Pescia (PT), Italy.
| | - Laura Pistelli
- Department of Agriculture, Food and Agro-environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Bianca Del Ministro
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51017, Pescia (PT), Italy
| | - Sonia Cacini
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51017, Pescia (PT), Italy
| | - Giulia Costamagna
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Marco Ginepro
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Ilaria Marchioni
- Department of Agriculture, Food and Agro-environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alessandro Orlandini
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51017, Pescia (PT), Italy
| | - Daniele Massa
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51017, Pescia (PT), Italy
| |
Collapse
|
10
|
Das P, Manna I, Sil P, Bandyopadhyay M, Biswas AK. Silicon augments salt tolerance through modulation of polyamine and GABA metabolism in two indica rice (Oryza sativa L.) cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:41-52. [PMID: 34090120 DOI: 10.1016/j.plaphy.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/19/2021] [Indexed: 05/20/2023]
Abstract
Polyamines (PA) have multifarious roles in plant-environment interaction and stress responses. In conjunction with GABA shunt, they regulate induction of tolerance under salinity stress in plants. Here, we tested the hypothesis that silicon improves salt tolerance through mediating vital metabolic pathways rather than acting as a mere mechanical barrier. Seedlings of two rice (Oryza sativa L.) cultivars MTU 1010 (salt-sensitive) & Nonabokra (salt-tolerant) growing in hydroponic culture were treated with NaCl (0, 25, 50 & 100 mM) combined with or without Si (2 mM). NaCl stress enhanced PA synthesizing enzymes activity and PA production in salt tolerant cultivar Nonabokra, whereas in the sensitive cultivar, MTU 1010 both declined. Enhanced activities of GABA synthesizing enzymes along with a decline in the activities of GABA degrading enzymes under NaCl exposure led to GABA accumulation in both the cultivars. The interactive effects of silicon and NaCl also induced the activities of the enzymes related to polyamine biosynthesis and inhibited polyamine degrading enzymes that enhanced PA contents in the cultivars. Supplemental Si decreased endogenous GABA levels by modulating GABA metabolising enzymes under NaCl stress. On the basis of all tested parameters cv. MTU 1010 was proven to be more responsive towards silicon application than cv. Nonabokra. Such study of silicon-induced polyamine accretion and reduced GABA accumulation may lower oxidative damage in rice cultivars under NaCl stress and thereby form a successful strategy to boost tolerance.
Collapse
Affiliation(s)
- Prabal Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Palin Sil
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
11
|
Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int J Mol Sci 2021; 22:ijms22179326. [PMID: 34502233 PMCID: PMC8430727 DOI: 10.3390/ijms22179326] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
- Correspondence: (M.H.); (M.F.)
| | - Md. Rakib Hossain Raihan
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Abdul Awal Chowdhury Masud
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Khussboo Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Mira Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Japan
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
12
|
Bokor B, Santos CS, Kostoláni D, Machado J, da Silva MN, Carvalho SMP, Vaculík M, Vasconcelos MW. Mitigation of climate change and environmental hazards in plants: Potential role of the beneficial metalloid silicon. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126193. [PMID: 34492957 DOI: 10.1016/j.jhazmat.2021.126193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/06/2020] [Accepted: 05/20/2021] [Indexed: 05/25/2023]
Abstract
In the last decades, the concentration of atmospheric CO2 and the average temperature have been increasing, and this trend is expected to become more severe in the near future. Additionally, environmental stresses including drought, salinity, UV-radiation, heavy metals, and toxic elements exposure represent a threat for ecosystems and agriculture. Climate and environmental changes negatively affect plant growth, biomass and yield production, and also enhance plant susceptibility to pests and diseases. Silicon (Si), as a beneficial element for plants, is involved in plant tolerance and/or resistance to various abiotic and biotic stresses. The beneficial role of Si has been shown in various plant species and its accumulation relies on the root's uptake capacity. However, Si uptake in plants depends on many biogeochemical factors that may be substantially altered in the future, affecting its functional role in plant protection. At present, it is not clear whether Si accumulation in plants will be positively or negatively affected by changing climate and environmental conditions. In this review, we focused on Si interaction with the most important factors of global change and environmental hazards in plants, discussing the potential role of its application as an alleviation strategy for climate and environmental hazards based on current knowledge.
Collapse
Affiliation(s)
- Boris Bokor
- Comenius University Science Park, 841 04 Bratislava, Slovakia; Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia.
| | - Carla S Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Dominik Kostoláni
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Joana Machado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Marta Nunes da Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Susana M P Carvalho
- GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
13
|
Olivera Viciedo D, de Mello Prado R, Lizcano Toledo R, Salas Aguilar D, Dos Santos LCN, Calero Hurtado A, Peña Calzada K, Betancourt Aguilar C. Physiological role of silicon in radish seedlings under ammonium toxicity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5637-5644. [PMID: 32535917 DOI: 10.1002/jsfa.10587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND High concentrations of ammonium as the sole nitrogen source may result in physiological and nutritional disorders that can lead to reduced plant growth and toxicity. In this study, we hypothesized that ammonium toxicity in radish seedlings (Raphanus sativus L.) might be mitigated by the incorporation of silicon (Si) into applied nutrient solution. To examine this possibility, we conducted a hydroponic experiment to evaluate the effects of five concentrations of ammonium (1, 7.5, 15, 22.5, and 30 mmol L-1 ) on the photosynthesis, green color index, stomatal conductance, transpiration, instantaneous water-use efficiency, and biomass production of radish in the absence and presence (2 mmol L-1 ) of Si. The experimental design was a randomized block design based on a 2 × 5 factorial scheme with four replicates. RESULTS The highest concentration of applied ammonium (30 mmol L-1 ) was found to reduce the photosynthesis, transpiration and total dry biomass of radish seedlings, independent of the presence of Si in the nutrient solution. However, at lower ammonium concentrations, the application of Si counteracted these detrimental effects, and facilitated the production of seedlings with increased photosynthesis, greater instantaneous water-use efficiency, and higher total dry biomass compared with the untreated plants (without Si). Transpiration and stomatal conductance were affected to lesser extents by the presence of Si. CONCLUSION These findings indicate that the addition of Si to nutrient solutions could provide an effective means of alleviating the unfavorable effects induced by ammonium toxicity at concentrations of less than 30 mmol L-1 . © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dilier Olivera Viciedo
- Faculty of Agricultural and Veterinarian Sciences, Department of Soils and Fertilizers, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Renato de Mello Prado
- Faculty of Agricultural and Veterinarian Sciences, Department of Soils and Fertilizers, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | | | - Dayami Salas Aguilar
- Faculty of Agricultural Science, University of Camagüey "Ignacio Agramonte" (UC), Camaguey, Cuba
| | - Luiz Claudio Nascimento Dos Santos
- Faculty of Agricultural and Veterinarian Sciences, Department of Soils and Fertilizers, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Alexander Calero Hurtado
- Faculty of Agricultural and Veterinarian Sciences, Department of Soils and Fertilizers, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Kolima Peña Calzada
- Faculty of Agricultural and Veterinarian Sciences, Department of Soils and Fertilizers, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | | |
Collapse
|
14
|
A Review on the Beneficial Role of Silicon against Salinity in Non-Accumulator Crops: Tomato as a Model. Biomolecules 2020; 10:biom10091284. [PMID: 32906642 PMCID: PMC7563371 DOI: 10.3390/biom10091284] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Salinity is an abiotic stress that affects agriculture by severely impacting crop growth and, consequently, final yield. Considering that sea levels rise at an alarming rate of >3 mm per year, it is clear that salt stress constitutes a top-ranking threat to agriculture. Among the economically important crops that are sensitive to high salinity is tomato (Solanum lycopersicum L.), a cultivar that is more affected by salt stress than its wild counterparts. A strong body of evidence in the literature has proven the beneficial role of the quasi-essential metalloid silicon (Si), which increases the vigor and protects plants against (a)biotic stresses. This protection is realized by precipitating in the cell walls as opaline silica that constitutes a mechanical barrier to the entry of phytopathogens. With respect to Si accumulation, tomato is classified as a non-accumulator (an excluder), similarly to other members of the nightshade family, such as tobacco. Despite the low capacity of accumulating Si, when supplied to tomato plants, the metalloid improves growth under (a)biotic stress conditions, e.g., by enhancing the yield of fruits or by improving vegetative growth through the modulation of physiological parameters. In light of the benefits of Si in crop protection, the available literature data on the effects of this metalloid in mitigating salt stress in tomato are reviewed with a perspective on its use as a biostimulant, boosting the production of fruits as well as their post-harvest stability.
Collapse
|