1
|
Fu N, Wang L, Sun Q, Wang Q, Zhang Y, Han X, Yang Q, Ma W, Tong Z, Zhang J. Genome-wide identification of the bHLH transcription factor family and the regulatory roles of PbbHLH74 in response to drought stress in Phoebe bournei. Int J Biol Macromol 2024; 283:137760. [PMID: 39557253 DOI: 10.1016/j.ijbiomac.2024.137760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Phoebe species constitute a large portion of subtropical forestry, which are key players in biomass resources. However, abiotic stresses such as drought stress severely limit the growth and development of P. bournei, and even lead to its death. It has been shown that basic helix-loop-helix (bHLH) as the second largest transcription factor family plays essential roles in response to multiple stresses in plants. However, little information of bHLH family is available in P. bournei. In this study, 130 PbbHLHs were identified and classified into 24 subfamilies. Then, the bHLH domain, conserved motifs and gene structures, evolutionary patterns and protein structural features were probed. The expression levels of 17 PbbHLHs were differentially induced by PEG and ABA by RT-qPCR analysis, indicating that they may be involved in drought stress response. Characterization of the drought candidate gene PbbHLH74 showed that it was transcriptionally active and localized in the nucleus. Heterologous transformation of PbbHLH74 into yeast improved cellular tolerance to drought stress. Meanwhile, overexpression of PbbHLH74 in Arabidopsis showed higher seed germination, plant biomass and expression levels of stress-related genes under drought conditions. Through the hairy root technique, overexpression of PbbHLH74 in P. bournei improved drought tolerance by enhancing root development and expression levels of genes involved in ABA-dependent and ROS scavenging pathways. Moreover, PbbHLH74 might positively regulate the expression of PbPOD by Y1H and dual-luciferase reporter assays. Overall, these results elucidated the structure and evolution of the PbbHLH family, in which PbbHLH74 could be applied to molecular assisted breeding for drought tolerance in P. bournei.
Collapse
Affiliation(s)
- Ningning Fu
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Li Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qinglin Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qiguang Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, PR China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China.
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China.
| |
Collapse
|
2
|
Zulfiqar B, Raza MAS, Saleem MF, Ali B, Aslam MU, Al-Ghamdi AA, Elshikh MS, Hassan MU, Toleikienė M, Ahmed J, Rizwan M, Iqbal R. Abscisic acid improves drought resilience, growth, physio-biochemical and quality attributes in wheat (Triticum aestivum L.) at critical growth stages. Sci Rep 2024; 14:20411. [PMID: 39223242 PMCID: PMC11369261 DOI: 10.1038/s41598-024-71404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Wheat is an important staple crop not only in Pakistan but all over the globe. Although the area dedicated to wheat cultivation expands annually, the quantity of wheat harvested is declining due to various biotic and abiotic factors. Global wheat production and output have suffered as a result of the drought, which is largely driven by a lack of water and environmental factors. Organic fertilizers have been shown to reduce the severity of drought. The current research was conducted in semi-arid climates to mitigate the negative effects of drought on wheat during its critical tillering (DTS), flowering (DFS), and grain filling (DGFS) stages through the application of three different abscisic acid treatments: ABA0 (0 mgL-1) control, ABA1 (100 mgL-1) and ABA2 (200 mgL-1). Wheat growth and yield characteristics were severely harmed by drought stress across all critical development stages, with the DGFS stage being particularly vulnerable and leading to a considerable loss in yield. Plant height was increased by 24.25%, the number of fertile tillers by 25.66%, spike length by 17.24%, the number of spikelets per spike by 16.68%, grain count per spike by 11.98%, thousand-grain weight by 14.34%, grain yield by 26.93% and biological yield by 14.55% when abscisic acid (ABA) was applied instead of the control treatment. Moreover, ABA2 increased the more physiological indices (water use efficiency (36.12%), stomatal conductance (44.23%), chlorophyll a (24.5%), chlorophyll b (29.8%), transpiration rate (23.03%), photosynthetic rate (24.84%), electrolyte leakage (- 38.76%) hydrogen peroxide (- 18.09%) superoxide dismutase (15.3%), catalase (20.8%), peroxidase (- 18.09%), and malondialdehyde (- 13.7%)) of drought-stressed wheat as compared to other treatments. In the case of N, P, and K contents in grain were maximally improved with the application of ABA2. Through the use of principal component analysis, we were able to correlate our results across scales and provide an explanation for the observed effects of ABA on wheat growth and production under arid conditions. Overall, ABA application at a rate of 200 mgL-1 is an effective technique to boost wheat grain output by mitigating the negative effects of drought stress.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, People's Republic of China
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Agricultural and Environmental Innovation Research Institute, Liaquatpur, 64000, Pakistan
| | - Muhammad Aown Sammar Raza
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | | | - Baber Ali
- School of Science, Western Sydney University, Penrith, 2751, Australia
| | - Muhammad Usman Aslam
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Mahmood Ul Hassan
- Department of Ecology and Ecological Engineering, College of Resources and Environmental Sciences, China Agricultural University, 2 W Yuanmingyuan Ave, Haidian, Beijing, 100193, China
- Agricultural and Environmental Innovation Research Institute, Liaquatpur, 64000, Pakistan
| | - Monika Toleikienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituo Al. 1, 58344, Akademija, Kedainiai, Lithuania
| | - Junaid Ahmed
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| |
Collapse
|
3
|
Zhi QQ, Chen Y, Hu H, Huang WQ, Bao GG, Wan XR. Physiological and transcriptome analyses reveal tissue-specific responses of Leucaena plants to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108926. [PMID: 38996715 DOI: 10.1016/j.plaphy.2024.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Leucaena leucocephala (Leucaena) is a leguminous tree widely cultivated in tropical and subtropical regions due to its strong environmental suitability for abiotic stresses, especially drought. However, the molecular mechanisms and key pathways involved in Leucaena's drought response require further elucidation. Here, we comparatively analyzed the physiological and early transcriptional responses of Leucaena leaves and roots under drought stress simulated by polyethylene glycol (PEG) treatments. Drought stress induced physiological changes in Leucaena seedlings, including decreases in relative water content (RWC) and increases in relative electrolyte leakage (REL), malondialdehyde (MDA), proline contents as well as antioxidant enzyme activities. In response to drought stress, 6461 and 8295 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. In both tissues, the signaling transduction pathway of plant hormones was notably the most enriched. Specifically, abscisic acid (ABA) biosynthesis and signaling related genes (NCED, PP2C, SnRK2 and ABF) were strongly upregulated particularly in leaves. The circadian rhythm, DNA replication, alpha-linolenic acid metabolism, and secondary metabolites biosynthesis related pathways were repressed in leaves, while the glycolysis/gluconeogenesis and alpha-linolenic acid metabolism and amino acid biosynthesis processes were promoted in roots. Furthermore, heterologous overexpression of Leucaena drought-inducible genes (PYL5, PP2CA, bHLH130, HSP70 and AUX22D) individually in yeast increased the tolerance to drought and heat stresses. Overall, these results deepen our understanding of the tissue-specific mechanisms of Leucaena in response to drought and provide target genes for future drought-tolerance breeding engineering in crops.
Collapse
Affiliation(s)
- Qing-Qing Zhi
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ying Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Han Hu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wen-Qi Huang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ge-Gen Bao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Xiao-Rong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
4
|
Kumar D, Chaudhury RS, Mandal K, Pradhan P, Bhattacharya S, Das B, Mukhopadhyay R, Phani V, Prudveesh K, Nath S, Mandal R, Boro P. Identification of genes associated to β -N oxalyl- L-α, β-diaminopropionic acid and their role in mitigating salt stress in a low-neurotoxin cultivar of Lathyrus sativus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108388. [PMID: 38295528 DOI: 10.1016/j.plaphy.2024.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Grass pea has the potential to become a miracle crop if the stigma attached to it as a toxic plant is ignored. In light of the following, we conducted transcriptome analyses on the high and low ODAP-containing cultivars i.e., Nirmal and Bidhan respectively in both normal and salt stress conditions. In this study, genes that work upstream and downstream to β-ODAP have been found. Among these genes, AAO3 and ACL5 were related to ABA and polyamine biosynthesis, showing the relevance of ABA and polyamines in boosting the β-ODAP content in Nirmal. Elevated β-ODAP levels in salt stress-treated Bidhan may have evolved tolerance by positively regulating the expression of genes involved in phenylpropanoid and jasmonic acid biosynthesis. Although the concentration of β-ODAP in Bidhan increased under salt stress, it was lower than in stress-treated Nirmal. Despite this, the expression of stress-related genes that work downstream to β-ODAP was found higher in stress-treated Bidhan. This could be because stress-treated Nirmal has lower GSH, proline, and higher H2O2, resulting in the development of severe oxidative stress. Overall, our research not only identified new genes linked with β-ODAP, but also revealed the molecular mechanism by which a low β-ODAP-containing cultivar developed tolerance against salinity stress.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Biochemistry, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Majhian, West Bengal, India.
| | - Riman Saha Chaudhury
- Department of Horticulture, School of Agriculture and Allied Sciences, The Neotia University, Sarisha, Diamond Harbour, West Bengal, India
| | - Kajal Mandal
- Department of Structural Biology and Bioinformatics, CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | - Prajjwal Pradhan
- Department of Genetics and Plant Breeding, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Sampurna Bhattacharya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Bimal Das
- Department of Genetics and Plant Breeding, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Ria Mukhopadhyay
- School of Agriculture, Swami Vivekananda University, Barrackpore, West Bengal, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Majhian, West Bengal, India
| | - Kantamraju Prudveesh
- Department of Biochemistry, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Majhian, West Bengal, India
| | - Sahanob Nath
- Department of Genetics and Plant Breeding, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Rupsanatan Mandal
- Department of Genetics and Plant Breeding, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Priyanka Boro
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
5
|
Hussain S, Wang J, Asad Naseer M, Saqib M, Siddiqui MH, Ihsan F, Xiaoli C, Xiaolong R, Hussain S, Ramzan HN. Water stress memory in wheat/maize intercropping regulated photosynthetic and antioxidative responses under rainfed conditions. Sci Rep 2023; 13:13688. [PMID: 37608147 PMCID: PMC10444778 DOI: 10.1038/s41598-023-40644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Drought is a most prevalent environmental stress affecting the productivity of rainfed wheat and maize in the semiarid Loess Plateau of China. Sustainable agricultural practices such as intercropping are important for enhancing crop performance in terms of better physiological and biochemical characteristics under drought conditions. Enzymatic and non-enzymatic antioxidant enzyme activities are associated with improved abiotic tolerance in crop plants, however, its molecular mechanism remains obscure. A 2-year field study was conducted to evaluate the influence of intercropping treatment viz. wheat mono-crop (WMC), maize mono-crop (MMC), intercropping maize (IM) and wheat (IW) crops, and nitrogen (N) application rates viz. control and full-dose of N (basal application at 150 and 235 kg ha-1 for wheat and maize, respectively) on chlorophyll fluorescence, gas exchange traits, lipid peroxidation, antioxidative properties and expression patterns of six tolerance genes in both crops under rainfed conditions. As compared with their respective monocropping treatments, IW and IM increased the Fo/Fm by 18.35 and 14.33%, PS-11 efficiency by 7.90 and 13.44%, photosynthesis by 14.31 and 23.97%, C-capacity by 32.05 and 12.92%, and stomatal conductance by 41.40 and 89.95% under without- and with-N application, respectively. The reductions in instantaneous- and intrinsic-water use efficiency and MDA content in the range of 8.76-26.30% were recorded for IW and IM treatments compared with WMC and MMC, respectively. Compared with the WMC and MMC, IW and IM also triggered better antioxidant activities under both N rates. Moreover, we also noted that intercropping and N addition regulated the transcript levels of six genes encoding non-enzymatic antioxidants cycle enzymes. The better performance of intercropping treatments i.e., IW and IM were also associated with improved osmolytes accumulation under rainfed conditions. As compared with control, N addition significantly improved the chlorophyll fluorescence, gas exchange traits, lipid peroxidation, and antioxidant enzyme activities under all intercropping treatments. Our results increase our understanding of the physiological, biochemical, and molecular mechanisms of intercropping-induced water stress tolerance in wheat and maize crops.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
| | - JinJin Wang
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Saqib
- Barani Agricultural Research Station, Fateh Jang, Attock, Punjab, 43350, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahid Ihsan
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| | - Chen Xiaoli
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ren Xiaolong
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China.
| | - Saddam Hussain
- Plant Stress Physiology Lab, Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Hafiz Naveed Ramzan
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| |
Collapse
|
6
|
Yan J, Xu X, Liu L, Song S, Kuang H, Xu C, Wu X. Development of a gold-based lateral flow immunoassay for the determination of abscisic acid. NEW J CHEM 2022. [DOI: 10.1039/d2nj03378j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The visual cut-off values of the LFIA strip for abscisic acid in food samples were 5 ng mL−1 as observed by the naked eye.
Collapse
Affiliation(s)
- Jieyu Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|