1
|
Choi JW, Shin J, Zhou Z, Song HJ, Bae GS, Kim MS, Park SJ. Myricetin ameliorates the severity of pancreatitis in mice by regulating cathepsin B activity and inflammatory cytokine production. Int Immunopharmacol 2024; 136:112284. [PMID: 38823179 DOI: 10.1016/j.intimp.2024.112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/β-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.
Collapse
Affiliation(s)
- Ji-Won Choi
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Joonyeon Shin
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ziqi Zhou
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Gi-Sang Bae
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Joo Park
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea.
| |
Collapse
|
2
|
Prado Y, Aravena D, Gatica S, Llancalahuen FM, Aravena C, Gutiérrez-Vera C, Carreño LJ, Cabello-Verrugio C, Simon F. From genes to systems: The role of food supplementation in the regulation of sepsis-induced inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166909. [PMID: 37805092 DOI: 10.1016/j.bbadis.2023.166909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Systemic inflammation includes a widespread immune response to a harmful stimulus that results in extensive systemic damage. One common example of systemic inflammation is sepsis, which is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Under the pro-inflammatory environment of sepsis, oxidative stress contributes to tissue damage due to dysfunctional microcirculation that progressively causes the failure of multiple organs that ultimately triggers death. To address the underlying inflammatory condition in critically ill patients, progress has been made to assess the beneficial effects of dietary supplements, which include polyphenols, amino acids, fatty acids, vitamins, and minerals that are recognized for their immuno-modulating, anticoagulating, and analgesic properties. Therefore, we aimed to review and discuss the contribution of food-derived supplementation in the regulation of inflammation from gene expression to physiological responses and summarize the precedented potential of current therapeutic approaches during systemic inflammation.
Collapse
Affiliation(s)
- Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe M Llancalahuen
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
3
|
Sayed DF, Mohamed MA, Nada AS, Temraz A, Ahmed AH. Hepatoprotective role of myricitrin isolated from Mimusops elengi Linn. leaves extract on γ-radiation-induced liver damage in rats: Phyto-biochemical investigations. Cell Biochem Funct 2023; 41:642-657. [PMID: 37342005 DOI: 10.1002/cbf.3820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/22/2023]
Abstract
The hepatoprotective effects of methanol extract of Mimusops elengi Linn. (M. elengi L.) leaves and isolated pure myricitrin (3-, 4-, 5-, 5, 7-five hydroxyflavone-3-O-α-l-rhamnoside) (Myr) were evaluated in male rats exposed to γ-irradiation. The extraction of M. elengi L. leaves was performed using ethyl acetate (EtOAC). Seven groups of rats were used: control group, irradiated (IRR) group (6 Gy of γ-rays in a single dose), vehicle group (oral administration of 0.5% carboxymethyl cellulose for 10 days), EtOAC extract group (100 mg/kg body weight of extract, orally for 10 days), EtOAC + IRR group (administration of extract and exposure to γ-rays on Day 7), Myr group (50 mg/kg body weight Myr, orally for 10 days), and Myr + IRR group (administration of Myr and exposure to γ-rays on Day 7). High-performance liquid chromatography and 1H-nuclear magnetic resonance were used to isolate and characterize the compounds from M. elengi L. leaves. Enzyme-linked immunosorbent assay was used for biochemical analyses. Identified compounds were Myr, myricetin 3-O-galactoside, myricetin 3-O-rahmnopyranoside (1 → 6) glucopyranoside, quercetin, quercitol, gallic acid, α-,β-amyrin, ursolic acid, and lupeol. Serum aspartate transaminase and alanine transaminase activities were significantly increased, while serum protein and albumin levels were significantly decreased after irradiation. Hepatic levels of tumor necrosis factor-α, prostaglandin 2, inducible nitric oxide synthase, interleukin-6 (IL-6), and IL-12 were increased following irradiation. Improvements were observed in most serological parameters after treatment with extract or pure Myr, with histological analyses confirming decreased liver injury in treated rats. Our study demonstrates that pure Myr has a greater hepatoprotective effect than M. elengi leaf extracts against irradiation-induced hepatic inflammation.
Collapse
Affiliation(s)
- Dina F Sayed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Marwa A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Ahmed S Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Abeer Temraz
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Amal H Ahmed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| |
Collapse
|
4
|
Hu S, Zhang Y, Dang B, Wang Y, Zheng G, Zhang T, An H. Myricetin alleviated immunologic contact urticaria and mast cell degranulation via the PI3K/Akt/NF-κB pathway. Phytother Res 2023; 37:2024-2035. [PMID: 36649930 DOI: 10.1002/ptr.7726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023]
Abstract
Immunologic contact urticaria (ICU) is characterized by the wheal and flare reaction from direct contact with a chemical or protein agent, which involves a type I hypersensitivity mediated by allergen-specific immunoglobulin E (sIgE). Myricetin (Myr), a bioactive flavonoid, exhibits antiinflammatory activities. Our results showed that treatment with Myr could alleviate ICU symptoms, including a decrease in the number of wheals and scratching, and inhibit ear swelling in the IgE/DNFB-induced mice. The serum level of IgE, histamine, interleukin (IL)-4, TNF-α, and MCP-1 were reduced in Myr-treated mice. Myr also attenuated mast cells (MCs) degranulation and H-PGDS, TSLP, IL-33, PI3K, Akt, and NF-κB mRNA levels in ICU model. The IgE-mediated anaphylaxis mouse models demonstrated anti-allergic effects of Myr. In vitro analysis showed that Myr reduced IgE-induced calcium (Ca2+ ) influx, suppressed degranulation, and chemokine release in LAD2 cells (human primary mast cells). Myr can significantly inhibited PLCγ1, Akt, NF-κB, and p38 phosphorylation. In conclusion, the study demonstrated that Myr alleviate ICU symptoms and inhibit mast cell activation via PI3K/Akt/NF-κB signal pathway.
Collapse
Affiliation(s)
- Shiting Hu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yonghui Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Baowen Dang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuejing Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Guodong Zheng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Tao Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hongli An
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
5
|
Agraharam G, Girigoswami A, Girigoswami K. Myricetin: a Multifunctional Flavonol in Biomedicine. CURRENT PHARMACOLOGY REPORTS 2022; 8:48-61. [PMID: 35036292 PMCID: PMC8743163 DOI: 10.1007/s40495-021-00269-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVEIW The root cause of many diseases like CVD, cancer, and aging is free radicals which exert their effect by interfering with different metabolic pathways. The sources of free radicals can be exogenous, like UV rays from sunlight, and endogenous due to different metabolic by-products.In our body, there are defense mechanisms present, such as antioxidant enzymes and antioxidant molecules to combat these free radicals, but if there is an overload of these free radicals in our body, the defense system may not be sufficient to neutralize these free radicals. In such situations, we are exposed to a chronic low dose of oxidants creating oxidative stress, which is responsible for eliciting different diseases. RECENT FINDINGS Pubmed and Google Scholar are the search engines used to sort out relevant papers on myricetin and its role in combating many diseases. Myricetin is present in many fruits and vegetables and is a known antioxidant. It can elevate the antioxidant enzyme levels; reduces the lipid peroxidation; and is known to protect against cancer. In the case of myocardial dysfunction, myricetin has been shown to suppress the inflammatory cytokines and reduced the mortality rate. Myricetin has also been found to reduce platelet aggregation and control the viral infections by interfering in the DNA replication pathways. SUMMARY In this paper, we have briefly reviewed about the different type and site of free radicals and the role of myricetin in addressing the ROS and different diseases.
Collapse
Affiliation(s)
- Gopikrishna Agraharam
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103 Tamilnadu India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103 Tamilnadu India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103 Tamilnadu India
| |
Collapse
|
6
|
Potential interactions among myricetin and dietary flavonols through the inhibition of human UDP-glucuronosyltransferase in Vitro. Toxicol Lett 2022; 358:40-47. [DOI: 10.1016/j.toxlet.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
|
7
|
Gastroprotective Effect of Myricetin on Ethanol-Induced Acute Gastric Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9968112. [PMID: 34630623 PMCID: PMC8497113 DOI: 10.1155/2021/9968112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023]
Abstract
The flavonoid myricetin is abundant in vegetables and has various bioactive properties, including anti-inflammatory and antioxidative activities. In the present study, we explored the effects of myricetin on alcohol-induced gastric ulcer in a rat model. To induce gastric ulcer, absolute ethanol (5 mL/kg body weight) was orally administrated to each rat. The positive control and myricetin-treated groups were given oral doses of omeprazole (20 mg/kg) or myricetin (12 mg/kg), respectively, 1 hour prior to the administration of absolute alcohol. We found that pretreatment with myricetin significantly decreased alcohol-induced gastric ulcer, hemorrhage, hyperemia, and epithelial cell loss in the gastric mucosa. Myricetin pretreatment reduced the level of malondialdehyde (MDA) and increased that of total glutathione (GSSG/GSH) and superoxide dismutase (SOD) in gastric tissues. In addition, it elevated the expression levels of cyclooxygenase-1 (COX-1) and prostaglandin E2 (PGE2) and decreased the phosphorylation of nuclear factor kappa B (NF-κB). Together, these results indicate that myricetin effectively inhibits ethanol-induced acute gastric injury by preventing oxidative damage, stimulating PGE2 production, and inhibiting NF-κB activation. We suggest that myricetin may be an alternative treatment for gastric injury caused by alcohol intake.
Collapse
|
8
|
Maia CMDA, Pasetto S, Nonaka CFW, Costa EMMDB, Murata RM. Yeast-Host Interactions: Anadenanthera colubrina Modulates Virulence Factors of C. albicans and Inflammatory Response In Vitro. Front Pharmacol 2021; 12:629778. [PMID: 34168555 PMCID: PMC8217765 DOI: 10.3389/fphar.2021.629778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Oral candidiasis is one of the most common fungal infections in humans. Its incidence has increased widely, as well as the antifungal resistance, demanding for the search for novel antifungal therapeutic agents. Anadenanthera colubrina (Vell.) Brenan is a plant species that has been proven to possess pharmacological effects, including antifungal and anti-inflammatory activities. This study evaluated in vitro the effects of standardized A. colubrina extract on virulence factors of Candida albicans and its regulation on immune response through C. albicans-host interaction. Antifungal activity was evaluated by Broth Microdilution Method against reference Candida strains (C. albicans, C. glabrata, C. tropicalis; C. dubliniensis). Anti-biofilm effect was performed on C. albicans mature biofilm and quantified by CFU/mL/g of biofilm dry weight. Proleotlytic enzymatic activities of proteinase and phospholipase were assessed by Azocasein and Phosphatidylcholine assays, respectively. Cytotoxicity effect was determined by Cell Titer Blue Viability Assay on Human Gingival Fibroblasts. Co-cultured model was used to analyze C. albicans coexisting with HGF by Scanning Electron Microscopy and fluorescence microscopies; gene expression was assessed by RT-PCR of C. albicans enzymes (SAP-1, PLB-1) and of host inflammatory cytokines (IL-6, IL-8, IL-1β, IL-10). Cytokines secretion was analysed by Luminex. The extract presented antifungal effect with MIC<15.62 μg/ml against Candida strains. Biofilm and proteolytic activity were significant reduced at 312.4 μg/ml (20 × 15.62 μg/ml) extract concentration. Cell viability was maintained higher than 70% in concentrations up to 250 μg/ml (LD50 = 423.3 μg/ml). Co-culture microscopies demonstrated a substantial decreased in C. albicans growth and minimal toxicity against host cells. Gene expressions of SAP-1/PLB-1 were significantly down-regulated and host immune response was modulated by a significant decreased on IL-6 and IL-8 cytokines secretion. A. colubrina had antifungal activity on Candida strains, antibiofilm, and anti-proteolytic enzyme effects against C. albicans. Presented low cytotoxicity to the host cells and modulatory effects on the host immune response.
Collapse
Affiliation(s)
- Carolina Medeiros de Almeida Maia
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Brazil
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Silvana Pasetto
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | | | | | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
9
|
Cavalcanti MRM, Passos FRS, Monteiro BS, Gandhi SR, Heimfarth L, Lima BS, Nascimento YM, Duarte MC, Araujo AAS, Menezes IRA, Coutinho HDM, Zengin G, Ceylan R, Aktumsek A, Quintans-Júnior LJ, Quintans JSS. HPLC-DAD-UV analysis, anti-inflammatory and anti-neuropathic effects of methanolic extract of Sideritis bilgeriana (lamiaceae) by NF-κB, TNF-α, IL-1β and IL-6 involvement. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113338. [PMID: 32920137 DOI: 10.1016/j.jep.2020.113338] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Medicinal plants remain an invaluable source for therapeutics of diseases that affect humanity. Sideritis bilgeriana (Lamiaceae) is medicinal plant used in Turkey folk medicine to reduce inflammation and pain, but few studies scientific corroborates its medicinal use so creating a gap between popular use and scientific evidence. Thus, we aimed to evaluate the pharmacological effects of the methanolic extract of S. bilgeriana (MESB) in rodents nociception models and also performed its phytochemical analysis. Firstly, a screening was carried out that enabled the identification of the presence of phenolic compounds and flavonoids. In view of this, a chromatographic method by HPLC-DAD-UV was developed that made it possible to identify chlorogenic acid and its quantification in MESB. MESB-treated mice (MESB 50, 100 and 200 mg/kg, p.o.) reduced mechanical hyperalgesia and myeloperoxidase activity (p < 0.01), and also showed a reduced pain behavior in capsaicin test. In the carrageenan-induced pleurisy test, MESB (100 mg/kg p.o.) significantly reduced the leukocyte (polymorphonuclear) count in the pleural cavity and equally decreased the TNF-α and IL-1β levels (p < 0.001). In the PSNL model, mechanical hyperalgesia was reduced on the first evaluation day and during the 7 days of evaluation compared to the vehicle group (p < 0.001). Thermal hyperalgesia was also reduced 1 h after treatment compared to the vehicle group (p < 0.001) and reversed the loss of force initially displayed by the animals, thus inferring an analgesic effect in the muscle strength test. Analysis of the marrow of these animals showed a decrease in the level of pro-inflammatory cytokine IL-6 (p < 0.001) and factor NF-κB, in relation to the control group (p < 0.05). Moreover, the MESB treatment produced no noticeable side effects, no disturb in motor performance and no signs of gastric or hepatic injury. Together, the results suggests that MESB could be useful to management of inflammation and neuropathic pain mainly by the management of pro-inflammatory mediators (NF-κB, TNF-α, IL-1β and IL-6), so reinforcing its use in popular medicine and corroborating the need for further chemical and pharmacological studies for the species.
Collapse
Affiliation(s)
- Mariana R M Cavalcanti
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Fabiolla R S Passos
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | | | | | - Luana Heimfarth
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | | | - Yuri M Nascimento
- Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | | | - Adriano A S Araujo
- Department of Pharmacy, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Irwin R A Menezes
- Graduate Program of Biological Chemistry, Regional University of Cariri (URCA), Crato, Ceará, Brazil
| | - Henrique D M Coutinho
- Graduate Program of Biological Chemistry, Regional University of Cariri (URCA), Crato, Ceará, Brazil
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Ramazan Ceylan
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Abdurrahman Aktumsek
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
| | - Jullyana S S Quintans
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
| |
Collapse
|
10
|
Li X, Yu H, Liang L, Bi Z, Wang Y, Gao S, Wang M, Li H, Miao Y, Deng R, Ma L, Luan J, Li S, Liu M, Lin J, Zhou H, Yang C. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol 2020; 178:114097. [PMID: 32535102 DOI: 10.1016/j.bcp.2020.114097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive-fibrosing lung disease with high mortality and limited therapy, which characterized by myofibroblasts proliferation and extracellular matrix deposition. Myricetin, a natural flavonoid, has been shown to possess a variety of biological characteristics including anti-inflammatory and anti-tumor. In this study we explored the potential effect and mechanisms of myricetin on pulmonary fibrosis in vivo and vitro. The in vivo studies showed that myricetin effectively alleviated bleomycin (BLM)-induced pulmonary fibrosis. KEGG analysis of RNA-seq data indicated that myricetin could regulate the transforming growth factor (TGF)-β signaling pathway. In vitro studies indicated that myricetin could dose-dependently suppress TGF-β1/Smad signaling and attenuate TGF-β1-induced fibroblast activation and epithelial-mesenchymal transition (EMT). Molecular docking indicated that heat shock protein (HSP) 90β may be a potential target of myricetin, and MST assay demonstrated that the dissociation constant (Kd) of myricetin and HSP90β was 331.59 nM. We demonstrated that myricetin interfered with the binding of HSP90β and TGF-β receptor II and impeded fibroblast activation and EMT. In conclusion, myricetin impedes TGF-β1-induced lung fibroblast activation and EMT via targeting HSP90β and attenuates BLM-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Haiyan Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Lu Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yanhua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Mukuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Ruxia Deng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Ling Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Jiaoyan Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Menghan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
11
|
Wang L, Wu H, Yang F, Dong W. The Protective Effects of Myricetin against Cardiovascular Disease. J Nutr Sci Vitaminol (Tokyo) 2020; 65:470-476. [PMID: 31902859 DOI: 10.3177/jnsv.65.470] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally, except Africa, and poses a severe health burden worldwide. Both in vitro and in vivo studies have demonstrated the protective effects of myricetin for preventing CVD. For this review, we have assessed the literature from 2009 to 2019 at home and abroad to uncover the protective roles of myricetin for preventing CVD. Myricetin exhibits cardioprotective, anti-hypertensive, anti-atherosclerotic, anti-hyperglycemic, and anti-hyperlipidemic effects. In addition, myricetin may alleviate some of the complications caused by adult-onset diabetes. The combined functions of myricetin allow for the prevention of CVD. This review describes the possible therapeutic benefits of myricetin, along with its potential mechanisms of action, to support the clinical use of the myricetin for the prevention of CVD.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University
| | - Haiyan Wu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University
| | - Fei Yang
- Quality Department, Qilu Pharmaceutical Company
| | - Wenbin Dong
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University
| |
Collapse
|
12
|
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural Compounds with Potential to Modulate Cancer Therapies and Self-Reactive Immune Cells. Cancers (Basel) 2020; 12:cancers12030673. [PMID: 32183059 PMCID: PMC7139800 DOI: 10.3390/cancers12030673] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-related deaths are approaching 10 million each year. Survival statistics for some cancers, such as ovarian cancer, have remained unchanged for decades, with women diagnosed at stage III or IV having over 80% chance of a lethal cancer recurrence after standard first-line treatment (reductive surgery and chemotherapy). New treatments and adjunct therapies are needed. In ovarian cancer, as in other cancers, the immune response, particularly cytotoxic (CD8+) T cells are correlated with a decreased risk of recurrence. As well as completely new antigen targets resulting from DNA mutations (neo-antigens), these T cells recognize cancer-associated overexpressed, re-expressed or modified self-proteins. However, there is concern that activation of self-reactive responses may also promote off-target pathology. This review considers the complex interplay between cancer-reactive and self-reactive immune cells and discusses the potential uses for various leading immunomodulatory compounds, derived from plant-based sources, as a cancer therapy option or to modulate potential autoimmune pathology. Along with reviewing well-studied compounds such as curcumin (from turmeric), epigallocatechin gallate (EGCG, from green tea) and resveratrol (from grapes and certain berries), it is proposed that compounds from novel sources, for example, native Australian plants, will provide a useful source for the fine modulation of cancer immunity in patients.
Collapse
|
13
|
Qu X, Li Q, Song Y, Xue A, Liu Y, Qi D, Dong H. Potential of myricetin to restore the immune balance in dextran sulfate sodium-induced acute murine ulcerative colitis. J Pharm Pharmacol 2019; 72:92-100. [PMID: 31724745 DOI: 10.1111/jphp.13197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Myricetin is a bioactive compound in many edible plants with anti-inflammatory and anticarcinogenic activity. The current study aimed to determine the protective effects and mechanism of myricetin against ulcerative colitis (UC). METHODS Myricetin was orally administered at doses of 40 and 80 mg/kg to C57BL/6 mice with UC induced using dextran sulfate sodium. The disease-associated index and colon length were determined at the end of the experiment, the proportion of Treg, Th1 and Th17 was analysed by cytometry, and cytokines were detected using ELISA. KEY FINDINGS Myricetin (80 mg/kg) ameliorated the severity of inflammation in acute UC and significantly improved the condition. Myricetin (80 mg/kg) elevated the levels of IL-10 and transforming growth factor β. In addition, the proportion of regulatory T cells significantly increased in mice in the myricetin treatment group. CONCLUSIONS Taking together, these results suggest that myricetin exhibits significant protective effects against UC and it could be used as a potential treatment for UC.
Collapse
Affiliation(s)
- Xinyan Qu
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China
| | - Qingjun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Shandong, China.,Key Laboratory of Basic Research of Traditional Chinese Medicine in Shandong Province, Shandong, China
| | - Yue Song
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China
| | - Anqi Xue
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China
| | - Yuhua Liu
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Shandong, China.,Key Laboratory of Basic Research of Traditional Chinese Medicine in Shandong Province, Shandong, China
| | - Hongjing Dong
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China
| |
Collapse
|
14
|
Yang ZJ, Wang HR, Wang YI, Zhai ZH, Wang LW, Li L, Zhang C, Tang L. Myricetin Attenuated Diabetes-Associated Kidney Injuries and Dysfunction via Regulating Nuclear Factor (Erythroid Derived 2)-Like 2 and Nuclear Factor-κB Signaling. Front Pharmacol 2019; 10:647. [PMID: 31244660 PMCID: PMC6580432 DOI: 10.3389/fphar.2019.00647] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background/Aims: Previous studies have suggested that myricetin (Myr) could promote the expression and nuclear translocation of nuclear factor (erythroid-derived 2)-like (Nrf2). This study aimed to investigate whether Myr could attenuate diabetes-associated kidney injuries and dysfunction in wild-type (WT) and Nrf2 knockdown (Nrf2-KD) mice. Methods: Lentivirus-mediated Nrf2-KD and WT mice were used to establish type 1 diabetes mellitus (DM) by streptozotocin (STZ) injection. WT and Nrf2-KD mice were then randomly allocated into four groups: control (CON), Myr, STZ, and STZ + Myr. Myr (100 mg/kg/day) or vehicle was administered for 6 months. Kidneys were harvested and weighed at the end of the experiment. Hematoxylin and eosin staining and Masson’s trichrome staining were used to assess the morphology and fibrosis of the kidneys, respectively. Urinary albumin-to-creatinine ratio was used to test renal function. Western blotting was performed to determine oxidative-stress- or inflammation-associated signaling pathways. Real-time polymerase chain reaction (RT-PCR) was performed to detect the expression of fibrosis or inflammatory cytokines at the message Ribonucleic Acid (mRNA) level. Results: In WT mice, Myr alleviated DM-induced renal dysfunction, fibrosis, and oxidative damage and enhanced the expression of Nrf2 and its downstream genes. After knockdown of Nrf2, Myr treatment partially but significantly mitigated DM-induced renal dysfunction and fibrosis, which might be associated with inhibition of the I-kappa-B (IκB)/nuclear factor-κB (NF-κB) (P65) signaling pathway. Conclusions: This study showed that Myr prevented DM-associated decreased expression of Nrf2 and inhibited IκB/NF-κB (P65) signaling pathway. Moreover, inhibition of IκB/NF-κB (P65) signaling pathway is independent of the regulation of Nrf2. Thus, Myr could be a potential treatment for preventing the development and progression of DM-associated kidney injuries and dysfunction.
Collapse
Affiliation(s)
- Zi-Jun Yang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Ru Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Iin Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zi-Han Zhai
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liu-Wei Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Li
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cheng Zhang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Sun J, Sun J, Zhou X. Protective functions of myricetin in LPS-induced cardiomyocytes H9c2 cells injury by regulation of MALAT1. Eur J Med Res 2019; 24:20. [PMID: 31027517 PMCID: PMC6485133 DOI: 10.1186/s40001-019-0378-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a crucial mediator in response to inflammation. Myricetin protects cardiomyocytes against inflammatory injury. However, it's still unexplored whether myricetin exerted anti-inflammatory properties via MALAT1. The purpose of our study was to validate the cardio-protective function of myricetin against myocarditis and its underlying mechanism in vitro. METHODS H9c2 cells were pre-incubated with myricetin before stimulation with lipopolysaccharide (LPS). Enforced silence of MALAT1 was achieved by transducing short hairpin (sh)-MALAT1 into H9c2 cells. Next, cell viability and apoptotic cells were detected with cell counting kit-8 (CCK-8) and Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) apoptosis detection kit, respectively. Western blot assay was conducted to examine apoptosis-relative proteins, pro-inflammatory factors, and signaling regulators. Quantitative real-time PCR (qRT-PCR) was performed to quantify pro-inflammatory factors and MALAT1 at mRNA levels. Enzyme-linked immune sorbent assay (ELISA) was employed to determine protein concentration of pro-inflammatory factors. RESULTS Myricetin ameliorated LPS-elicited reduction of cell viability, augment of apoptosis, and overexpression of monocyte chemo-attractant protein-1 (MCP-1) and interleukin-6 (IL-6) in H9c2 cells. Meanwhile, phosphorylation of p65 and inhibitor of nuclear factor kappa B alpha (IκBα) were suppressed. Besides, myricetin enhanced the expression of MALAT1 which was originally down-regulated by LPS. However, the protective effects of myricetin against LPS-caused inflammatory lesions were abrogated in MALAT1-deficiency cells, with the restored phosphorylation of p65 and IκBα. CONCLUSION Myricetin possessed an anti-inflammatory function against LPS-induced lesions in cardiomyocytes. Mechanically, myricetin up-regulated MALAT1, blocked LPS-evoked activation of nuclear factor-κB (NF-κB) inflammatory pathway, and, finally, exerted cardio-protective effects.
Collapse
Affiliation(s)
- Jinliang Sun
- Department of Cardiology, The First People’s Hospital of Changzhou, No. 185 Juqian Street, Changzhou, 213000 China
| | - Jianhui Sun
- Department of Cardiology, The First People’s Hospital of Changzhou, No. 185 Juqian Street, Changzhou, 213000 China
| | - Xuezhong Zhou
- Department of Cardiology, The First People’s Hospital of Changzhou, No. 185 Juqian Street, Changzhou, 213000 China
| |
Collapse
|
16
|
Xuan NT, Trung DM, Minh NN, Nghia VX, Giang NV, Canh NX, Toan NL, Cam TD, Nga NT, Tien TV, Hoang NH. Regulation of p38MAPK-mediated dendritic cell functions by the deubiquitylase otubain 1. HLA 2019; 93:462-470. [PMID: 30908891 DOI: 10.1111/tan.13534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/13/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are professional antigen presenting cells (APCs) that represent the essential link between innate and acquired immunity. Otubain (OTUB) 1 is shown to deubiquitinate TRAFs to suppress virus-induced inflammatory response. MAPK, a downstream molecule of TRAFs, is involved in regulating LPS-induced immune reactions and its activation is sensitive to the presence of OTUB1. Little is known about contributions of OTUB1 to changes in biological properties of DCs. The present study, therefore, explored whether DC functions are influenced by OTUB1. To this end, DCs were isolated and cultured with GM-CSF to attain bone marrow-derived DCs (BMDCs) and followed by treatment with lipopolysaccharide (LPS) in the presence or absence of OTUB1 siRNA. Expression of markers of cellular maturation and proliferation were analyzed by flow cytometry, and secretion of inflammatory cytokines and ability to stimulate CD4+ T-cells in allogenic mixed leukocyte reaction (allo-MLR) by ELISA, cell migration by a transwell migration assay and phagocytic capacity by FITC-dextran uptake measurement. As a result, treatment of the cells with OTUB1 siRNA prolonged activation of p38MAPK, increased CD54 expression and IL-6 release and reduced FITC-dextran uptake. Moreover, cytokine release produced from CD4+ T-cells in allo-MLR was different. The enhanced level of IFN-γ, but not other cytokine production was observed in the presence of siRNA OTUB1. All the effects were completely abolished when the cells were exposed with p38MAPK inhibitor SB203580. In conclusion, OTUB1 prevents the prolonged activation of p38MAPK, which in turn compromises DC functions.
Collapse
Affiliation(s)
- Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Do Minh Trung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nghiem Ngoc Minh
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Vu Xuan Nghia
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Van Giang
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Nguyen Xuan Canh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Truong Dinh Cam
- Department of Cardiology, 175 Military Medical Hospital, Ho Chi Minh, Vietnam
| | - Nguyen Thanh Nga
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tran Viet Tien
- Department of Infectious Diseases, 103 Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
17
|
Huang B, Liu J, Ma D, Chen G, Wang W, Fu S. Myricetin prevents dopaminergic neurons from undergoing neuroinflammation-mediated degeneration in a lipopolysaccharide-induced Parkinson’s disease model. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
18
|
Ghassemi-Rad J, Maleki M, Knickle AF, Hoskin DW. Myricetin-induced oxidative stress suppresses murine T lymphocyte activation. Cell Biol Int 2018; 42:1069-1075. [PMID: 29745443 DOI: 10.1002/cbin.10977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
A number of polyphenolic compounds present in fruits and vegetables have the capacity to modulate immune responses; however, the impact of the common plant-derived flavonoid myricetin on T lymphocyte function has not been investigated. We show that myricetin inhibited mouse T lymphocyte activation by bead-immobilized anti-CD3 and anti-CD28 monoclonal antibodies, as indicated by a dose-dependent reduction in cell proliferation and decreased synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17 associated with different T helper cell subsets. This effect was attributed to myricetin-induced reactive oxygen species (ROS) since myricetin caused hydrogen peroxide (H2 O2 ) to accumulate in cell-free culture medium and H2 O2 inhibited T cell proliferation and cytokine synthesis. In addition, the antioxidant N-acetyl cysteine restored the ability of myricetin-treated T lymphocytes to proliferate in response to a mitogenic stimulus. The presence of dendritic cells or bone marrow-derived macrophages negated the inhibitory effect of myricetin on T cell activation, and H2 O2 in T cell cultures that were treated with exogenous H2 O2 was reduced when antigen-presenting cells were also present. These findings suggest that antioxidant molecules produced by dendritic cells and macrophages protected T cells from myricetin-induced oxidative stress, and underscore the importance of considering immune cell interactions when evaluating the immunomodulatory activity of ROS-generating phytochemicals.
Collapse
Affiliation(s)
| | - Mahdis Maleki
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Allison F Knickle
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - David W Hoskin
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
19
|
Myricetin, a potent natural agent for treatment of diabetic skin damage by modulating TIMP/MMPs balance and oxidative stress. Oncotarget 2018; 7:71754-71760. [PMID: 27765936 PMCID: PMC5342119 DOI: 10.18632/oncotarget.12330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/22/2016] [Indexed: 12/26/2022] Open
Abstract
Foot ulceration is a major cause of morbidity in patients with diabetes, and abnormal peripheral neuropathy often results in hospitalization. Up-regulation of matrix metalloproteinases and down-regulation of tissue inhibitor of metalloproteinase 1 are noted to be distinctive biological functions of diabetic dermal fibroblasts. The aim of this study was to evaluate the biological effects of modified retinoids on diabetic fibroblasts. Myricetin, a natural compound, balances the TIMP1/MMP ratio and oxidative stress in diabetic fibroblasts. Our results indicate that myricetin significantly ameliorates the effects of diabetes on dermal fibroblasts. In addition, we found that the oxidative stress imbalance induced by a high glucose concentration plays an important role in the changes to dermal fibroblasts that occur in diabetes. Our findings support the hypothesis that myricetin has the potential to repair faulty skin function arising from diabetes.
Collapse
|
20
|
Fang J, Gao L, Ma H, Wu Q, Wu T, Wu J, Wang Q, Cheng F. Quantitative and Systems Pharmacology 3. Network-Based Identification of New Targets for Natural Products Enables Potential Uses in Aging-Associated Disorders. Front Pharmacol 2017; 8:747. [PMID: 29093681 PMCID: PMC5651538 DOI: 10.3389/fphar.2017.00747] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/03/2017] [Indexed: 12/27/2022] Open
Abstract
Aging that refers the accumulation of genetic and physiology changes in cells and tissues over a lifetime has been shown a high risk of developing various complex diseases, such as neurodegenerative disease, cardiovascular disease and cancer. Over the past several decades, natural products have been demonstrated as anti-aging interveners via extending lifespan and preventing aging-associated disorders. In this study, we developed an integrated systems pharmacology infrastructure to uncover new indications for aging-associated disorders by natural products. Specifically, we incorporated 411 high-quality aging-associated human genes or human-orthologous genes from mus musculus (MM), saccharomyces cerevisiae (SC), caenorhabditis elegans (CE), and drosophila melanogaster (DM). We constructed a global drug-target network of natural products by integrating both experimental and computationally predicted drug-target interactions (DTI). We further built the statistical network models for identification of new anti-aging indications of natural products through integration of the curated aging-associated genes and drug-target network of natural products. High accuracy was achieved on the network models. We showcased several network-predicted anti-aging indications of four typical natural products (caffeic acid, metformin, myricetin, and resveratrol) with new mechanism-of-actions. In summary, this study offers a powerful systems pharmacology infrastructure to identify natural products for treatment of aging-associated disorders.
Collapse
Affiliation(s)
- Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Huili Ma
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qihui Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feixiong Cheng
- Department of Cancer Biology, Center for Cancer Systems Biology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, United States.,Center for Complex Networks Research, Northeastern University, Boston, MA, United States
| |
Collapse
|
21
|
|
22
|
Chen S, Fan B. Myricetin protects cardiomyocytes from LPS-induced injury. Herz 2017; 43:265-274. [PMID: 28357449 DOI: 10.1007/s00059-017-4556-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/24/2017] [Accepted: 02/22/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy is a well-known cause of mortality. Recent evidence has highlighted the important role of myricetin in anti-inflammation and anti-oxidative stress. However, little is known about its effect on endotoxin-induced cardiomyopathy. We examined the effect of myricetin on lipopolysaccharide (LPS)-induced cardiomyocyte injury and the underlying mechanisms in vitro. METHODS mRNA expression of interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha was examined via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Protein expression levels of NF-κB/p65, IκB, IL-1beta, IL-6, and TNF-alpha were assesses via Western blotting. Immunofluorescence (IF) was used to determine the nuclear translocation of p65. Commercial kits were employed to detect the level of oxidative markers and to quantify NF-κB/p65 both in the cytoplasm and the nucleus. Finally, terminal deoxy-nucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was performed to evaluate the apoptosis of H9c2 cardiomyocytes. RESULTS The results showed that myricetin blunted the overexpression of IL-1beta, IL-6, and TNF-alpha markedly by inhibiting the NF-κB/P65 signaling pathway. Furthermore, myricetin treatment led to the downregulation of reactive oxygen species (ROS) accompanied by increased expression of superoxide dismutase and glutathione peroxidase. TUNEL-positive nuclei were rarely detected following myricetin treatment. CONCLUSION Our findings suggest that myricetin is a valuable protective agent against endotoxin-induced early inflammatory responses in H9c2 cardiomyocytes, which involves regulation of ROS and the IκB/NF-κb signaling pathway.
Collapse
Affiliation(s)
- S Chen
- School of Pharmacy, Hubei University of Science and Technology, 437100, Hubei Xianning, China
| | - B Fan
- School of Pharmacy, Hubei University of Science and Technology, 437100, Hubei Xianning, China.
| |
Collapse
|
23
|
Shi M, Loftus H, McAinch AJ, Su XQ. Blueberry as a source of bioactive compounds for the treatment of obesity, type 2 diabetes and chronic inflammation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Xuan NT, Hoang NH, Nhung VP, Duong NT, Ha NH, Hai NV. Regulation of dendritic cell function by insulin/IGF-1/PI3K/Akt signaling through klotho expression. J Recept Signal Transduct Res 2016; 37:297-303. [PMID: 27808000 DOI: 10.1080/10799893.2016.1247862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insulin or insulin-like growth factor 1 (IGF-1) promotes the activation of phosphoinositide 3 kinase (PI3K)/Akt signaling in immune cells including dendritic cells (DCs), the most potent professional antigen-presenting cells for naive T cells. Klotho, an anti-aging protein, participates in the regulation of the PI3K/Akt signaling, thus the Ca2+-dependent migration is reduced in klotho-deficient DCs. The present study explored the effects of insulin/IGF-1 on DC function through klotho expression. To this end, the mouse bone marrow cells were isolated and cultured with GM-CSF to attain bone marrow-derived DCs (BMDCs). Cells were treated with insulin or IGF-1 and followed by stimulating with lipopolysaccharides (LPS). Tumor necrosis factor (TNF)-α formation was examined by enzyme-linked immunosorbent assay (ELISA). Phagocytosis was analyzed by FITC-dextran uptake assay. The expression of klotho was determined by quantitative PCR, immunoprecipitation and western blotting. As a result, treatment of the cells with insulin/IGF-1 resulted in reducing the klotho expression as well as LPS-stimulated TNF-α release and increasing the FITC-dextran uptake but unaltering reactive oxygen species (ROS) production in BMDCs. The effects were abolished by using pharmacological inhibition of PI3K/Akt with LY294002 and paralleled by transfecting DCs with klotho siRNA. In conclusion, the regulation of klotho sensitive DC function by IGF-1 or insulin is mediated through PI3K/Akt signaling pathway in BMDCs.
Collapse
Affiliation(s)
- Nguyen Thi Xuan
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Huy Hoang
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Vu Phuong Nhung
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Thuy Duong
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Hai Ha
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nong Van Hai
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| |
Collapse
|
25
|
Hossen MJ, Hong YD, Baek KS, Yoo S, Hong YH, Kim JH, Lee JO, Kim D, Park J, Cho JY. In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng. J Ginseng Res 2016; 41:43-51. [PMID: 28123321 PMCID: PMC5223069 DOI: 10.1016/j.jgr.2015.12.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/24/2015] [Indexed: 12/24/2022] Open
Abstract
Background BIOGF1K, a compound K-rich fraction prepared from the root of Panax ginseng, is widely used for cosmetic purposes in Korea. We investigated the functional mechanisms of the anti-inflammatory and antioxidative activities of BIOGF1K by discovering target enzymes through various molecular studies. Methods We explored the inhibitory mechanisms of BIOGF1K using lipopolysaccharide-mediated inflammatory responses, reporter gene assays involving overexpression of toll-like receptor adaptor molecules, and immunoblotting analysis. We used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to measure the antioxidative activity. We cotransfected adaptor molecules, including the myeloid differentiation primary response gene 88 (MyD88) and Toll/interleukin-receptor domain containing adaptor molecule-inducing interferon-β (TRIF), to measure the activation of nuclear factor (NF)-κB and interferon regulatory factor 3 (IRF3). Results BIOGF1K suppressed lipopolysaccharide-triggered NO release in macrophages as well as DPPH-induced electron-donating activity. It also blocked lipopolysaccharide-induced mRNA levels of interferon-β and inducible nitric oxide synthase. Moreover, BIOGF1K diminished the translocation and activation of IRF3 and NF-κB (p50 and p65). This extract inhibited the upregulation of NF-κB-linked luciferase activity provoked by phorbal-12-myristate-13 acetate as well as MyD88, TRIF, and inhibitor of κB (IκBα) kinase (IKKβ), and IRF3-mediated luciferase activity induced by TRIF and TANK-binding kinase 1 (TBK1). Finally, BIOGF1K downregulated the NF-κB pathway by blocking IKKβ and the IRF3 pathway by inhibiting TBK1, according to reporter gene assays, immunoblotting analysis, and an AKT/IKKβ/TBK1 overexpression strategy. Conclusion Overall, our data suggest that the suppression of IKKβ and TBK1, which mediate transcriptional regulation of NF-κB and IRF3, respectively, may contribute to the broad-spectrum inhibitory activity of BIOGF1K.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea; Department of Animal Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Yong Deog Hong
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Sulgi Yoo
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Yo Han Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Jeong-Oog Lee
- Bio-inspired Aerospace Information Laboratory, Department of Aerospace Information Engineering, Konkuk University, Seoul, Korea
| | - Donghyun Kim
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Junseong Park
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
26
|
Antihyperglycemic effect of Codariocalyx motorius modulated carbohydrate metabolic enzyme activities in streptozotocin-induced diabetic rats. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Chakraborty K, Chatterjee S, Bhattacharyya A. Modulation of phenotypic and functional maturation of murine bone-marrow-derived dendritic cells (BMDCs) induced by cadmium chloride. Int Immunopharmacol 2014; 20:131-40. [DOI: 10.1016/j.intimp.2014.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 01/27/2023]
|
28
|
Fu RH, Wang YC, Liu SP, Shih TR, Lin HL, Chen YM, Tsai RT, Tsai CH, Shyu WC, Lin SZ. Dryocrassin Suppresses Immunostimulatory Function of Dendritic Cells and Prolongs Skin Allograft Survival. Cell Transplant 2014; 23:641-56. [PMID: 24816456 DOI: 10.3727/096368914x678373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are the major specialized antigen-presenting cells for the development of optimal T-cell immunity. DCs can be used as pharmacological targets to monitor novel biological modifiers for the cure of harmful immune responses, such as transplantation rejection. Dryopteris crassirhizoma Nakai (Aspiadaceae) is used for traditional herbal medicine in the region of East Asia. The root of this fern plant has been listed for treating inflammatory diseases. Dryocrassin is the tetrameric phlorophenone component derived from Dryopteris. Here we tested the immunomodulatory potential of dryocrassin on lipopolysaccharide (LPS)-stimulated activation of mouse bone marrow-derived DCs in vitro and in skin allograft transplantation in vivo. Results demonstrated that dryocrassin reduced the emission of tumor necrosis factor-α, interleukin-6, and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility complex class II, CD40, and CD86 on DCs was also blocked by dryocrassin. Moreover, LPS-stimulated DC-elicited allogeneic T-cell proliferation was alleviated by dryocrassin. In addition, dryocrassin inhibited LPS-induced activation of IkB kinase, JNK/p38 mitogen-activated protein kinase, and the translocation of NF-κB. Treatment with dryocrassin noticeably diminished 2,4-dinitro-1-fluorobenzene-reduced delayed-type hypersensitivity and extended skin allograft survival. Dryocrassin may be one of the potent immunosuppressive agents for transplant rejection via the destruction of DC maturation and function.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chi Wang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ton-Ru Shih
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Hsin-Lien Lin
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Yue-Mi Chen
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Rong-Tzong Tsai
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- Department of Pediatrics, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin, Taiwan
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
| |
Collapse
|
29
|
Fu RH, Wang YC, Liu SP, Chu CL, Tsai RT, Ho YC, Chang WL, Chiu SC, Harn HJ, Shyu WC, Lin SZ. Acetylcorynoline impairs the maturation of mouse bone marrow-derived dendritic cells via suppression of IκB kinase and mitogen-activated protein kinase activities. PLoS One 2013; 8:e58398. [PMID: 23472193 PMCID: PMC3589392 DOI: 10.1371/journal.pone.0058398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/04/2013] [Indexed: 12/21/2022] Open
Abstract
Background Dendritic cells (DCs) are major modulators in the immune system. One active field of research is the manipulation of DCs as pharmacological targets to screen novel biological modifiers for the treatment of inflammatory and autoimmune disorders. Acetylcorynoline is the major alkaloid component derived from Corydalis bungeana herbs. We assessed the capability of acetylcorynoline to regulate lipopolysaccharide (LPS)-stimulated activation of mouse bone marrow-derived DCs. Methodology/Principal Findings Our experimental data showed that treatment with up to 20 µM acetylcorynoline does not cause cytotoxicity in cells. Acetylcorynoline significantly inhibited the secretion of tumor necrosis factor-α, interleukin-6, and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility complex class II, CD40, and CD86 on DCs was also decreased by acetylcorynoline, and the endocytic capacity of LPS-stimulated DCs was restored by acetylcorynoline. In addition, LPS-stimulated DC-elicited allogeneic T-cell proliferation was blocked by acetylcorynoline, and the migratory ability of LPS-stimulated DCs was reduced by acetylcorynoline. Moreover, acetylcorynoline significantly inhibits LPS-induced activation of IκB kinase and mitogen-activated protein kinase. Importantly, administration of acetylcorynoline significantly attenuates 2,4-dinitro-1-fluorobenzene-induced delayed-type hypersensitivity. Conclusions/Significance Acetylcorynoline may be one of the potent immunosuppressive agents through the blockage of DC maturation and function.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (RHF); (SRL)
| | - Yu-Chi Wang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan
| | - Rong-Tzong Tsai
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chen Ho
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Wen-Lin Chang
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Horng-Jyh Harn
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- China Medical University Beigang Hospital, Yunlin, Taiwan
- * E-mail: (RHF); (SRL)
| |
Collapse
|