1
|
Rao Y, Tariq M, Wang M, Yu X, Liang H, Yuan Q. Preparation and characterization of bionics Oleosomes with high loading efficiency: The enhancement of hydrophobic space and the effect of cholesterol. Food Chem 2024; 457:140181. [PMID: 38943919 DOI: 10.1016/j.foodchem.2024.140181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Liposomes (LIP) loaded with natural active ingredients have significant potential in the food industry. However, their low loading efficiency (LE) hampers the advancement of liposomal products. To improve the loading capacity of functional compounds, bionic oleosomes (BOLE) with a monolayer of phospholipid membranes and a glyceryl tricaprylate/caprate (GTCC) oil core have first been engineered by high-pressure homogenization. TEM revealed that the core of BOLE consists of GTCC instead of water, thereby extending the hydrophobic space. Steady-state fluorescence and active loading experiments confirmed that cholesterol (CH) detached from the phospholipid membrane and entered the oil core, where it repelled cannabidiol (CBD). Based on the extending hydrophobic space, CBD-BOLE was prepared and its LE was 3.13 times higher than CBD-LIP. The CBD-phospholipid ratio (CPR) of CBD-BOLE significantly improved at least 7.8 times. Meanwhile, the free radical scavenging activity of CBD was increased and cytotoxicity was reduced.
Collapse
Affiliation(s)
- Yuan Rao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Muhammad Tariq
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mingxia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xin Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
2
|
Dai Y, Shi C, Qin Z, Song W, Ding B, Wei S, Chen H. Potential application of nanoliposomes loaded with complex tannins from the seed shell of Euryale ferox in the anti-browning of fresh-cut asparagus lettuce. Int J Biol Macromol 2024; 275:133669. [PMID: 38971289 DOI: 10.1016/j.ijbiomac.2024.133669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Surface browning of plant-derived fresh-cut products is mainly caused by conversion of the phenolic compounds into o-quinones under tyrosinase catalysis. In this study, the rarely reported complex tannins from Euryale ferox seed shell (ECTs) constituted by the units of 35.60% condensed tannins and 64.40% hydrolysable tannins were shown to suppress the activity of tyrosinase efficiently, supporting the exploitation of ECTs into novel anti-browning agents. However, the utilization of ECTs in food preservation is often restricted because of their chemical instability to external environment. Further fabrication of nanoliposomes loaded with ECTs (ECTs-NLs) herein was carried out to improve the stability of ECTs. DLS, TEM, FTIR, DSC and XRD confirmed that ECTs were encapsulated into nanoliposomes successfully, and ECTs-NLs appeared as vesicle-like spherical morphology with favorable encapsulation efficiency, uniform particle size distribution and negative zeta-potential. The resulting ECTs-NLs were relatively stable in the dark at 4 °C. Nanoliposomal encapsulation significantly enhanced ECTs stability, thus protecting inhibitory effect of ECTs against tyrosinase. Furthermore, anti-browning evaluation proved that ECTs-NLs had distinct advantages over free ECTs in alleviating surface browning of fresh-cut asparagus lettuces. These results suggested that nanoliposomes were effective in stabilizing ECTs and ECTs-NLs could be potentially applied to the fresh-cut food industry.
Collapse
Affiliation(s)
- Ying Dai
- College of Life Science, Yangtze University, Jingzhou, China
| | - Chenjun Shi
- College of Life Science, Yangtze University, Jingzhou, China
| | - Zeya Qin
- College of Life Science, Yangtze University, Jingzhou, China
| | - Wei Song
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, China
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, China.
| | - Hui Chen
- College of Life Science, Yangtze University, Jingzhou, China.
| |
Collapse
|
3
|
Qazi HJ, Ye A, Acevedo-Fani A, Singh H. Delivery of encapsulated bioactive compounds within food matrices to the digestive tract: recent trends and future perspectives. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38821104 DOI: 10.1080/10408398.2024.2353366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Encapsulation technologies have achieved encouraging results improving the stability, bioaccessibility and absorption of bioactive compounds post-consumption. There is a bulk of published research on the gastrointestinal behavior of encapsulated bioactive food materials alone using in vitro and in vivo digestion models, but an aspect often overlooked is the impact of the food structure, which is much more complex to unravel and still not well understood. This review focuses on discussing the recent findings in the application of encapsulated bioactive components in fabricated food matrices. Studies have suggested that the integration of encapsulated bioactive compounds has been proven to have an impact on the physicochemical characteristics of the finished product in addition to the protective effect of encapsulation on the fortified bioactive compound. These products containing bioactive compounds undergo further structural reorganization during digestion, impacting the release and emptying rates of fortified bioactive compounds. Thus, by manipulation of various food structures and matrices, the release and delivery of these bioactive compounds can be altered. This knowledge provides new opportunities for designing specialized foods for specific populations.
Collapse
Affiliation(s)
- Haroon Jamshaid Qazi
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani Road, Lahore, Punjab, Pakistan
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
4
|
Tang Y, Zhou A, Zhou S, Ruan J, Qian C, Wu C, Ye L. Preparation of VC nanoliposomes by high pressure homogenization: Process optimization and evaluation of efficacy, transdermal absorption, and stability. Heliyon 2024; 10:e29516. [PMID: 38707316 PMCID: PMC11066132 DOI: 10.1016/j.heliyon.2024.e29516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Vitamin C (VC) possesses antioxidant and whitening effects. However, its effectiveness is hindered by challenges such as instability, impaired solubility, and limited bioavailability hinder. In this study, VC was encapsulated in nanoliposomes by primary emulsification and high-pressure homogenization. The VC nanoliposomes were comprehensively characterized for their microscopic morphology, particle size, polydispersity index (PDI), and encapsulation efficiency (EE). Orthogonal experiments were designed to optimize the optimal preparation process, and the antioxidant activity, whitening efficacy, transdermal absorption, and stability of VC nanoliposomes were evaluated based on this optimized process. The findings demonstrated the high reproducibility of the optimal process, with particle size, PDI, and EE values of 113.502 ± 4.360 nm, 0.104 ± 0.010, and 56.09 ± 1.01 %, respectively. Differential scanning calorimetry analysis showed effective encapsulation of VC nanoliposomes with better thermal stability than aqueous VC solution. Besides, the VC nanoliposomes demonstrated excellent antioxidant and whitening effects in efficacy experiments, stronger skin permeability in transdermal experiments and fluorescence tracking. Furthermore, storage stability tests indicated that the VC in nanoliposomes remained relatively stable after 60 days of storage. These findings highlighted the potential use of VC nanoliposomes in a wide range of applications for the cosmetic market, especially in the development of ingredients for skin care products.
Collapse
Affiliation(s)
- Yunqi Tang
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Ankun Zhou
- Hangzhou Yayan Cosmetics Co. Ltd., #9 Shunle Road, Hangzhou, Zhejiang Province, 311123, PR China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Jiancheng Ruan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Chen Wu
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Linlin Ye
- Hangzhou Yayan Cosmetics Co. Ltd., #9 Shunle Road, Hangzhou, Zhejiang Province, 311123, PR China
| |
Collapse
|
5
|
Zhang M, Li Y, Han C, Chu S, Yu P, Cheng W. Biosynthesis of Nanoparticles with Green Tea for Inhibition of β-Amyloid Fibrillation Coupled with Ligands Analysis. Int J Nanomedicine 2024; 19:4299-4317. [PMID: 38766654 PMCID: PMC11102095 DOI: 10.2147/ijn.s451070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Background Inhibition of amyloid β protein fragment (Aβ) aggregation is considered to be one of the most effective strategies for the treatment of Alzheimer's disease. (-)-Epigallocatechin-3-gallate (EGCG) has been found to be effective in this regard; however, owing to its low bioavailability, nanodelivery is recommended for practical applications. Compared to chemical reduction methods, biosynthesis avoids possible biotoxicity and cumbersome preparation processes. Materials and Methods The interaction between EGCG and Aβ42 was simulated by molecular docking, and green tea-conjugated gold nanoparticles (GT-Au NPs) and EGCG-Au NPs were synthesized using EGCG-enriched green tea and EGCG solutions, respectively. Surface active molecules of the particles were identified and analyzed using various liquid chromatography-tandem triple quadrupole mass spectrometry methods. ThT fluorescence assay, circular dichroism, and TEM were used to investigate the effect of synthesized particles on the inhibition of Aβ42 aggregation. Results EGCG as well as apigenin, quercetin, baicalin, and glutathione were identified as capping ligands stabilized on the surface of GT-Au NPs. They more or less inhibited Aβ42 aggregation or promoted fibril disaggregation, with EGCG being the most effective, which bound to Aβ42 through hydrogen bonding, hydrophobic interactions, etc. resulting in 39.86% and 88.50% inhibition of aggregation and disaggregation effects, respectively. EGCG-Au NPs were not as effective as free EGCG, whereas multiple thiols and polyphenols in green tea accelerated and optimized heavy metal detoxification. The synthesized GT-Au NPs conferred the efficacy of diverse ligands to the particles, with inhibition of aggregation and disaggregation effects of 54.69% and 88.75%, respectively, while increasing the yield, enhancing water solubility, and decreasing cost. Conclusion Biosynthesis of nanoparticles using green tea is a promising simple and economical drug-carrying approach to confer multiple pharmacophore molecules to Au NPs. This could be used to design new drug candidates to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Mai Zhang
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Yan Li
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| | - Chunli Han
- Mass Spectrometry Application Center, Shandong CAS Intelligent Manufacturing Medical Device Technology Co., Ltd, Zaozhuang, People’s Republic of China
| | - Shiying Chu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Peng Yu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Wenbo Cheng
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| |
Collapse
|
6
|
Ashfaq R, Rasul A, Asghar S, Kovács A, Berkó S, Budai-Szűcs M. Lipid Nanoparticles: An Effective Tool to Improve the Bioavailability of Nutraceuticals. Int J Mol Sci 2023; 24:15764. [PMID: 37958750 PMCID: PMC10648376 DOI: 10.3390/ijms242115764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Nano-range bioactive colloidal carrier systems are envisaged to overcome the challenges associated with treatments of numerous diseases. Lipid nanoparticles (LNPs), one of the extensively investigated drug delivery systems, not only improve pharmacokinetic parameters, transportation, and chemical stability of encapsulated compounds but also provide efficient targeting and reduce the risk of toxicity. Over the last decades, nature-derived polyphenols, vitamins, antioxidants, dietary supplements, and herbs have received more attention due to their remarkable biological and pharmacological health and medical benefits. However, their poor aqueous solubility, compromised stability, insufficient absorption, and accelerated elimination impede research in the nutraceutical sector. Owing to the possibilities offered by various LNPs, their ability to accommodate both hydrophilic and hydrophobic molecules and the availability of various preparation methods suitable for sensitive molecules, loading natural fragile molecules into LNPs offers a promising solution. The primary objective of this work is to explore the synergy between nature and nanotechnology, encompassing a wide range of research aimed at encapsulating natural therapeutic molecules within LNPs.
Collapse
Affiliation(s)
- Rabia Ashfaq
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Akhtar Rasul
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| |
Collapse
|
7
|
Mittal A, Singh A, Hong H, Benjakul S. Chitooligosaccharide-catechin conjugate loaded liposome using different stabilising agents: characteristics, stability, and bioactivities. J Microencapsul 2023; 40:385-401. [PMID: 37130079 DOI: 10.1080/02652048.2023.2209658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
AIM To determine the optimum condition for preparing chitooligosaccharide-catechin conjugate (COS-CAT) liposomes using different stabilising agents. METHODS COS-CAT liposomes (0.1-1%, w/v) were prepared using soy phosphatidylcholine (SPC) (50-200 mM) and glycerol or cholesterol (25-100 mg). Encapsulation efficiency (EE), loading capacity (LC), physicochemical characteristics, FTIR spectra, thermal stability, and structure of COS-CAT liposomes were assessed. RESULTS COS-CAT loaded liposome stabilised by cholesterol (COS-CAT-CHO) showed higher stability as shown by the highest EE (76.81%) and LC (4.57%) and the lowest zeta potential (ZP) (-76.51 mV), polydispersity index (PDI) (0.2674) and releasing efficiency (RE) (53.54%) (p < 0.05). COS-CAT-CHO showed the highest retention and relative remaining bioactivities of COS-CAT under various conditions (p < 0.05). FTIR spectra revealed the interaction between the choline group of SPC and -OH groups of COS-CAT. Phase transition temperature of COS-CAT-CHO was shifted to 184 °C, which was higher than others (p < 0.05). CONCLUSION SPC and cholesterol-based liposome could be used as a promising vesicle for maintaining bioactivities of COS-CAT.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Hat Yai, Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Hat Yai, Thailand
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Hat Yai, Thailand
| |
Collapse
|
8
|
Wang Z, Guo C, Li D, Zhou D, Liu D, Zhu B. Nanoprecipitates of γ-cyclodextrin/epigallocatechin-3-gallate inclusion complexes as efficient antioxidants for preservation of shrimp surimi products: synthesis, performance and mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3129-3138. [PMID: 36637042 DOI: 10.1002/jsfa.12449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Epigallocatechin-3-gallate (EGCG) is well known for excellent chain-breaking antioxidant capability. However, browning by oxidation and aggregation of EGCG is a non-negligible defect that hinders its applications as an antioxidant in various foodstuffs. Therefore, how to eliminate or mitigate browning efficiently, while retaining functionalities as food additive is a challenge in the food industry. RESULTS Our results demonstrated that EGCG could be anchored within the internal cavity of γ-cyclodextrin (γ-CD) to form an inclusion structure, where hydrophobic interaction, hydrogen bonding, and π-stacking were identified to be the primary drivers. The interplay between two molecules and the steric hindrance from γ-CD could restrict the motion and aggregation of EGCG efficiently, thus alleviating the browning effect. In addition, the conformational adaption of EGCG within the inclusions would result in general decreases in hydrogen-bond dissociation enthalpies for the pyrogallol-type structure on the b ring, thus enhancing the antioxidant capability. In practical application, the nanoscale γ-CD/EGCG inclusion complexes were validated preliminarily as efficient additives in the preservation of shrimp surimi, presenting significant effects on prolonging the shelf-life of products. CONCLUSION Here, nanoscale γ-CD/EGCG inclusion complexes as alternatives to EGCG were tailored as food antioxidants for the preservation of shrimp surimi products, exerting antioxidant effects while mitigating the browning effects of EGCG on products. Through self-assembly, EGCG would be anchored with the cavity of γ-CD, which could regulate the release modes and restrict the aggregation of EGCG. This facile strategy has great potential in food preservation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zonghan Wang
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Chao Guo
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Deyang Li
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Hassane Hamadou A, Zhang J, Chen C, Xu J, Xu B. Vitamin C and β-carotene co-loaded in marine and egg nanoliposomes. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Qi C, Liu G, Ping Y, Yang K, Tan Q, Zhang Y, Chen G, Huang X, Xu D. A comprehensive review of nano-delivery system for tea polyphenols: Construction, applications, and challenges. Food Chem X 2023; 17:100571. [PMID: 36845473 PMCID: PMC9945422 DOI: 10.1016/j.fochx.2023.100571] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Tea polyphenols (TPs) are important bioactive compounds in tea and have excellent physiological regulation functions. However, the extraction and purification of TPs are key technologies affecting their further application, and the chemical instability, poor bioavailability of TPs are major challenges for researchers. In the past decade, therefore, research and development of advanced carrier systems for the delivery of TPs has been greatly promoted to improve their poor stability and poor bioavailability. In this review, the properties and function of TPs are introduced, and the recent advances in the extraction and purification technologies are systematically summarized. Particularly, the intelligent delivery of TPs via novel nano-carriers is critically reviewed, and the application of TPs nano-delivery system in medical field and food industry is also described. Finally, the main limitations, current challenges and future perspectives are highlighted in order to provide research ideas for exploiting nano-delivery carriers and their application in TPs.
Collapse
Affiliation(s)
- Chenyu Qi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China,College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China,Corresponding authors.
| | - Yi Ping
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China,College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Kexin Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Qiyue Tan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China,College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yaowei Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China,Corresponding authors.
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China,Corresponding authors.
| |
Collapse
|
11
|
Shah S, Famta P, Fernandes V, Bagasariya D, Charankumar K, Kumar Khatri D, Bala Singh S, Srivastava S. Quality by Design steered Development of Niclosamide Loaded Liposomal Thermogel for Melanoma: In vitro and Ex vivo Evaluation. Eur J Pharm Biopharm 2022; 180:119-136. [PMID: 36198344 DOI: 10.1016/j.ejpb.2022.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022]
Abstract
Melanoma is the most malignant form of skin cancer across the globe. Conventional therapies are currently ineffective which could be attributed to the rampant chemo-resistance, metastasis, inability to cross the skin barriers and accumulate within the tumor microenvironment. This advent brings in the principles of drug repurposing by repositioning Niclosamide (NIC), an anthelmintic drug for skin cancer. Incorporation into the liposomes facilitated enhanced melanoma cell uptake and apoptosis. Cytotoxicity studies revealed 1.756-fold enhancement in SK-MEL-28 cytotoxicity by NIC-loaded liposomes compared to free drug. Qualitative and quantitative cell internalization indicated greater drug uptake within the melanoma cells illustrating the efficacy of liposomes as efficient carrier systems. Nuclear staining showed blebbing and membrane shrinkage. Elevated ROS levels and apoptosis shown by DCFDA and acridine orange-ethidium bromide staining revealed greater melanoma cell death by liposomes compared to free drug. Incorporating NIC liposomes into the thermogel system restricted the liposomes as a depot onto the upper skin layers. Sustained zero order release up to 48 h with liposomes and 23.58-fold increase in viscosity led to the sol-to-gel transition at 33℃ was observed with liposomal thermogel. Ex vivo gel permeation studies revealed that C-6 loaded liposomes incorporated within the thermogel successfully formed a depot over the upper skin layer for 6 h to prevent transdermal delivery and systemic adverse effects. Thus, it could be concluded that NIC loaded liposomal thermogel system could be an efficacious therapeutic alternative for the management of melanoma.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Valencia Fernandes
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA.
| |
Collapse
|
12
|
Ding Q, Chen K, Liu X, Ding C, Zhao Y, Sun S, Zhang Y, Zhang J, Liu S, Liu W. Modification of taxifolin particles with an enteric coating material promotes repair of acute liver injury in mice through modulation of inflammation and autophagy signaling pathway. Biomed Pharmacother 2022; 152:113242. [PMID: 35691160 DOI: 10.1016/j.biopha.2022.113242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
PURPOSE Taxifolin (TAX) is a flavanol compound with hepatoprotective effect, but its application is severely limited by its poor water solubility and low oral bioavailability. Therefore, it is important to urgently find a method to improve the oral bioavailability of TAX. METHODS In this study, hydroxypropyl methylcellulose acetate succinate modified taxifolin liposomes (HPMCAS-TAX-Lips) were prepared by a thin-film dispersion method, and a series of physicochemical properties of the liposomes were studied. The cumulative in vitro release rates of free TAX, taxifolin liposomes (TAX-Lips), and HPMCAS-TAX-Lips in the simulated gastrointestinal fluid were measured by in vitro release experiments, and the effect of HPMCAS-TAX-Lips on the human hepatoellular carcinomas (HepG2) cells was detected by MTT assay. Finally, the hepatoprotective mechanism of HPMCAS-TAX-Lips was explored through in vivo experiments. RESULTS The results showed that the particle size of HPMCAS-TAX-Lips was 100.44 ± 2.85 nm, the zeta potential was - 51.13 ± 0.57 mV, the PDI was 0.170 ± 0.088, and the EE was 87.9 ± 3.73%. The in vitro release results showed that the cumulative release rates of TAX-Lips and HPMCAS-TAX-Lips in simulated gastric fluid for 24 h were 92.60 ± 5.31% and 66.91 ± 1.20%, respectively. The cumulative release rates in simulated intestinal fluid for 24 h were 72.61 ± 4.38% and 53.94 ± 3.2%, respectively. The results of cytotoxicity experiments proved that HPMCAS-TAX-Lips had a significant inhibitory effect on HepG2 cells. In vivo experiments further showed that HPMCAS-TAX-Lips significantly improved the survival rate of lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury mice and exerted hepatoprotective effects by regulating the expression of autophagy proteins and inhibiting the activation of toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSION This study proved the significant hepatoprotective effect of HMPCAS-TAX-Lips and provided a new idea for the application of TAX.
Collapse
Affiliation(s)
- Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Kecheng Chen
- Starsky Medical Research Center, 136001 Siping, Jilin, China
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Chuanbo Ding
- Jilin Agricultural Science and Technology College, Jilin, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Yiwen Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Jinping Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Shuang Liu
- Goldenwell Biotech, Inc, 50 West Liberty Street, Suite 880, Reno , NV 89501 USA.
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China.
| |
Collapse
|
13
|
Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Adv Colloid Interface Sci 2022; 307:102744. [PMID: 35878506 DOI: 10.1016/j.cis.2022.102744] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 11/22/2022]
Abstract
Alginate-based nanocarriers are propitious vehicles used for the delivery of bioactive compounds (bioactives). In this area, calcium alginate and sodium alginate are the most promising wall materials because they are nontoxic, comparatively cheap, simple in production, biocompatible and biodegradable. In this review, we have highlighted different alginate-based nanocarriers such as nanoparticles, nanofibers, nanoemulsions, nanocomplexes, and nanohydrogels; also entrapment of different bioactives within alginate nanocarriers and their bioavailability in the gastric environment has been comprehensively discussed. Being biopolymers, alginates can be exploited as emulsifiers/ encapsulants for entrapment and delivery of different bioactives such as vitamins, minerals, essential fatty acids, peptides, essential oils, bioactive oils, polyphenols and carotenoids. Furthermore, the use of alginate-based nanocarriers in combination with other polysaccharides/ emulsifiers was recognized as the most effective and favorable approach for the protection, delivery and sustained release of bioactives.
Collapse
|
14
|
Encapsulation of EGCG by Zein-Gum Arabic Complex Nanoparticles and In Vitro Simulated Digestion of Complex Nanoparticles. Foods 2022; 11:foods11142131. [PMID: 35885374 PMCID: PMC9317346 DOI: 10.3390/foods11142131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Epigallocatechin gallate (EGCG) has many excellent qualities such as its antitumor, antiradiation and anti-oxidation properties, but its application is limited because its oral bioavailability is low and stability is poor. In this paper, zein and gum arabic (GA) were used as wall materials to prepare Zein-GA complex nanoparticles for encapsulating and protecting the EGCG. The particle size of Zein-GA-EGCG complex nanoparticles ranged from 128.03–221.23 nm, and the EGCG encapsulation efficiency reached a maximum of 75.23% when the mass ratio of zein to GA was 1:1. The FTIR and XRD results illustrated that the components of the Zein-GA-EGCG complex nanoparticles interacted by electrostatic, hydrogen bonding, and hydrophobic interactions. The EGCG release rate of Zein-GA-EGCG nanoparticles (16.42%) was lower than that of Zein-EGCG (25.52%) during gastric digestion, and a large amount of EGCG was released during intestinal digestion, suggesting that the Zein-GA-EGCG nanoparticles could achieve the sustained release of EGCG during in vitro digestion. Hence, using Zein-GA complexes to encapsulate EGCG effectively increased the encapsulation efficiency of EGCG and realized the purpose of sustained release during simulated gastrointestinal digestion.
Collapse
|
15
|
Chlorophyll encapsulation by complex coacervation and vibration nozzle technology: Characterization and stability study. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Yin X, Dong H, Cheng H, Ji C, Liang L. Sodium caseinate particles with co-encapsulated resveratrol and epigallocatechin-3-gallate for inhibiting the oxidation of fish oil emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Effect of Ca 2+ cross-linking on the properties and structure of lutein-loaded sodium alginate hydrogels. Int J Biol Macromol 2021; 193:53-63. [PMID: 34688674 DOI: 10.1016/j.ijbiomac.2021.10.114] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/21/2022]
Abstract
In order to construct nano-lutein hydrogels with sustained release properties, the basic properties and structure of nano-lutein hydrogels cross-linked with different concentrations of Ca2+ were investigated. The results showed that the highest loading capacity for lutein reached 770.88 μg/g, while the encapsulation efficiency was as high as 99.39%. When Ca2+ concentration was lower than 7.5 mM, the filling of lutein nanoparticles reduced the hardness and gumminess of the hydrogel. The resilience and cohesiveness of the hydrogel decreased as the concentration of Ca2+ increased. Filling with lutein nanoparticles and increasing Ca2+ concentration both increased the G' and G″. The hydrogel loaded with lutein showed different swelling properties in different pH environments, the filling of lutein nanoparticles inhibited the swelling of the hydrogel. When Ca2+ concentration was greater than 7.5 mM, the cut-off amount of lutein on the surface of the Ca2+ cross-linked hydrogel was larger. The digestive enzymes quickly degraded the hydrogel structure, resulting in a high initial release of lutein. DSC and FTIR results showed that lutein nanoparticles were mainly physically trapped in the hydrogel network structure. Lutein nanoparticles and excessive Ca2+ affected the stability of cross-linked ionic bonds in the hydrogel, thereby reducing its thermodynamic stability.
Collapse
|
18
|
Li D, Wei Z, Xue C. Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends. Compr Rev Food Sci Food Saf 2021; 20:5345-5369. [PMID: 34596328 DOI: 10.1111/1541-4337.12840] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023]
Abstract
Due to its advantagessuch as ionic crosslinking, pH responsiveness, excellent biocompatibility, biodegradability and low price, alginate has become one of the most important natural polysaccharides extensively used in constructing desired delivery systems for food bioactive ingredients. In this review, the fundamental knowledge of alginate as a building block for construction of nutraceutical delivery systems is introduced. Then, various types of alginate-based nutraceutical delivery systems are classified and summarized. Furthermore, the future trends of alginate-based delivery systems are highlighted. Currently, alginate-based delivery systems include hydrogel, emulsion, emulsion-filled alginate hydrogel, nanoparticle, microparticle, core-shell particle, liposome, edible film, and aerogel. Although alginate has been widely used in the fabrication of food bioactive ingredient delivery systems, further efforts and improvements are still needed. For this purpose, the future perspectives of alginate-based delivery systems are discussed. The feasible research trends of alginate-based delivery systems include the development of novel large-scale commercial preparation technology, multifunctional delivery system based on alginate, alginate oligosaccharide-based delivery system and alginate-based oleogel. Overall, the objective of this review is to provide useful guidance for rational design and application of alginate-based nutraceutical delivery systems in the future.
Collapse
Affiliation(s)
- Duoduo Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
19
|
Cruz‐Molina AVDL, Ayala Zavala JF, Bernal Mercado AT, Cruz Valenzuela MR, González‐Aguilar GA, Lizardi‐Mendoza J, Brown‐Bojorquez F, Silva‐Espinoza BA. Maltodextrin encapsulation improves thermal and pH stability of green tea extract catechins. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aimara V. De La Cruz‐Molina
- Centro de Investigación en Alimentación y Desarrollo, A.C Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Mexico
| | - Jesus F. Ayala Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Mexico
| | - Ariadna T. Bernal Mercado
- Centro de Investigación en Alimentación y Desarrollo, A.C Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Mexico
| | - Manuel R. Cruz Valenzuela
- Centro de Investigación en Alimentación y Desarrollo, A.C Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Mexico
| | - Gustavo A. González‐Aguilar
- Centro de Investigación en Alimentación y Desarrollo, A.C Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Mexico
| | - Jaime Lizardi‐Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Mexico
| | | | - Brenda A. Silva‐Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Mexico
| |
Collapse
|
20
|
Šturm L, Poklar Ulrih N. Basic Methods for Preparation of Liposomes and Studying Their Interactions with Different Compounds, with the Emphasis on Polyphenols. Int J Mol Sci 2021; 22:6547. [PMID: 34207189 PMCID: PMC8234105 DOI: 10.3390/ijms22126547] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Studying the interactions between lipid membranes and various bioactive molecules (e.g., polyphenols) is important for determining the effects they can have on the functionality of lipid bilayers. This knowledge allows us to use the chosen compounds as potential inhibitors of bacterial and cancer cells, for elimination of viruses, or simply for keeping our healthy cells in good condition. As studying those effect can be exceedingly difficult on living cells, model lipid membranes, such as liposomes, can be used instead. Liposomal bilayer systems represent the most basic platform for studying those interactions, as they are simple, quite easy to prepare and relatively stable. They are especially useful for investigating the effects of bioactive compounds on the structure and kinetics of simple lipid membranes. In this review, we have described the most basic methods available for preparation of liposomes, as well as the essential techniques for studying the effects of bioactive compounds on those liposomes. Additionally, we have provided details for an easy laboratory implementation of some of the described methods, which should prove useful especially to those relatively new on this research field.
Collapse
Affiliation(s)
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| |
Collapse
|
21
|
Yerba mate (Ilex paraguariensis) microparticles modulate antioxidant markers in the plasma and brains of rats. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 2021; 48:107727. [PMID: 33677025 DOI: 10.1016/j.biotechadv.2021.107727] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Conventional liposomes still face many challenges associated with the poor physical and chemical stability, considerable loss of encapsulated cargo, lack of stimulus responsiveness, and rapid elimination from blood circulation. Integration of versatile functional biopolymers has emerged as an attractive strategy to overcome the limitation of usage of liposomes. This review comprehensively summarizes the most recent studies (2015-2020) and their challenges aiming at the exploration of biopolymer-liposome hybrid systems, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, and liposome-in-nanofiber. The physicochemical principles and key technical information underlying the combined strategies for the fabrication of polymeric liposomes, the advantages and limitations of each of the systems, and the stabilization mechanisms are discussed through various case studies. Special emphasis is directed toward the synergistic efficiencies of biopolymers and phospholipid bilayers on encapsulation, protection, and controlled delivery of bioactives (e.g., vitamins, carotenoids, phenolics, peptides, and other health-related compounds) for the biomedical, pharmaceutical, cosmetic, and functional food applications. The major challenges, opportunities, and possible further developments for future studies are also highlighted.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
23
|
In vitro digestibility and stability of encapsulated yerba mate extract and its impact on yogurt properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00788-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Improving functionality, bioavailability, nutraceutical and sensory attributes of fortified foods using phenolics-loaded nanocarriers as natural ingredients. Food Res Int 2020; 137:109555. [DOI: 10.1016/j.foodres.2020.109555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
25
|
Kothale D, Verma U, Dewangan N, Jana P, Jain A, Jain D. Alginate as Promising Natural Polymer for Pharmaceutical, Food, and Biomedical Applications. Curr Drug Deliv 2020; 17:755-775. [PMID: 32778024 DOI: 10.2174/1567201817666200810110226] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/10/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Alginates are biopolymers usually obtained from brown seaweed, brown algae (Ochrophyta,
Phaeophyceae), and bacteria (<i>Azatobacter vineland</i> and <i>Pseudomonas</i> species) belonging to the family
of polycationic copolymers. They are biocompatible, biodegradable, non-antigenic, and non-toxic biopolymer
with molecular mass ranges from 32,000-40,000 g/mol in commercial grades. These can be
used as edible films or coatings in food industries and also some natural or chemical additives could
be incorporated into them to modify their functional, mechanical, nutritional as well as organoleptic
properties. Due to their high viscosity and extraordinary shear-thinning effect, they can be used as
dietary fibers, thickening, gelling and stabilizing agents. Commercial alginates have vast applications
in the fields of biomedical engineering, biotechnology, environmental contaminants treatments, food
processing, and pharmaceuticals. Alginates can be used in wound dressings, bone regeneration,
neovascularization, protein delivery, cell delivery, theranostic agents, oral drug delivery, controlled
release systems, raft formulations, immobilization of biological agents and treatment of environmental
contaminants. Various carrier systems can be formulated by the use of alginates like hydrogel,
tablets, microcapsules, films, matrices, microspheres, liposomes, nanoparticles, beads, cochleate,
floating and supersaturated drug delivery systems. This review presents a broad range of promising
applications of alginates, and it can be a great interest to scientists and industries engaged in exploring
its hidden potential.
Collapse
Affiliation(s)
- Dhalendra Kothale
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar (M.P.) 470 003, India
| | - Utsav Verma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar (M.P.) 470 003, India
| | - Nagesh Dewangan
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar (M.P.) 470 003, India
| | - Partha Jana
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar (M.P.) 470 003, India
| | - Ankit Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar (M.P.) 470 003, India
| | - Dharmendra Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar (M.P.) 470 003, India
| |
Collapse
|
26
|
Liposomal Encapsulation of Oleuropein and an Olive Leaf Extract: Molecular Interactions, Antioxidant Effects and Applications in Model Food Systems. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09650-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe influence of actively/passively encapsulated oleuropein on DPPC liposomes thermal and structural properties, and its antioxidant capacity against lipid peroxidation were investigated. Also, an oleuropein-rich olive leaf extract was encapsulated in soy phosphatidylcholine (PL-90 g) and incorporated in model and commercial drinks. Oleuropein induced a concentration-dependent broadening and splitting of the gel-to-liquid phase transition temperature. Fluorescence measurements revealed a fluidizing effect on liposomes below their gel-to-liquid phase transition temperature, and a higher lipid ordering above, especially to active encapsulation. Oleuropein also showed an antioxidant effect against lipid peroxidation in PL-90 g liposomes. PL-90 g Liposomes with olive leaf extract showed a mean diameter of 405 ± 4 nm and oleuropein encapsulation efficiency of 34% and delayed oleuropein degradation at pH 2.0 and 2.8 model drinks. In conclusion, greater effects were observed on the structure and fluidity of DPPC liposomes when oleuropein was actively encapsulated, while its incorporation into acidic foods in encapsulated form could enhance its stability.
Collapse
|
27
|
Hassane Hamadou A, Huang WC, Xue C, Mao X. Comparison of β-carotene loaded marine and egg phospholipids nanoliposomes. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Formulation of vitamin C encapsulation in marine phospholipids nanoliposomes: Characterization and stability evaluation during long term storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Sharifi-Rad M, Pezzani R, Redaelli M, Zorzan M, Imran M, Ahmed Khalil A, Salehi B, Sharopov F, Cho WC, Sharifi-Rad J. Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer. Molecules 2020; 25:E467. [PMID: 31979082 PMCID: PMC7037968 DOI: 10.3390/molecules25030467] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is the main bioactive component of catechins predominantly present in svarious types of teas. EGCG is well known for a wide spectrum of biological activity as an anti-oxidative, anti-inflammatory, and anti-tumor agent. The effect of EGCG on cell death mechanisms via the induction of apoptosis, necrosis, and autophagy has been documented. Moreover, its anti-proliferative and chemopreventive action has been demonstrated in many cancer cell lines. It was also involved in the modulation of cyclooxygenase-2, in oxidative stress and inflammation of different cell processes. EGCG has been reported as a promising target for plasma membrane proteins, such as epidermal growth factor receptor (EGFR). In addition, it has been demonstrated a mechanism of action relying on the inhibition of ERK1/2, p38 MAPK, NF-κB, and vascular endothelial growth factor (VEGF). EGCG and its derivatives were used in proteasome inhibition and they were involved in epigenetic mechanisms. In summary, EGCG is the most predominant and bioactive constituent of teas and it has a pivotal role in cancer prevention. Its preclinical pharmacological activities are associated with complex molecular mechanisms that involve numerous signaling pathways.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Maira Zorzan
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| |
Collapse
|
30
|
Osojnik Črnivec IG, Istenič K, Skrt M, Poklar Ulrih N. Thermal protection and pH-gated release of folic acid in microparticles and nanoparticles for food fortification. Food Funct 2020; 11:1467-1477. [DOI: 10.1039/c9fo02419k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dispersed folic acid was successfully encapsulated in alginate–pectin hydrogels, proliposomes, and combinations thereof, providing an efficient pH-responsive delivery system.
Collapse
Affiliation(s)
- Ilja Gasan Osojnik Črnivec
- Chair of Biochemistry and Food Chemistry
- Department of Food Science and Technology
- Biotechnical Faculty
- University of Ljubljana
- SI-1000 Ljubljana
| | - Katja Istenič
- Chair of Biochemistry and Food Chemistry
- Department of Food Science and Technology
- Biotechnical Faculty
- University of Ljubljana
- SI-1000 Ljubljana
| | - Mihalea Skrt
- Chair of Biochemistry and Food Chemistry
- Department of Food Science and Technology
- Biotechnical Faculty
- University of Ljubljana
- SI-1000 Ljubljana
| | - Nataša Poklar Ulrih
- Chair of Biochemistry and Food Chemistry
- Department of Food Science and Technology
- Biotechnical Faculty
- University of Ljubljana
- SI-1000 Ljubljana
| |
Collapse
|
31
|
Shelf-life of shucked oyster in epigallocatechin-3-gallate with slightly acidic electrolyzed water washing under refrigeration temperature. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Feng S, Sun Y, Wang P, Sun P, Ritzoulis C, Shao P. Co‐encapsulation of resveratrol and epigallocatechin gallate in low methoxyl pectin‐coated liposomes with great stability in orange juice. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simin Feng
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Yuxin Sun
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Pei Wang
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Peilong Sun
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Christos Ritzoulis
- Department of Food Technology ATEI of Thessaloniki 574000 Thessaloniki Greece
| | - Ping Shao
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| |
Collapse
|
33
|
Pires F, Geraldo VPN, Rodrigues B, Granada-Flor AD, de Almeida RFM, Oliveira ON, Victor BL, Machuqueiro M, Raposo M. Evaluation of EGCG Loading Capacity in DMPC Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6771-6781. [PMID: 31006246 DOI: 10.1021/acs.langmuir.9b00372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Catechins are molecules with potential use in different pathologies such as diabetes and cancer, but their pharmaceutical applications are often hindered by their instability in the bloodstream. This issue can be circumvented using liposomes as their nanocarriers for in vivo delivery. In this work, we studied the molecular details of (-)-epigallocatechin-3-gallate (EGCG) interacting with 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) monolayer/bilayer systems to understand the catechin loading ability and liposome stability, using experimental and computational techniques. The molecular dynamics simulations show the EGCG molecules deep inside the lipid bilayer, positioned below the lipid ester groups, generating a concentration-dependent lipid condensation. This effect was also inferred from the surface pressure isotherms of DMPC monolayers. In the polarization-modulated infrared reflection absorption spectra assays, the predominant effect at higher concentrations of EGCG (e.g., 20 mol %) was an increase in lipid tail disorder. The steady-state fluorescence data confirmed this disordered state, indicating that the catechin-induced liposome aggregation outweighs the condensation effects. Therefore, by adding more than 10 mol % EGCG to the liposomes, a destabilization of the vesicles occurs with the ensuing release of entrapped catechins. The loading capacity for DMPC seems to be limited by its disordered lipid arrangements, typical of a fluid phase. To further increase the clinical usefulness of liposomes, lipid bilayers with more stable and organized assemblies should be employed to avoid aggregation at large concentrations of catechin.
Collapse
Affiliation(s)
- Filipa Pires
- Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| | - Vananélia P N Geraldo
- Instituto de Física de São Carlos , Universidade de São Paulo , 13560-970 Sao Carlos , Brazil
| | - Bárbara Rodrigues
- Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| | - António de Granada-Flor
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica , Faculdade de Ciências da Universidade de Lisboa , Campo Grande, 1749-016 Lisboa , Portugal
| | - Rodrigo F M de Almeida
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica , Faculdade de Ciências da Universidade de Lisboa , Campo Grande, 1749-016 Lisboa , Portugal
| | - Osvaldo N Oliveira
- Instituto de Física de São Carlos , Universidade de São Paulo , 13560-970 Sao Carlos , Brazil
| | - Bruno L Victor
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica , Faculdade de Ciências da Universidade de Lisboa , Campo Grande, 1749-016 Lisboa , Portugal
| | - Miguel Machuqueiro
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica , Faculdade de Ciências da Universidade de Lisboa , Campo Grande, 1749-016 Lisboa , Portugal
| | - Maria Raposo
- Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| |
Collapse
|
34
|
Tian M, Han J, Ye A, Liu W, Xu X, Yao Y, Li K, Kong Y, Wei F, Zhou W. Structural characterization and biological fate of lactoferrin-loaded liposomes during simulated infant digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2677-2684. [PMID: 30338536 DOI: 10.1002/jsfa.9435] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/15/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Limited information is concerned on the structure changes of liposomal delivery system under infant conditions. Positively charged lactoferrin (LF)-loaded liposomes, with the entrapment efficiency (EE) of 52.3 ± 6.3%, were prepared from soybean-derived phospholipids using a thin-layer dispersion method. The structure changes and digestibility of LF-loaded liposomes under infant conditions, including simulated gastric fluid (SGF) and simulated small intestinal fluid (SIF), were characterized in terms of the average particle size, zeta potential, turbidity, fourier transform infrared, transmission electron microscopy, lipolysis and protein hydrolysis. RESULTS This study showed that the functional groups, favorable membrane structure and the EE of liposomes were slightly changed as a function of time when the liposome digested under SGF conditions. However, the intact bilayer structures were damaged and the EE of LF-loaded liposomes decreased to 28.5% after digestion in infant SIF. CONCLUSION These results suggested that liposomal membrane could prevent the gastric degradation and the structure of liposomes was not completely destroyed with a low concentration of pancreatin and bile salts under infant conditions. Present study provided information on the insight into the characteristics of liposomes during infant gastrointestinal digestion, which was useful for the development of microcapsule systems in infant diet. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengmeng Tian
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Aiqian Ye
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Weilin Liu
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiankang Xu
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yixin Yao
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kexuan Li
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Youyu Kong
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fuqiang Wei
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wei Zhou
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
35
|
Wu J, Guan R, Huang H, Liu Z, Shen H, Xia Q. Effect of catechin liposomes on the nitrosamines and quality of traditional Chinese bacon. Food Funct 2019; 10:625-634. [DOI: 10.1039/c8fo01677a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liposomes are capable of increasing the nitrosamine inhibition of catechins in traditional Chinese bacon after long-term storage.
Collapse
Affiliation(s)
- Jieyu Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine
- China Jiliang University
- Hangzhou 310018
- China
| | - Rongfa Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine
- China Jiliang University
- Hangzhou 310018
- China
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine
- China Jiliang University
- Hangzhou 310018
- China
| | - Zhenfeng Liu
- Chiatai Qingchunbao Pharmaceutical Co
- LTD
- Hangzhou 310023
- China
| | - Haitao Shen
- Zhejiang Provincial Center for Disease Control and Prevention
- Hangzhou 310051
- China
| | - Qile Xia
- Food Science Institute
- Zhejiang Academy of Agricultural Sciences
- Hangzhou 310021
- China
| |
Collapse
|
36
|
Wu J, Guan R, Cao G, Liu Z, Wang Z, Shen H, Xia Q. Antioxidant and Antimicrobial Effects of Catechin Liposomes on Chinese Dried Pork. J Food Prot 2018; 81:827-834. [PMID: 29648930 DOI: 10.4315/0362-028x.jfp-17-452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, catechin (CT), catechin liposome (CTL), and α-tocopherol (TP) were added to Chinese dried pork to achieve a healthy lipid composition. Their effectiveness in prevention of lipid oxidation was determined by measuring the values of thiobarbituric acid-reactive substances and peroxides. The total viable count in samples was used to identify the antimicrobial activities of CT, CTL, and TP, and the pH values of the samples were determined. Chinese dried pork with antioxidants added at 600 mg/kg was subjected to sensory evaluation. Thiobarbituric acid-reactive substance values, peroxide values, and total viable counts indicated that CTL significantly enhanced the antioxidant and antibacterial effects of CT on Chinese dried pork, especially after storage at room temperature for 25 days. Compared with the two other antioxidants, CTL could better maintain the pH stability of Chinese dried pork at room temperature. Sensory evaluation revealed that the scores of CTL were better than those of CT and TP in terms of preserving the color, flavor, tenderness, and overall acceptability of Chinese dried pork. Use of CTL in Chinese dried pork had good antioxidant and antibacterial effects and maintained color, flavor, and tenderness at a relatively stable level, suggesting that CTL could be used as an antioxidant in Chinese dried pork to enhance oxidative stability and prolong shelf life.
Collapse
Affiliation(s)
- Jieyu Wu
- 1 Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Rongfa Guan
- 1 Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Guozhou Cao
- 2 Ningbo Academy of Inspection and Quarantine, Ningbo Yingyi Road No. 66 A Building, Room 518, Ningbo 315012, People's Republic of China
| | - Zhenfeng Liu
- 3 Chiatai Qingchunbao Pharmaceutical Co., Ltd., No. 551 Xixi Road, Hangzhou 310023, People's Republic of China
| | - Zhe Wang
- 1 Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Haitao Shen
- 4 Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, People's Republic of China
| | - Qile Xia
- 5 Food Science Institute, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Hangzhou 310021, People's Republic of China
| |
Collapse
|
37
|
Nikoo M, Regenstein JM, Ahmadi Gavlighi H. Antioxidant and Antimicrobial Activities of (-)-Epigallocatechin-3-gallate (EGCG) and its Potential to Preserve the Quality and Safety of Foods. Compr Rev Food Sci Food Saf 2018; 17:732-753. [PMID: 33350134 DOI: 10.1111/1541-4337.12346] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
Abstract
Quality deterioration of fresh or processed foods is a major challenge for the food industry not only due to economic losses but also due to the risks associated with spoiled foods resulting, for example, from toxic compounds. On the other hand, there are increasing limitations on the application of synthetic preservatives such as antioxidants in foods because of their potential links to human health risks. With the new concept of functional ingredients and the development of the functional foods market, and the desire for a "clean" label, recent research has focused on finding safe additives with multifunctional effects to ensure food safety and quality. (-)-Epigallocatechin-3-gallate (EGCG), a biologically active compound in green tea, has received considerable attention in recent years and is considered a potential alternative to synthetic food additives. EGCG has been shown to prevent the growth of different Gram-positive and Gram-negative bacteria responsible for food spoilage while showing antioxidant activity in food systems. This review focuses on recent findings related to EGCG separation techniques, modification of its structure, mechanisms of antioxidant and antimicrobial activities, and applications in preserving the quality and safety of foods.
Collapse
Affiliation(s)
- Mehdi Nikoo
- the Dept. of Pathobiology and Quality Control, Artemia and Aquaculture Research Inst., Urmia Univ., Urmia, West Azerbaijan, 57561-51818, Iran
| | - Joe M Regenstein
- Dept. of Food Science, Cornell Univ., Ithaca, N.Y., 14853-7201, U.S.A
| | - Hassan Ahmadi Gavlighi
- Dept. of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares Univ., Tehran, 14115-336, Iran
| |
Collapse
|
38
|
Shi M, Shi YL, Li XM, Yang R, Cai ZY, Li QS, Ma SC, Ye JH, Lu JL, Liang YR, Zheng XQ. Food-grade Encapsulation Systems for (-)-Epigallocatechin Gallate. Molecules 2018; 23:E445. [PMID: 29462972 PMCID: PMC6017944 DOI: 10.3390/molecules23020445] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/23/2022] Open
Abstract
(-)-Epigallocatechin gallate (EGCG) has attracted significant research interest due to its health-promoting effects such as antioxidation, anti-inflammation and anti-cancer activities. However, its instability and poor bioavailability have largely limited its efficacy and application. Food-grade materials such as proteins, carbohydrates and lipids show biodegradability, biocompatibility and biofunctionality properties. Food-grade encapsulation systems are usually used to improve the bioavailability of EGCG. In the present paper, we provide an overview of materials and techniques used in encapsulating EGCG, in which the adsorption mechanisms of food-grade systems during in vitro digestion are reviewed. Moreover, the potential challenges and future work using food-grade encapsulates for delivering EGCG are also discussed.
Collapse
Affiliation(s)
- Meng Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yun-Long Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xu-Min Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Rui Yang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Shi-Cheng Ma
- Liupao Tea Academy, Wuzhou 543003, Guangxi, China. .
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Speranza B, Petruzzi L, Bevilacqua A, Gallo M, Campaniello D, Sinigaglia M, Corbo MR. Encapsulation of Active Compounds in Fruit and Vegetable Juice Processing: Current State and Perspectives. J Food Sci 2017; 82:1291-1301. [DOI: 10.1111/1750-3841.13727] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Barbara Speranza
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Leonardo Petruzzi
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Antonio Bevilacqua
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Mariangela Gallo
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Daniela Campaniello
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Maria Rosaria Corbo
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| |
Collapse
|
40
|
Balanč B, Trifković K, Đorđević V, Marković S, Pjanović R, Nedović V, Bugarski B. Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Shin YC, Shin DM, Lee EJ, Lee JH, Kim JE, Song SH, Hwang DY, Lee JJ, Kim B, Lim D, Hyon SH, Lim YJ, Han DW. Hyaluronic Acid/PLGA Core/Shell Fiber Matrices Loaded with EGCG Beneficial to Diabetic Wound Healing. Adv Healthc Mater 2016; 5:3035-3045. [PMID: 27805803 DOI: 10.1002/adhm.201600658] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/02/2016] [Indexed: 01/13/2023]
Abstract
During the last few decades, considerable research on diabetic wound healing strategies has been performed, but complete diabetic wound healing remains an unsolved problem, which constitutes an enormous biomedical burden. Herein, hyaluronic acid (HA)/poly(lactic-co-glycolic acid, PLGA) core/shell fiber matrices loaded with epigallocatechin-3-O-gallate (EGCG) (HA/PLGA-E) are fabricated by coaxial electrospinning. HA/PLGA-E core/shell fiber matrices are composed of randomly-oriented sub-micrometer fibers and have a 3D porous network structure. EGCG is uniformly dispersed in the shell and sustainedly released from the matrices in a stepwise manner by controlled diffusion and PLGA degradation over four weeks. EGCG does not adversely affect the thermomechanical properties of HA/PLGA-E matrices. The number of human dermal fibroblasts attached on HA/PLGA-E matrices is appreciably higher than that on HA/PLGA counterparts, while their proliferation is steadily retained on HA/PLGA-E matrices. The wound healing activity of HA/PLGA-E matrices is evaluated in streptozotocin-induced diabetic rats. After two weeks of surgical treatment, the wound areas are significantly reduced by the coverage with HA/PLGA-E matrices resulting from enhanced re-epithelialization/neovascularization and increased collagen deposition, compared with no treatment or HA/PLGA. In conclusion, the HA/PLGA-E matrices can be potentially exploited to craft strategies for the acceleration of diabetic wound healing and skin regeneration.
Collapse
Affiliation(s)
- Yong Cheol Shin
- Department of Cogno-Mechatronics Engineering; College of Nanoscience & Nanotechnology; Pusan National University; Busan 46241 Korea
| | - Dong-Myeong Shin
- Research Center for Energy Convergence Technology; Pusan National University; Busan 46241 Korea
| | - Eun Ji Lee
- Department of Cogno-Mechatronics Engineering; College of Nanoscience & Nanotechnology; Pusan National University; Busan 46241 Korea
| | - Jong Ho Lee
- Department of Cogno-Mechatronics Engineering; College of Nanoscience & Nanotechnology; Pusan National University; Busan 46241 Korea
| | - Ji Eun Kim
- Department of Biomaterials Science; College of Natural Resources and Life Science; Life and Industry Convergence Research Institute; Pusan National University; Miryang 50463 Korea
| | - Sung Hwa Song
- Department of Biomaterials Science; College of Natural Resources and Life Science; Life and Industry Convergence Research Institute; Pusan National University; Miryang 50463 Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science; College of Natural Resources and Life Science; Life and Industry Convergence Research Institute; Pusan National University; Miryang 50463 Korea
| | - Jun Jae Lee
- Department of Prosthodontics; Dental Research Institute; School of Dentistry; Seoul National University; Seoul 03080 Korea
| | - Bongju Kim
- Dental Life Science Research Institute; Seoul National University Dental Hospital; Seoul 03080 Korea
| | - Dohyung Lim
- Department of Mechanical Engineering; Sejong University; Seoul 05006 Korea
| | - Suong-Hyu Hyon
- Center for Fiber and Textile Science; Kyoto Institute of Technology; Kyoto 606-8585 Japan
| | - Young-Jun Lim
- Department of Prosthodontics; Dental Research Institute; School of Dentistry; Seoul National University; Seoul 03080 Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering; College of Nanoscience & Nanotechnology; Pusan National University; Busan 46241 Korea
| |
Collapse
|