1
|
Campbell WA, Makary MS. Advances in Image-Guided Ablation Therapies for Solid Tumors. Cancers (Basel) 2024; 16:2560. [PMID: 39061199 PMCID: PMC11274819 DOI: 10.3390/cancers16142560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Image-guided solid tumor ablation methods have significantly advanced in their capability to target primary and metastatic tumors. These techniques involve noninvasive or percutaneous insertion of applicators to induce thermal, electrochemical, or mechanical stress on malignant tissue to cause tissue destruction and apoptosis of the tumor margins. Ablation offers substantially lower risks compared to traditional methods. Benefits include shorter recovery periods, reduced bleeding, and greater preservation of organ parenchyma compared to surgical intervention. Due to the reduced morbidity and mortality, image-guided tumor ablation offers new opportunities for treatment in cancer patients who are not candidates for resection. Currently, image-guided ablation techniques are utilized for treating primary and metastatic tumors in various organs with both curative and palliative intent, including the liver, pancreas, kidneys, thyroid, parathyroid, prostate, lung, breast, bone, and soft tissue. The invention of new equipment and techniques is expanding the criteria of eligible patients for therapy, as now larger and more high-risk tumors near critical structures can be ablated. This article provides an overview of the different imaging modalities, noninvasive, and percutaneous ablation techniques available and discusses their applications and associated complications across various organs.
Collapse
Affiliation(s)
- Warren A. Campbell
- Division of Vascular and Interventional Radiology, Department of Radiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mina S. Makary
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Adamou P, Harkou E, Villa A, Constantinou A, Dimitratos N. Ultrasonic reactor set-ups and applications: A review. ULTRASONICS SONOCHEMISTRY 2024; 107:106925. [PMID: 38810367 PMCID: PMC11157283 DOI: 10.1016/j.ultsonch.2024.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Sonochemistry contributes to green science as it uses less hazardous solvents and methods to carry out a reaction. In this review, different reactor designs are discussed in detail providing the necessary knowledge for implementing various processes. The main characteristics of ultrasonic batch systems are their low cost and enhanced mixing; however, they still have immense drawbacks such as their scalability. Continuous flow reactors offer enhanced production yields as the limited cognition which governs the design of these sonoreactors, renders them unusable in industry. In addition, microstructured sonoreactors show improved heat and mass transfer phenomena due to their small size but suffer though from clogging. The optimisation of various conditions of regulations, such as temperature, frequency of ultrasound, intensity of irradiation, sonication time, pressure amplitude and reactor design, it is also discussed to maximise the production rates and yields of reactions taking place in sonoreactors. The optimisation of operating parameters and the selection of the reactor system must be considered to each application's requirements. A plethora of different applications that ultrasound waves can be implemented are in the biochemical and petrochemical engineering, the chemical synthesis of materials, the crystallisation of organic and inorganic substances, the wastewater treatment, the extraction processes and in medicine. Sonochemistry must overcome challenges that consider the scalability of processes and its embodiment into commercial applications, through extensive studies for understanding the designs and the development of computational tools to implement timesaving and efficient theoretical studies.
Collapse
Affiliation(s)
- Panayiota Adamou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Eleana Harkou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Alberto Villa
- Dipartimento di Chimica, Universitá degli Studi di Milano, via Golgi, 20133 Milan, Italy
| | - Achilleas Constantinou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus.
| | - Nikolaos Dimitratos
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, viale Risorgimento 4, 40136 Bologna, Italy; Center for Chemical Catalysis - C3, University of Bologna, viale Risorgimento 4, 40136 Bologna, Italy.
| |
Collapse
|
3
|
Zulkifli D, Manan HA, Yahya N, Hamid HA. The Applications of High-Intensity Focused Ultrasound (HIFU) Ablative Therapy in the Treatment of Primary Breast Cancer: A Systematic Review. Diagnostics (Basel) 2023; 13:2595. [PMID: 37568958 PMCID: PMC10417478 DOI: 10.3390/diagnostics13152595] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND This study evaluates the role of high-intensity focused ultrasound (HIFU) ablative therapy in treating primary breast cancer. METHODS PubMed and Scopus databases were searched according to the PRISMA guidelines to identify studies from 2002 to November 2022. Eligible studies were selected based on criteria such as experimental study type, the use of HIFU therapy as a treatment for localised breast cancer with objective clinical evaluation, i.e., clinical, radiological, and pathological outcomes. Nine studies were included in this study. RESULTS Two randomised controlled trials and seven non-randomised clinical trials fulfilled the inclusion criteria. The percentage of patients who achieved complete (100%) coagulation necrosis varied from 17% to 100% across all studies. Eight of the nine studies followed the treat-and-resect protocol in which HIFU-ablated tumours were surgically resected for pathological evaluation. Most breast cancers were single, solitary, and palpable breast tumours. Haematoxylin and eosin stains used for histopathological evaluation showed evidence of coagulation necrosis. Radiological evaluation by MRI showed an absence of contrast enhancement in the HIFU-treated tumour and 1.5 to 2 cm of normal breast tissue, with a thin peripheral rim of enhancement indicative of coagulation necrosis. All studies did not report severe complications, i.e., haemorrhage and infection. Common complications related to HIFU ablation were local mammary oedema, pain, tenderness, and mild to moderate burns. Only one third-degree burn was reported. Generally, the cosmetic outcome was good. The five-year disease-free survival rate was 95%, as reported in two RCTs. CONCLUSIONS HIFU ablation can induce tumour coagulation necrosis in localised breast cancer, with a favourable safety profile and cosmetic outcome. However, there is variable evidence of complete coagulation necrosis in the HIFU-treated tumour. Histopathological evidence of coagulation necrosis has been inconsistent, and there is no reliable radiological modality to assess coagulation necrosis confidently. Further exploration is needed to establish the accurate ablation margin with a reliable radiological modality for treatment and follow-up. HIFU therapy is currently limited to single, palpable breast tumours. More extensive and randomised clinical trials are needed to evaluate HIFU therapy for breast cancer, especially where the tumour is left in situ.
Collapse
Affiliation(s)
- Dania Zulkifli
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (D.Z.); (H.A.H.)
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (D.Z.); (H.A.H.)
- Department of Radiology and Intervency, Hospital Pakar Kanak-Kanak (Children Specialist Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy Program, Centre for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Hamzaini Abdul Hamid
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (D.Z.); (H.A.H.)
- Department of Radiology and Intervency, Hospital Pakar Kanak-Kanak (Children Specialist Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Palumbo P, Daffinà J, Bruno F, Arrigoni F, Splendiani A, Di Cesare E, Barile A, Masciocchi C. Basics in Magnetic Resonance guided Focused Ultrasound: technical basis and clinical application. A brief overview. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021403. [PMID: 34505842 PMCID: PMC8477067 DOI: 10.23750/abm.v92is5.11881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
First applications of high focused ultrasound as intracranial ablative therapy were firstly described in early 50’. Since then, the technological innovations have shown an increasingly safe and effective face of this technique. And in the last few years, Magnetic Resonance (MR) guided Focused Ultrasound (gFUS) has become a valid minimally invasive technique in the treatment of several diseases, from bone tumors to symptomatic uterine fibroids or essential tremors. MR guidance, through the tomographic view, offers the advantage of an accurate target detection and treatment planning. Moreover, real-time monitoring sequences allow to avoid non-target ablation. An adequate knowledge of FUS is essential to understand its clinical effectiveness. Therefore, this brief review aims to debate the physical characteristics of US and the main fields of clinical application.
Collapse
Affiliation(s)
- Pierpaolo Palumbo
- Department of Diagnostic Imaging, area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, Italy and Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
| | - Julia Daffinà
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy and Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
| | - Francesco Arrigoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Ernesto Di Cesare
- Department of Clinical Medicine, Public Health, Life and Environmental Science, University of L'Aquila, L'Aquila, Italy.
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
5
|
Tonguc T, Strunk H, Gonzalez-Carmona MA, Recker F, Lütjohann D, Thudium M, Conrad R, Becher MU, Savchenko O, Davidova D, Luechters G, Mustea A, Strassburg CP, Attenberger U, Pieper CC, Jenne J, Marinova M. US-guided high-intensity focused ultrasound (HIFU) of abdominal tumors: outcome, early ablation-related laboratory changes and inflammatory reaction. A single-center experience from Germany. Int J Hyperthermia 2021; 38:65-74. [PMID: 34420445 DOI: 10.1080/02656736.2021.1900926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION High-intensity focused ultrasound (HIFU) is an innovative noninvasive procedure for local ablation of different benign and malignant tumors. Preliminary data of animal studies suggest an ablation-associated immune response after HIFU that is induced by cell necrosis and release of intracellular components. The aim of this study is to evaluate if a HIFU-induced early sterile inflammatory reaction is initiated after ablation of uterine fibroids (UF) and pancreatic carcinoma (PaC) which might contribute to the therapeutic effect. MATERIAL AND METHODS A hundred patients with PaC and 30 patients with UF underwent US-guided HIFU treatment. Serum markers of inflammation (leukocytes, CRP, IL-6) and LDH in both collectives as well as tumor markers CA 19-9, CEA and CYFRA in PaC patients were determined in sub-cohorts before and directly after HIFU (0, 2, 5 and 20 h post-ablation) as well as at 3, 6, 9 and 12 months follow-up. Peri-/post interventional imaging included contrast-enhanced MRI of both cohorts and an additional CT scan of PaC patients. RESULTS An early post-ablation inflammatory response was observed in both groups with a significant increase of leukocytes, CRP and LDH within the first 20 h after HIFU. Interestingly, IL-6 was increased at 20 h after HIFU in PaC patients. A significant reduction of tumor volumes was observed during one year follow-up (p < .001) for both tumor entities demonstrating effective treatment outcome. CONCLUSION Tumor ablation with HIFU induces an early sterile inflammation that might serve as a precondition for long-term tumor immunity and a sustainable therapeutic effect.
Collapse
Affiliation(s)
- Tolga Tonguc
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Holger Strunk
- Department of Radiology, Städtisches Klinikum Solingen, Solingen, Germany
| | | | - Florian Recker
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Dieter Lütjohann
- Department of Clinical Pharmacology and Laboratory Medicine, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Marcus Thudium
- Department of Anesthesiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Rupert Conrad
- Clinic and Polyclinic for Psychosomatic Medicine and Psychotherapy, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Marc U Becher
- Department of Internal Medicine I, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Oleksandr Savchenko
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Darya Davidova
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Guido Luechters
- Center for Development Research (ZEF), University Bonn, Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Jürgen Jenne
- Fraunhofer Institute for Digital Medicine, MEVIS, Bremen, Germany
| | - Milka Marinova
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| |
Collapse
|
6
|
High-Intensity Focused Ultrasound: A Review of Mechanisms and Clinical Applications. Ann Biomed Eng 2021; 49:1975-1991. [PMID: 34374945 DOI: 10.1007/s10439-021-02833-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 01/20/2023]
Abstract
High Intensity Focused Ultrasound (HIFU) is an emerging and increasingly useful modality in the treatment of cancer and other diseases. Although traditional use of ultrasound at lower frequencies has primarily been for diagnostic imaging purposes, the development of HIFU has allowed this particular modality to expand into therapeutic use. This non-invasive and acoustic method involves the use of a piezoelectric transducer to deliver high-energy pulses in a spatially coordinated manner, while minimizing damage to tissue outside the target area. This review describes the history of the development of diagnostic and therapeutic ultrasound and explores the biomedical applications utilizing HIFU technology including thermally ablative treatment, therapeutic delivery mechanisms, and neuromodulatory phenomena. The application of HIFU across various tumor types in multiple organ systems is explored in depth, with particular attention to successful models of HIFU in the treatment of various medical conditions. Basic mechanisms, preclinical models, previous clinical use, and ongoing clinical trials are comparatively discussed. Recent advances in HIFU across multiple medical fields reveal the growing importance of this biomedical technology for the care of patients and for the development of possible pathways for the future use of HIFU as a commonplace treatment modality.
Collapse
|
7
|
Bloemberg J, Van Riel L, Dodou D, Breedveld P. Focal therapy for localized cancer: a patent review. Expert Rev Med Devices 2021; 18:751-769. [PMID: 34139941 DOI: 10.1080/17434440.2021.1943360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Conventional cancer treatments such as radical surgery and systemic therapy targeting the organ or organ system might have side effects because of damage to the surrounding tissue. For this reason, there is a need for new instruments that focally treat cancer. AREAS COVERED This review provides a comprehensive overview of the patent literature on minimally and noninvasive focal therapy instruments to treat localized cancer. The medical section of the Google Patents database was scanned, and 128 patents on focal therapy instruments published in the last two decades (2000-2021) were retrieved and classified. The classification is based on the treatment target (cancer cell or network of cancer cells), treatment purpose (destroy the cancerous structure or disable its function), and treatment means (energy, matter, or a combination of both). EXPERT OPINION We found patents describing instruments for all groups, except for the instruments that destroy a cancer cell network structure by applying matter (e.g. particles) to the network. The description of the different treatment types may serve as a source of inspiration for new focal therapy instruments to treat localized cancer.
Collapse
Affiliation(s)
- Jette Bloemberg
- Bio-Inspired Technology Group (BITE), Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Luigi Van Riel
- Department of Urology and the Department of Biomedical Engineering & Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Dimitra Dodou
- Bio-Inspired Technology Group (BITE), Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Paul Breedveld
- Bio-Inspired Technology Group (BITE), Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
8
|
Hyperthermia by near infrared radiation induced immune cells activation and infiltration in breast tumor. Sci Rep 2021; 11:10278. [PMID: 33986437 PMCID: PMC8119485 DOI: 10.1038/s41598-021-89740-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most common cancer that causes death in women. Conventional therapies, including surgery and chemotherapy, have different therapeutic effects and are commonly associated with risks and side effects. Near infrared radiation is a technique with few side effects that is used for local hyperthermia, typically as an adjuvant to other cancer therapies. The understanding of the use of near NIR as a monotherapy, and its effects on the immune cells activation and infiltration, are limited. In this study, we investigate the effects of HT treatment using NIR on tumor regression and on the immune cells and molecules in breast tumors. Results from this study demonstrated that local HT by NIR at 43 °C reduced tumor progression and significantly increased the median survival of tumor-bearing mice. Immunohistochemical analysis revealed a significant reduction in cells proliferation in treated tumor, which was accompanied by an abundance of heat shock protein 70 (Hsp70). Increased numbers of activated dendritic cells were observed in the draining lymph nodes of the mice, along with infiltration of T cells, NK cells and B cells into the tumor. In contrast, tumor-infiltrated regulatory T cells were largely diminished from the tumor. In addition, higher IFN-γ and IL-2 secretion was observed in tumor of treated mice. Overall, results from this present study extends the understanding of using local HT by NIR to stimulate a favourable immune response against breast cancer.
Collapse
|
9
|
Izadifar Z, Izadifar Z, Chapman D, Babyn P. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J Clin Med 2020; 9:jcm9020460. [PMID: 32046072 PMCID: PMC7073974 DOI: 10.3390/jcm9020460] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/22/2022] Open
Abstract
Ultrasound can penetrate deep into tissues and interact with human tissue via thermal and mechanical mechanisms. The ability to focus an ultrasound beam and its energy onto millimeter-size targets was a significant milestone in the development of therapeutic applications of focused ultrasound. Focused ultrasound can be used as a non-invasive thermal ablation technique for tumor treatment and is being developed as an option to standard oncologic therapies. High-intensity focused ultrasound has now been used for clinical treatment of a variety of solid malignant tumors, including those in the pancreas, liver, kidney, bone, prostate, and breast, as well as uterine fibroids and soft-tissue sarcomas. Magnetic resonance imaging and Ultrasound imaging can be combined with high intensity focused ultrasound to provide real-time imaging during ablation. Magnetic resonance guided focused ultrasound represents a novel non-invasive method of treatment that may play an important role as an alternative to open neurosurgical procedures for treatment of a number of brain disorders. This paper briefly reviews the underlying principles of HIFU and presents current applications, outcomes, and complications after treatment. Recent applications of Focused ultrasound for tumor treatment, drug delivery, vessel occlusion, histotripsy, movement disorders, and vascular, oncologic, and psychiatric applications are reviewed, along with clinical challenges and potential future clinical applications of HIFU.
Collapse
Affiliation(s)
- Zahra Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-7827; Fax: +1-306-966-4651
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Dean Chapman
- Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, Saskatoon, SK S7N 0W8, Canada
| |
Collapse
|
10
|
Kim H, Wu H, Cho N, Zhong P, Mahmood K, Lyerly HK, Jiang X. Miniaturized Intracavitary Forward-Looking Ultrasound Transducer for Tissue Ablation. IEEE Trans Biomed Eng 2019; 67:2084-2093. [PMID: 31765299 DOI: 10.1109/tbme.2019.2954524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This paper aims to develop a miniaturized forward-looking ultrasound transducer for intracavitary tissue ablation, which can be used through an endoscopic device. The internal ultrasound (US) delivery is capable of directly interacting with the target tumor, resolving adverse issues of currently available US devices, such as unintended tissue damage and insufficient delivery of acoustic power. METHODS To transmit a high acoustic pressure from a small aperture (<3 mm), a double layer transducer (1.3 MHz) was designed and fabricated based on numerical simulations. The electric impedance and the acoustic pressure of the actual device was characterized with an impedance analyzer and a hydrophone. Ex vivo tissue ablation tests and temperature monitoring were then conducted with porcine livers. RESULTS The acoustic intensity of the transducer was 37.1 W/cm2 under 250 Vpp and 20% duty cycle. The tissue temperature was elevated to 51.8 °C with a 67 Hz pulse-repetition frequency. The temperature profile in the tissue indicated that ultrasound energy was effectively absorbed inside the tissue. During a 5-min sonification, an approximate tissue volume of 2.5 × 2.5 × 1.0 mm3 was ablated, resulting in an irreversible lesion. CONCLUSION This miniaturized US transducer is a promising medical option for the precise tissue ablation, which can reduce the risk of unintended tissue damage found in noninvasive US treatments. SIGNIFICANCE Having a small aperture (2 mm), the intracavitary device is capable of ablating a bio tissue in 5 min with a relatively low electric power (<17 W).
Collapse
|
11
|
|
12
|
Merckel LG, Verburg E, van der Velden BHM, Loo CE, van den Bosch MAAJ, Gilhuijs KGA. Eligibility of patients for minimally invasive breast cancer therapy based on MRI analysis of tumor proximity to skin and pectoral muscle. Breast J 2017; 24:501-508. [PMID: 29286193 DOI: 10.1111/tbj.12984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/11/2016] [Accepted: 11/16/2017] [Indexed: 11/26/2022]
Abstract
There is growing interest in minimally invasive breast cancer therapy. Eligibility of patients is, however, dependent on several factors related to the tumor and treatment technology. The aim of this study is to assess the proportion of patients eligible for minimally invasive breast cancer therapy for different safety and treatment margins based on breast tumor location. Patients with invasive ductal cancer were selected from the MARGINS cohort. Semiautomatic segmentation of tumor, skin, and pectoral muscle was performed in Magnetic Resonance images. Shortest distances of tumors to critical organs (ie, skin and pectoral muscle) were calculated. Proportions of eligible patients were determined for different safety and treatment margins. Three-hundred-forty-eight patients with 351 tumors were included. If a 10 mm safety margin to skin and pectoral muscle is required without treatment margin, 72.3% of patients would be eligible for minimally invasive treatment. This proportion decreases to 45.9% for an additional treatment margin of 5 mm. Shortest distances between tumors and critical organs are larger in older patients and in patients with less aggressive tumor subtypes. If a 10 mm safety margin to skin and pectoral muscle is required, more than two-thirds of patients would be eligible for minimally invasive breast cancer therapy.
Collapse
Affiliation(s)
- Laura G Merckel
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik Verburg
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.,MIRA - Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Bas H M van der Velden
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claudette E Loo
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Kenneth G A Gilhuijs
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Yildirim A, Chattaraj R, Blum NT, Shi D, Kumar K, Goodwin AP. Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation. Adv Healthc Mater 2017; 6:10.1002/adhm.201700514. [PMID: 28699308 PMCID: PMC5627974 DOI: 10.1002/adhm.201700514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/25/2017] [Indexed: 01/20/2023]
Abstract
The mechanical effects of cavitation can be effective for therapy but difficult to control, thus potentially leading to off-target side effects in patients. While administration of ultrasound active agents such as fluorocarbon microbubbles and nanodroplets can locally enhance the effects of high intensity focused ultrasound (HIFU), it has been challenging to prepare ultrasound active agents that are small and stable enough to accumulate in tumors and internalize into cancer cells. Here, this paper reports the synthesis of 100 nm nanoparticle ultrasound agents based on phospholipid-coated, mesoporous, hydrophobically functionalized silica nanoparticles that can internalize into cancer cells and remain acoustically active. The ultrasound agents produce bubbles when subjected to short HIFU pulses (≈6 µs) with peak negative pressure as low as ≈7 MPa and at particle concentrations down to 12.5 µg mL-1 (7 × 109 particles mL-1 ). Importantly, ultrasound agents are effectively uptaken by cancer cells without cytotoxic effects, but HIFU insonation causes destruction of the cells by the acoustically generated bubbles, as demonstrated by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and lactate dehydrogenase assays and flow cytometry. Finally, it is showed that the HIFU dose required to effectively eliminate cancer cells in the presence of ultrasound agents causes only a small temperature increase of ≈3.5 °C.
Collapse
Affiliation(s)
- Adem Yildirim
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Rajarshi Chattaraj
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Nicholas T Blum
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Dennis Shi
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kaushlendra Kumar
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Andrew P Goodwin
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
14
|
Mauri G, Sconfienza LM, Pescatori LC, Fedeli MP, Alì M, Di Leo G, Sardanelli F. Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: A systematic review and meta-analysis. Eur Radiol 2017; 27:3199-3210. [PMID: 28050693 DOI: 10.1007/s00330-016-4668-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 11/13/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To systematically review studies concerning imaging-guided minimally-invasive breast cancer treatments. METHODS An online database search was performed for English-language articles evaluating percutaneous breast cancer ablation. Pooled data and 95% confidence intervals (CIs) were calculated. Technical success, technique efficacy, minor and major complications were analysed, including ablation technique subgroup analysis and effect of tumour size on outcome. RESULTS Forty-five studies were analysed, including 1,156 patients and 1,168 lesions. Radiofrequency (n=577; 50%), microwaves (n=78; 7%), laser (n=227; 19%), cryoablation (n=156; 13%) and high-intensity focused ultrasound (HIFU, n=129; 11%) were used. Pooled technical success was 96% (95%CI 94-97%) [laser=98% (95-99%); HIFU=96% (90-98%); radiofrequency=96% (93-97%); cryoablation=95% (90-98%); microwave=93% (81-98%)]. Pooled technique efficacy was 75% (67-81%) [radiofrequency=82% (74-88); cryoablation=75% (51-90); laser=59% (35-79); HIFU=49% (26-74)]. Major complications pooled rate was 6% (4-8). Minor complications pooled rate was 8% (5-13%). Differences between techniques were not significant for technical success (p=0.449), major complications (p=0.181) or minor complications (p=0.762), but significant for technique efficacy (p=0.009). Tumour size did not impact on variables (p>0.142). CONCLUSIONS Imaging-guided percutaneous ablation techniques of breast cancer have a high rate of technical success, while technique efficacy remains suboptimal. Complication rates are relatively low. KEY POINTS • Imaging-guided ablation techniques for breast cancer are 96% technically successful. • Overall technique efficacy rate is 75% but largely inhomogeneous among studies. • Overall major and minor complication rates are low (6-8%).
Collapse
Affiliation(s)
- Giovanni Mauri
- Dipartimento di Radiologia Interventistica, Istituto Europeo di Oncologia, Via Ripamonti 435, 20100, Milano, Italy.
| | - Luca Maria Sconfienza
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20100, Milano, Italy.,Unità Operativa di Radiologia / Diagnostica per Immagini con Servizio di Radiologia Interventistica, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161, Milano, Italy
| | - Lorenzo Carlo Pescatori
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milano, Italy
| | - Maria Paola Fedeli
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milano, Italy
| | - Marco Alì
- Integrative Biomedical Research PhD Program, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milano, Italy
| | - Giovanni Di Leo
- Unità di Radiologia, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy
| | - Francesco Sardanelli
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20100, Milano, Italy.,Unità di Radiologia, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy
| |
Collapse
|
15
|
|
16
|
Thermal Ablative Therapies and Immune Checkpoint Modulation: Can Locoregional Approaches Effect a Systemic Response? Gastroenterol Res Pract 2016; 2016:9251375. [PMID: 27051417 PMCID: PMC4802022 DOI: 10.1155/2016/9251375] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/16/2016] [Indexed: 02/08/2023] Open
Abstract
Percutaneous image-guided ablation is an increasingly common treatment for a multitude of solid organ malignancies. While historically these techniques have been restricted to the management of small, unresectable tumors, there is an expanding appreciation for the systemic effects these locoregional interventions can cause. In this review, we summarize the mechanisms of action for the most common thermal ablation modalities and highlight the key advances in knowledge regarding the interactions between thermal ablation and the immune system.
Collapse
|
17
|
Knuttel FM, Waaijer L, Merckel LG, van den Bosch MAAJ, Witkamp AJ, Deckers R, van Diest PJ. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation. Histopathology 2016; 69:250-9. [PMID: 26732321 DOI: 10.1111/his.12926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022]
Abstract
AIMS Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This study aimed to compare histopathological features of breast cancer after MR-HIFU ablation and RFA. METHODS AND RESULTS MR-HIFU ablation and RFA were performed in- and ex-vivo. Tumours in six mastectomy specimens were partially ablated with RFA or MR-HIFU. In-vivo MR-HIFU ablation was performed 3-6 days before excision; RFA was performed in the operation room. Tissue was fixed in formalin and processed to haematoxylin and eosin (H&E) and cytokeratin-8 (CK-8)-stained slides. Morphology and cell viability were assessed. Ex-vivo ablation resulted in clear morphological changes after RFA versus subtle differences after MR-HIFU. CK-8 staining was decreased or absent. H&E tended to underestimate the size of thermal damage. In-vivo MR-HIFU resulted in necrotic-like changes. Surprisingly, some ablated lesions were CK-8-positive. Histopathology after in-vivo RFA resembled ex-vivo RFA, with hyper-eosinophilic stroma and elongated nuclei. Lesion borders were sharp after MR-HIFU and indistinct after RFA. CONCLUSION Histopathological differences between MR-HIFU-ablated tissue and RF-ablated tissue were demonstrated. CK-8 was more reliable for cell viability assessment than H&E when used directly after ablation, while H&E was more reliable in ablated tissue left in situ for a few days. Our results contribute to improved understanding of histopathological features in breast cancer lesions treated with minimally invasive ablative techniques.
Collapse
Affiliation(s)
- Floortje M Knuttel
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Laurien Waaijer
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Laura G Merckel
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Arjen J Witkamp
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roel Deckers
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
18
|
Hsiao YH, Kuo SJ, Tsai HD, Chou MC, Yeh GP. Clinical Application of High-intensity Focused Ultrasound in Cancer Therapy. J Cancer 2016; 7:225-31. [PMID: 26918034 PMCID: PMC4747875 DOI: 10.7150/jca.13906] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/03/2015] [Indexed: 12/25/2022] Open
Abstract
The treatment of cancer is an important issue in both developing and developed countries. Clinical use of ultrasound in cancer is not only for the diagnosis but also for the treatment. Focused ultrasound surgery (FUS) is a noninvasive technique. By using the combination of high-intensity focused ultrasound (HIFU) and imaging method, FUS has the potential to ablate tumor lesions precisely. The main mechanisms of HIFU ablation involve mechanical and thermal effects. Recent advances in HIFU have increased its popularity. Some promising results were achieved in managing various malignancies, including pancreas, prostate, liver, kidney, breast and bone. Other applications include brain tumor ablation and disruption of the blood-brain barrier. We aim at briefly outlining the clinical utility of FUS as a noninvasive technique for a variety of types of cancer treatment.
Collapse
Affiliation(s)
- Yi-Hsuan Hsiao
- 1. School of Medicine, Chung Shan Medical University, Taichung, Taiwan; 2. Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shou-Jen Kuo
- 3. Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Horng-Der Tsai
- 2. Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Chih Chou
- 1. School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Perng Yeh
- 1. School of Medicine, Chung Shan Medical University, Taichung, Taiwan; 2. Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
19
|
Peek MCL, Ahmed M, Douek M. High-intensity focused ultrasound for the treatment of fibroadenomata (HIFU-F) study. J Ther Ultrasound 2015; 3:6. [PMID: 25945250 PMCID: PMC4419404 DOI: 10.1186/s40349-015-0027-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/27/2015] [Indexed: 01/20/2023] Open
Abstract
Background Breast fibroadenomata (FAD) are the most common benign lesions in women. For palpable lesions, there are currently three standard treatment options: reassurance (with or without follow-up), vacuum-assisted mammotomy (VAM) or surgical excision. High-intensity focused ultrasound (HIFU) ablation has been used in the treatment of FAD. The drawback of HIFU is its prolonged treatment duration. The aim of this trial is to evaluate circumferential HIFU treatment for the effective ablation of FAD with a reduced treatment time. Methods/design Fifty patients (age ≥18 years) will be recruited with symptomatic FAD, visible on ultrasound (US, grade U2 benign). In patients ≥25 years, cytology or histology will be performed to confirm the diagnosis of a FAD. These patients will receive HIFU treatment using the US-guided Echopulse device (Theraclion Ltd., Malakoff, France) under local anaesthesia. An additional 50 patients will be recruited and contacted 6 months after discharge from the breast clinic. These patients will be offered an US scan to determine the change in size of their FAD. This natural change in size will be compared to the decrease in size after HIFU treatment. Secondary outcome measures include post-treatment complications, patient recorded outcome measures, mean treatment time and cost analysis. Trial registration Current Controlled Trials: ISRCTN76622747.
Collapse
Affiliation(s)
- Mirjam C L Peek
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital Campus, Great Maze Pond, London, SE1 9RT Great Britain UK
| | - Muneer Ahmed
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital Campus, Great Maze Pond, London, SE1 9RT Great Britain UK
| | - Michael Douek
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital Campus, Great Maze Pond, London, SE1 9RT Great Britain UK
| |
Collapse
|
20
|
Abstract
High intensity focused ultrasound (HIFU), is a promising, non-invasive modality for treatment of tumours in conjunction with magnetic resonance imaging or diagnostic ultrasound guidance. HIFU is being used increasingly for treatment of prostate cancer and uterine fibroids. Over the last 10 years a growing number of clinical trials have examined HIFU treatment of both benign and malignant tumours of the liver, breast, pancreas, bone, connective tissue, thyroid, parathyroid, kidney and brain. For some of these emerging indications, HIFU is poised to become a serious alternative or adjunct to current standard treatments--including surgery, radiation, gene therapy, immunotherapy, and chemotherapy. Current commercially available HIFU devices are marketed for their thermal ablation applications. In the future, lower energy treatments may play a significant role in mediating targeted drug and gene delivery for cancer treatment. In this article we introduce currently available HIFU systems, provide an overview of clinical trials in emerging oncological targets, and briefly discuss selected pre-clinical research that is relevant to future oncological HIFU applications.
Collapse
Affiliation(s)
- Ezekiel Maloney
- Department of Radiology, University of Washington , Seattle and
| | | |
Collapse
|
21
|
Korkusuz H, Fehre N, Sennert M, Happel C, Grünwald F. Early assessment of high-intensity focused ultrasound treatment of benign thyroid nodules by scintigraphic means. J Ther Ultrasound 2014; 2:18. [PMID: 25276352 PMCID: PMC4179864 DOI: 10.1186/2050-5736-2-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022] Open
Abstract
Background High-intensity focused ultrasound (HIFU) allows to inflict intracorporal thermal lesions without penetrating the skin or damaging the surrounding tissue. This analysis intends to assess the magnitude of HIFU-induced ablations within benign thyroid nodules using scintigraphic imaging with 99mTc. Methods Ten cold, hot, or indifferent nodules were treated using multiple pulses of HIFU to induce temperatures of around 85°C within the ablation zone. Pre- and posttreatment, uptake values of 99mTc-pertechnetate or 99mTc-MIBI were recorded. The pre-post reduction of nodular uptake was evaluated to assess ablation magnitude. Results Relative nodular uptake in relation to total thyroidal uptake decreased after one session of HIFU in all cases. Median 99mTc-MIBI uptake reduction was 35.5% (ranging from 11% to 57%; p < 0.1), while 99mTc-pertechnetate scintigraphy showed a median uptake reduction of 27% (range 10% to 44%; p < 0.1). No major complications were observed. Conclusions HIFU appears to be safe and is an easy to perform means of thermal ablation. This study shows that HIFU treatment in thyroidal nodules can be evaluated by scintigraphic means shortly after the intervention. Due to small sample size, the exact magnitude of HIFU ablation efficiency in thyroidal nodules remains a value to be assessed in a larger study.
Collapse
Affiliation(s)
- Huedayi Korkusuz
- Department of Nuclear Medicine, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Niklas Fehre
- Department of Nuclear Medicine, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Michael Sennert
- Department of Nuclear Medicine, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christian Happel
- Department of Nuclear Medicine, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Frank Grünwald
- Department of Nuclear Medicine, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Liberman A, Wu Z, Barback CV, Viveros RD, Wang J, Ellies LG, Mattrey RF, Trogler WC, Kummel AC, Blair SL. Hollow iron-silica nanoshells for enhanced high intensity focused ultrasound. J Surg Res 2014; 190:391-8. [PMID: 24972734 PMCID: PMC4141695 DOI: 10.1016/j.jss.2014.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/27/2014] [Accepted: 05/02/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND High intensity-focused ultrasound (HIFU) is an alterative ablative technique currently being investigated for local treatment of breast cancer and fibroadenomas. Current HIFU therapies require concurrent magnetic resonance imaging monitoring. Biodegradable 500 nm perfluoropentane-filled iron-silica nanoshells have been synthesized as a sensitizing agent for HIFU therapies, which aid both mechanical and thermal ablation of tissues. In low duty cycle high-intensity applications, rapid tissue damage occurs from mechanical rather than thermal effects, which can be monitored closely by ultrasound obviating the need for concurrent magnetic resonance imaging. MATERIALS AND METHODS Iron-silica nanoshells were synthesized by a sol-gel method on polystyrene templates and calcined to yield hollow nanoshells. The nanoshells were filled with perfluoropentane and injected directly into excised human breast tumor, and intravenously (IV) into healthy rabbits and Py8119 tumor-bearing athymic nude mice. HIFU was applied at 1.1 MHz and 3.5 MPa at a 2% duty cycle to achieve mechanical ablation. RESULTS Ex vivo in excised rabbit livers, the time to visually observable damage with HIFU was 20 s without nanoshells and only 2 s with nanoshells administered IV before sacrifice. Nanoshells administered IV into nude mice with xenograft tumors were activated in vivo by HIFU 24 h after administration. In this xenograft model, applied HIFU resulted in a 13.6 ± 6.1 mm(3) bubble cloud with the IV injected particles and no bubble cloud without particles. CONCLUSIONS Iron-silica nanoshells can reduce the power and time to perform HIFU ablative therapy and can be monitored by ultrasound during low duty cycle operation.
Collapse
Affiliation(s)
- Alexander Liberman
- Materials Science and Engineering Program, University of California, San Diego
| | - Zhe Wu
- Department of Radiology, University of California, San Diego
| | | | - Robert D Viveros
- Department of Nanoengineering, University of California, San Diego
| | - James Wang
- Department of Nanoengineering, University of California, San Diego
| | - Lesley G Ellies
- Department of Pathology, University of California, San Diego
| | - Robert F Mattrey
- Department of Radiology, University of California, San Diego; Moores Cancer Center, University of California, San Diego
| | - William C Trogler
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Andrew C Kummel
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Sarah L Blair
- Moores Cancer Center, University of California, San Diego; Department of Surgery, University of California, San Diego.
| |
Collapse
|
23
|
Alphandéry E. Perspectives of breast cancer thermotherapies. J Cancer 2014; 5:472-9. [PMID: 24959300 PMCID: PMC4066359 DOI: 10.7150/jca.8693] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/08/2014] [Indexed: 01/08/2023] Open
Abstract
In this article, the use of different types of thermotherapies to treat breast cancer is reviewed. While hyperthermia is most commonly used as an adjuvant in combination with radiotherapy, chemotherapy, targeted therapy or cryotherapy to enhance the therapeutic effect of these therapies, thermoablation is usually carried out alone to eradicate small breast tumors. A recently developed thermotherapy, called magnetic hyperthermia, which involves localized heating of nanoparticles under the application of an alternating magnetic field, is also presented. The advantages and drawbacks of these different thermotherapies are highlighted.
Collapse
Affiliation(s)
- Edouard Alphandéry
- 1. Nanobacterie SARL, 36 boulevard Flandrin, 75116, Paris, France. ; 2. Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
24
|
Brenin D. HiFrequency Ultrasound. Breast Cancer 2014. [DOI: 10.1007/978-1-4614-8063-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Zhang X, Li K, Xie B, He M, He J, Zhang L. Effective ablation therapy of adenomyosis with ultrasound-guided high-intensity focused ultrasound. Int J Gynaecol Obstet 2013; 124:207-11. [DOI: 10.1016/j.ijgo.2013.08.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/21/2013] [Accepted: 11/26/2013] [Indexed: 11/16/2022]
|
26
|
Dervishi E, Aubry JF, Delattre JY, Boch AL. [Focused ultrasound therapy: current status and potential applications in neurosurgery]. Neurochirurgie 2013; 59:201-9. [PMID: 24210288 DOI: 10.1016/j.neuchi.2013.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 05/19/2013] [Accepted: 06/09/2013] [Indexed: 01/26/2023]
Abstract
High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy.
Collapse
Affiliation(s)
- E Dervishi
- Équipe de neuro-oncologie expérimentale, Inserm, UMRS 975, CNRS 7225, institut du cerveau et de la moelle épinière, groupe hospitalier La Pitié Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris, France.
| | | | | | | |
Collapse
|
27
|
Vincenot J, Melodelima D, Chavrier F, Vignot A, Kocot A, Chapelon JY. Electronic beam steering used with a toroidal HIFU transducer substantially increases the coagulated volume. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1241-54. [PMID: 23643055 DOI: 10.1016/j.ultrasmedbio.2013.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 12/29/2012] [Accepted: 01/27/2013] [Indexed: 05/09/2023]
Abstract
Treatment with high-intensity focused ultrasound is well established but requires extended treatment time. A device composed of 256 elements arranged on a toroidal transducer was developed to increase the coagulated volume. When all the elements are working in phase for 40 s, a volume of 6-8 cm(3) can be ablated. However, the mechanical juxtaposition of single lesions is still necessary for treating one tumor with a diameter of 2 cm. The objective of this study was to combine this toroidal transducer geometry with electronic beam steering to ablate tumors with adequate normal tissue margins and without any mechanical displacement of the high-intensity focused ultrasound device. In vitro tests demonstrated that the coagulated volume obtained from 130 s of total exposure has an average diameter of 41.4 ± 4.0 mm and an average length of 53.3 ± 6.1 mm. This single lesion can be used to treat various size of metastasis, located at depths in the liver ranging 5-45 mm.
Collapse
|
28
|
Payne A, Merrill R, Minalga E, Vyas U, de Bever J, Todd N, Hadley R, Dumont E, Neumayer L, Christensen D, Roemer R, Parker D. Design and characterization of a laterally mounted phased-array transducer breast-specific MRgHIFU device with integrated 11-channel receiver array. Med Phys 2013; 39:1552-60. [PMID: 22380387 DOI: 10.1118/1.3685576] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This work presents the design and preliminary evaluation of a new laterally mounted phased-array MRI-guided high-intensity focused ultrasound (MRgHIFU) system with an integrated 11-channel phased-array radio frequency (RF) coil intended for breast cancer treatment. The design goals for the system included the ability to treat the majority of tumor locations, to increase the MR image's signal-to-noise ratio (SNR) throughout the treatment volume and to provide adequate comfort for the patient. METHODS In order to treat the majority of the breast volume, the device was designed such that the treated breast is suspended in a 17-cm diameter treatment cylinder. A laterally shooting 1-MHz, 256-element phased-array ultrasound transducer with flexible positioning is mounted outside the treatment cylinder. This configuration achieves a reduced water volume to minimize RF coil loading effects, to position the coils closer to the breast for increased signal sensitivity, and to reduce the MR image noise associated with using water as the coupling fluid. This design uses an 11-channel phased-array RF coil that is placed on the outer surface of the cylinder surrounding the breast. Mechanical positioning of the transducer and electronic steering of the focal spot enable placement of the ultrasound focus at arbitrary locations throughout the suspended breast. The treatment platform allows the patient to lie prone in a face-down position. The system was tested for comfort with 18 normal volunteers and SNR capabilities in one normal volunteer and for heating accuracy and stability in homogeneous phantom and inhomogeneous ex vivo porcine tissue. RESULTS There was a 61% increase in mean relative SNR achieved in a homogeneous phantom using the 11-channel RF coil when compared to using only a single-loop coil around the chest wall. The repeatability of the system's energy delivery in a single location was excellent, with less than 3% variability between repeated temperature measurements at the same location. The execution of a continuously sonicated, predefined 48-point, 8-min trajectory path resulted in an ablation volume of 8.17 cm(3), with one standard deviation of 0.35 cm(3) between inhomogeneous ex vivo tissue samples. Comfort testing resulted in negligible side effects for all volunteers. CONCLUSIONS The initial results suggest that this new device will potentially be suitable for MRgHIFU treatment in a wide range of breast sizes and tumor locations.
Collapse
Affiliation(s)
- A Payne
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Blood outgrowth endothelial cells increase tumor growth rates and modify tumor physiology: relevance for therapeutic targeting. Cancers (Basel) 2013; 5:205-17. [PMID: 24216704 PMCID: PMC3730307 DOI: 10.3390/cancers5010205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 01/26/2013] [Accepted: 02/06/2013] [Indexed: 11/28/2022] Open
Abstract
Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm3) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the oxygenation and subsequent radiation response of tumors. We surmise that these cells are preferentially stimulated to divide in the tumor microenvironment, thereby inducing the significant increase in tumor growth observed and that the use of injected BOECs could be a viable approach to modulate the tumor microenvironment for therapeutic gain. Conversely, agents or approaches to block their recruitment and integration of BOECs into primary or metastatic lesions may be an effective way to restrain cancer progression before or after other treatments are applied.
Collapse
|
30
|
Malietzis G, Monzon L, Hand J, Wasan H, Leen E, Abel M, Muhammad A, Price P, Abel P. High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology. Br J Radiol 2013; 86:20130044. [PMID: 23403455 DOI: 10.1259/bjr.20130044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
High-intensity focused ultrasound (HIFU) is a rapidly maturing technology with diverse clinical applications. In the field of oncology, the use of HIFU to non-invasively cause tissue necrosis in a defined target, a technique known as focused ultrasound surgery (FUS), has considerable potential for tumour ablation. In this article, we outline the development and underlying principles of HIFU, overview the limitations and commercially available equipment for FUS, then summarise some of the recent technological advances and experimental clinical trials that we predict will have a positive impact on extending the role of FUS in cancer therapy.
Collapse
Affiliation(s)
- G Malietzis
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Minalga E, Payne A, Merrill R, Todd N, Vijayakumar S, Kholmovski E, Parker DL, Hadley JR. An 11-channel radio frequency phased array coil for magnetic resonance guided high-intensity focused ultrasound of the breast. Magn Reson Med 2013; 69:295-302. [PMID: 22431301 PMCID: PMC3382025 DOI: 10.1002/mrm.24247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 02/03/2012] [Accepted: 02/21/2012] [Indexed: 11/10/2022]
Abstract
In this study, a radio frequency phased array coil was built to image the breast in conjunction with a magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11 channels. The radio frequency coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise ratio profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in signal-to-noise, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU.
Collapse
Affiliation(s)
- E Minalga
- Department of Radiology, UCAIR, Salt Lake City, Utah, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hu J, Ding Y, Qian S, Tang X. Simulations of adaptive temperature control with self-focused hyperthermia system for tumor treatment. ULTRASONICS 2013; 53:171-177. [PMID: 22901395 DOI: 10.1016/j.ultras.2012.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/08/2012] [Accepted: 05/12/2012] [Indexed: 06/01/2023]
Abstract
The control problem in ultrasound therapy is to destroy the tumor tissue while not harming the intervening healthy tissue with a desired temperature elevation. The objective of this research is to present a robust and feasible method to control the temperature distribution and the temperature elevation in treatment region within the prescribed time, which can improve the curative effect and decrease the treatment time for heating large tumor (≥2.0cm in diameter). An adaptive self-tuning-regulator (STR) controller has been introduced into this control method by adding a time factor with a recursive algorithm, and the speed of sound and absorption coefficient of the medium is considered as a function of temperature during heating. The presented control method is tested for a self-focused concave spherical transducer (0.5MHz, 9cm aperture, 8.0cm focal length) through numerical simulations with three control temperatures of 43°C, 50°C and 55°C. The results suggest that this control system has adaptive ability for variable parameters and has a rapid response to the temperature and acoustic power output in the prescribed time for the hyperthermia interest. There is no overshoot during temperature elevation and no oscillation after reaching the desired temperatures. It is found that the same results can be obtained for different frequencies and temperature elevations. This method can obtain an ellipsoid-shaped ablation region, which is meaningful for the treatment of large tumor.
Collapse
Affiliation(s)
- Jiwen Hu
- College of Mathematics and Physics, University of South China, Hengyang 421001, China
| | | | | | | |
Collapse
|
33
|
Li S, Wu PH. Magnetic resonance image-guided versus ultrasound-guided high-intensity focused ultrasound in the treatment of breast cancer. CHINESE JOURNAL OF CANCER 2012; 32:441-52. [PMID: 23237221 PMCID: PMC3845578 DOI: 10.5732/cjc.012.10104] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Image-guided high-intensity focused ultrasound (HIFU) has been used for more than ten years, primarily in the treatment of liver and prostate cancers. HIFU has the advantages of precise cancer ablation and excellent protection of healthy tissue. Breast cancer is a common cancer in women. HIFU therapy, in combination with other therapies, has the potential to improve both oncologic and cosmetic outcomes for breast cancer patients by providing a curative therapy that conserves mammary shape. Currently, HIFU therapy is not commonly used in breast cancer treatment, and efforts to promote the application of HIFU is expected. In this article, we compare different image-guided models for HIFU and reviewed the status, drawbacks, and potential of HIFU therapy for breast cancer.
Collapse
Affiliation(s)
- Sheng Li
- State Key Laboratory of Oncology in South China; Department of Medical Imaging & Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China..
| | | |
Collapse
|
34
|
Zhou M, Hu X, He H, Chen J, Chen L, Deng Y. Neoadjuvant HIFU treatment for malignant fibrous histiocytoma: report of a case. J Med Ultrason (2001) 2012; 39:259-64. [PMID: 27279114 DOI: 10.1007/s10396-012-0375-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/12/2012] [Indexed: 11/27/2022]
Abstract
High-intensity focused ultrasound (HIFU) is an innovative, noninvasive, extracorporeal technique that induces coagulative necrosis of tumor tissue by thermal effects and cavitation. In published studies, HIFU has usually been used as an alternative to surgery, with or without other treatment modalities, to achieve curative tumor ablation or palliative tumor cytoreduction. Neoadjuvant HIFU treatment for primary inoperable malignant fibrous histiocytoma has never been reported, and neoadjuvant radiotherapy, chemoradiation, or chemotherapy is routinely under consideration. This is the first case in which HIFU ablation contributed as a neoadjuvant therapy to facilitate function-sparing resection, not as a replacement for surgery. It suggests that HIFU ablation may have some unique major advantages for treating inoperable huge soft-tissue sarcomas as a neoadjuvant local treatment modality, especially for patients for whom neoadjuvant chemotherapy or radiotherapy is not indicated.
Collapse
Affiliation(s)
- Meiqi Zhou
- Department of Surgical Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 2nd Hospital of Zhejiang University College of Medicine, 88 Jie-fang Road, Hangzhou, Zhejiang, China
| | - Xiaoye Hu
- Department of Surgical Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 2nd Hospital of Zhejiang University College of Medicine, 88 Jie-fang Road, Hangzhou, Zhejiang, China
| | - Haifei He
- Department of Surgical Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 2nd Hospital of Zhejiang University College of Medicine, 88 Jie-fang Road, Hangzhou, Zhejiang, China
| | - Jiani Chen
- Department of Surgical Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 2nd Hospital of Zhejiang University College of Medicine, 88 Jie-fang Road, Hangzhou, Zhejiang, China
| | - Lirong Chen
- Department of Pathology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 2nd Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Yongchuan Deng
- Department of Surgical Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 2nd Hospital of Zhejiang University College of Medicine, 88 Jie-fang Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
McWilliams JP, Lee EW, Yamamoto S, Loh CT, Kee ST. Image-guided tumor ablation: emerging technologies and future directions. Semin Intervent Radiol 2012; 27:302-13. [PMID: 22550370 DOI: 10.1055/s-0030-1261789] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the trend continues toward the decreased invasiveness of medical procedures, image-guided percutaneous ablation has begun to supplant surgery for the local control of small tumors in the liver, kidney, and lung. New ablation technologies, and refinements of existing technologies, will enable treatment of larger and more complex tumors in these and other organs. At the same time, improvements in intraprocedural imaging promise to improve treatment accuracy and reduce complications. In this review, the latest advancements in clinical and experimental ablation technologies will be summarized, and new applications of image-guided tumor ablation will be discussed.
Collapse
Affiliation(s)
- Justin P McWilliams
- Division of Interventional Radiology, Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | | | | | |
Collapse
|
36
|
Chen D, Xia R, Chen X, Shafirstein G, Corry PM, Griffin RJ, Penagaricano JA, Tulunay-Ugur OE, Moros EG. SonoKnife: feasibility of a line-focused ultrasound device for thermal ablation therapy. Med Phys 2011; 38:4372-85. [PMID: 21859038 DOI: 10.1118/1.3601017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To evaluate the feasibility of line-focused ultrasound for thermal ablation of superficially located tumors. METHODS A SonoKnife is a cylindrical-section ultrasound transducer designed to radiate from its concave surface. This geometry generates a line-focus or acoustic edge. The motivation for this approach was the noninvasive thermal ablation of advanced head and neck tumors and positive neck nodes in reasonable treatment times. Line-focusing may offer advantages over the common point-focusing of spherically curved radiators such as faster coverage of a target volume by scanning of the acoustic edge. In this paper, The authors report studies using numerical models and phantom and ex vivo experiments using a SonoKnife prototype. RESULTS Acoustic edges were generated by cylindrical-section single-element ultrasound transducers numerically, and by the prototype experimentally. Numerically, simulations were performed to characterize the acoustic edge for basic design parameters: transducer dimensions, line-focus depth, frequency, and coupling thickness. The dimensions of the acoustic edge as a function of these parameters were determined. In addition, a step-scanning simulation produced a large thermal lesion in a reasonable treatment time. Experimentally, pressure distributions measured in degassed water agreed well with acoustic simulations, and sonication experiments in gel phantoms and ex vivo porcine liver samples produced lesions similar to those predicted with acoustic and thermal models. CONCLUSIONS Results support the feasibility of noninvasive thermal ablation with a SonoKnife.
Collapse
Affiliation(s)
- Duo Chen
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat Rev 2011; 38:346-53. [PMID: 21924838 DOI: 10.1016/j.ctrv.2011.08.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/20/2011] [Indexed: 12/29/2022]
Abstract
High intensity focused ultrasound (HIFU) or focused ultrasound (FUS) is a promising modality to treat tumors in a complete, non invasive fashion where online image guidance and therapy control can be achieved by magnetic resonance imaging (MRI) or diagnostic ultrasound (US). In the last 10 years, the feasibility and the safety of HIFU have been tested in a growing number of clinical studies on several benign and malignant tumors of the prostate, breast, uterine, liver, kidney, pancreas, bone, and brain. For certain indications this new treatment principle is on its verge to become a serious alternative or adjunct to the standard treatment options of surgery, radiotherapy, gene therapy and chemotherapy in oncology. In addition to the now clinically available thermal ablation, in the future, focused ultrasound at much lower intensities may have the potential to become a major instrument to mediate drug and gene delivery for localized cancer treatment. We introduce the technology of MRI guided and ultrasound guided HIFU and present a critical overview of the clinical applications and results along with a discussion of future HIFU developments.
Collapse
|
38
|
Brenin DR. Focused Ultrasound Ablation for the Treatment of Breast Cancer. Ann Surg Oncol 2011; 18:3088-94. [DOI: 10.1245/s10434-011-2011-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Indexed: 11/18/2022]
|
39
|
Abstract
Minimally invasive ablative therapy techniques are being used in research protocols to treat benign and malignant tumors of the breast in select patient populations. These techniques offer the advantages of an outpatient setting, decreased pain, and improved cosmesis. These therapies, including radiofrequency ablation, cryotherapy, interstitial laser therapy, high-intensity focused ultrasonography, and focused microwave thermotherapy, are reviewed in this article.
Collapse
Affiliation(s)
- Ranjna Sharma
- Breast Care Center, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Shapiro 5, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | | | |
Collapse
|
40
|
Magnetic resonance guided high-intensity focused ultrasound ablation of musculoskeletal tumors. CURRENT ORTHOPAEDIC PRACTICE 2011; 22:303-308. [PMID: 26120376 DOI: 10.1097/bco.0b013e318220dad5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article reviews the fundamental principles and clinical experimental uses of magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) ablation of musculoskeletal tumors. MRgHIFU is a noninvasive treatment modality that takes advantage of the ability of magnetic resonance to measure tissue temperature and uses this technology to guide high-intensity focused ultrasound waves to a specific focus within the human body that results in heat generation and complete thermal necrosis of the targeted tissue. Adjacent normal tissues are spared because of the accurate delivery of thermal energy, as well as, local blood perfusion that provides a cooling effect. MRgHIFU is approved by the Food and Drug Administration for the treatment of uterine fibroids and is used on an experimental basis to treat breast, prostate, liver, bone, and brain tumors.
Collapse
|
41
|
Actualización en intervencionismo mamario terapéutico. RADIOLOGIA 2011; 53:226-35. [DOI: 10.1016/j.rx.2010.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/20/2010] [Accepted: 12/28/2010] [Indexed: 02/08/2023]
|
42
|
Orgera G, Monfardini L, Della Vigna P, Zhang L, Bonomo G, Arnone P, Padrenostro M, Orsi F. High-intensity focused ultrasound (HIFU) in patients with solid malignancies: evaluation of feasibility, local tumour response and clinical results. Radiol Med 2011; 116:734-48. [PMID: 21293939 DOI: 10.1007/s11547-011-0634-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 07/21/2010] [Indexed: 12/21/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the safety and efficacy of ultrasound-guided high-intensity focused ultrasound (USgHIFU) for ablation of solid tumours without damaging the surrounding structures. MATERIALS AND METHODS A specific written informed consent was obtained from every patient before treatment. From September 2008 to April 2009, 22 patients with 29 lesions were treated: nine patients with liver and/or soft-tissue metastases from colorectal carcinoma (CRC), six with pancreatic solid lesions, three with liver and/or bone metastases from breast cancer, one with osteosarcoma, one with muscle metastasis from lung cancer, one with iliac metastasis from multiple myeloma and one with abdominal liposarcoma. The mean diameter of tumours was 4.2 cm. All patients were evaluated 1 day, 1 month and 3 months after HIFU treatment by multidetector computed tomography (MDCT), positron-emission tomography (PET)-CT and clinical evaluation. The treatment time and adverse events were recorded. RESULTS All patients had one treatment. Average treatment and sonication times were, respectively, 162.7 and 37.4 min. PET-CT or/and MDCT showed complete response in 11/13 liver metastases; all bone, soft-tissue and pancreatic lesions were palliated in symptoms, with complete response to PET-CT, MDCT or magnetic resonance imaging (MRI); the liposarcoma was almost completely ablated at MRI. Local oedema was observed in three patients. No other side effects were observed. All patients were discharged 1-3 days after treatment. CONCLUSIONS According to our preliminary experience in a small number of patients, we conclude that HIFU ablation is a safe and feasible technique for locoregional treatment and is effective in pain control.
Collapse
Affiliation(s)
- G Orgera
- Interventional Radiology Unit of European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Review of interventional radiology techniques in breast disease. RADIOLOGIA 2011. [DOI: 10.1016/s2173-5107(11)70012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
44
|
Niu L, Wang Z, Zou W, Zhang L, Xiang L, Zhu H, Chen W, Bai J, Wu J. Pathological changes on human breast cancer specimens ablated in vitro with high-intensity focused ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1437-1444. [PMID: 20800171 DOI: 10.1016/j.ultrasmedbio.2010.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/20/2010] [Accepted: 05/19/2010] [Indexed: 05/29/2023]
Abstract
The purpose of this study was to evaluate the pathologic changes of human breast cancer specimens ablated with high-intensity focused ultrasound (HIFU) in vitro. Twenty specimens of pathologically confirmed breast cancer tissue were ablated with ultrasound-guided HIFU. The evaluation methods include histopathologic observation using hematoxylin-eosin staining, electron microscopic imaging, enzyme histochemical and immunohistochemical examination on tumor antigens. Vacuole-like structures in cytoplasm were observed by histopathologic observation but there were no significant changes in cell morphology and nucleus karyotype. Typical phenomena related to coagulation necrosis were observed in electron microscopic studies; the contour of cell structure was still preserved but the structures of cell (all kinds of organelles and nucleus) were damaged or disappeared. Acid phosphatase and succinate dehydrogenase staining showed that tumor cells were inactivated. In immunohistochemical evaluations, estrogen receptor, progesterone receptor, cerbB-2 and P53 expression changed from 85%, 82%, 75% and 80% in nonablation tissue to no expression in ablated tumor tissue, respectively. We, therefore, conclude that breast cancer cells appear normal contour immediately after ablation with HIFU under light microscopic but they were evaluated to be dead by electron microscopic imaging, enzyme histochemical and immunohistochemical examinations.
Collapse
Affiliation(s)
- Lingchuan Niu
- Department of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
High-Intensity Focused Ultrasound Ablation: Effective and Safe Therapy for Solid Tumors in Difficult Locations. AJR Am J Roentgenol 2010; 195:W245-52. [DOI: 10.2214/ajr.09.3321] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Zhang Y, Deng J, Feng J, Wu F. Enhancement of antitumor vaccine in ablated hepatocellular carcinoma by high-intensity focused ultrasound. World J Gastroenterol 2010; 16:3584-91. [PMID: 20653069 PMCID: PMC2909560 DOI: 10.3748/wjg.v16.i28.3584] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether tumor debris created by high-intensity focused ultrasound (HIFU) could trigger antitumor immunity in a mouse hepatocellular carcinoma model.
METHODS: Twenty C57BL/6J mice bearing H22 hepatocellular carcinoma were used to generate antitumor vaccines. Ten mice underwent HIFU ablation, and the remaining 10 mice received a sham-HIFU procedure with no ultrasound irradiation. Sixty normal mice were randomly divided into HIFU vaccine, tumor vaccine and control groups. These mice were immunized with HIFU-generated vaccine, tumor-generated vaccine, and saline, respectively. In addition, 20 mice bearing H22 tumors were successfully treated with HIFU ablation. The protective immunity of the vaccinated mice was investigated before and after a subsequent H22 tumor challenge. Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the cytotoxicity of splenic lymphocytes co-cultured with H22 cells was determined in vitro before the tumor challenge, and tumor volume and survival were measured in vivo after the challenge in each group. The mechanism was also explored by loading the vaccines with bone marrow-derived dendritic cells (DCs).
RESULTS: Compared to the control, HIFU therapy, tumor-generated and HIFU-generated vaccines significantly increased cytolytic activity against H22 cells in the splenocytes of the vaccinated mice (P < 0.001). The tumor volume was significantly smaller in the HIFU vaccine group than in the tumor vaccine group (P < 0.05) and control group (P < 0.01). However, there was no tumor growth after H22 rechallenge in the HIFU therapy group. Forty-eight-day survival rate was 100% in mice in the HIFU therapy group, 30% in both the HIFU vaccine and tumor vaccine groups, and 20% in the control group, indicating that the HIFU-treated mice displayed significantly longer survival than the vaccinated mice in the remaining three groups (P < 0.001). After bone marrow-derived DCs were incubated with HIFU-generated and tumor-generated vaccines, the number of mature DCs expressing MHC-II+, CD80+ and CD86+ molecules was significantly increased, and interleukin-12 and interferon-γ levels were significantly higher in the supernatants when compared with immature DCs incubated with mouse serum (P < 0.001). However, no differences of the number of mature DCs and cytokine levels were observed between the HIFU-generated and tumor-generated vaccines (P > 0.05).
CONCLUSION: Tumor debris remaining after HIFU can improve tumor immunogenicity. This debris releases tumor antigens as an effective vaccine to develop host antitumor immune response after HIFU ablation.
Collapse
|
47
|
Hu J, Qian S, Ding Y. Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer. ULTRASONICS 2010; 50:628-633. [PMID: 20156630 DOI: 10.1016/j.ultras.2010.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 01/17/2010] [Accepted: 01/18/2010] [Indexed: 05/28/2023]
Abstract
Temperature control of hyperthermia treatments is generally implemented with multipoint feedback system comprised of phased-array transducer, which is complicated and high cost. Our simulations to the acoustic field induced by a self-focused concave spherical transducer (0.5MHz, 9cm aperture width, 8.0cm focal length) show that the distribution of temperature can keep the same "cigar shape" in the focal region during ultrasound insonation. Based on the characteristic of the temperature change, a two-dimensional model of a "cigar shape" tumor is designed and tested through numerical simulation. One single-point on the border of the "cigar shape" tumor is selected as the control target and is controlled at the temperature of 43 degrees C by using a self-tuning regulator (STR). Considering the nonlinear effects of biological medium, an accurate state-space model obtained via the finite Fourier integral transformation to the bioheat equation is presented and used for calculating temperature. Computer simulations were performed with the perfusion rates of 2.0kg/(m(3)s) and 4.5kg/(m(3)s) to the different targets, it was found that the temperatures on the border of the "cigar shape" tumor can achieve the desired temperature of 43 degrees C by control of one single-point. A larger perfusion rate requires a higher power output to obtain the same temperature elevation under the same insonation time and needs a higher cost for compensating the energy loss carried away by blood flow after steady state. The power output increases with the controlled region while achieving the same temperature at the same time. Especially, there is no overshoot during temperature elevation and no oscillation after steady state. The simulation results demonstrate that the proposed approach may offers a way for obtaining a single-point, low-cost hyperthermia system.
Collapse
Affiliation(s)
- Jiwen Hu
- College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
| | | | | |
Collapse
|
48
|
N'Djin WA, Melodelima D, Parmentier H, Rivoire M, Chapelon JY. In vivopreclinical evaluation of the accuracy of toroidal-shaped HIFU treatments using a tumor-mimic model. Phys Med Biol 2010; 55:2137-54. [DOI: 10.1088/0031-9155/55/8/002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Schmitz AC, van den Bosch MA, Rieke V, Dirbas FM, Butts Pauly K, Mali WP, Daniel BL. 3.0-T MR-guided focused ultrasound for preoperative localization of nonpalpable breast lesions: An initial experimental ex vivo study. J Magn Reson Imaging 2009; 30:884-9. [DOI: 10.1002/jmri.21896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
50
|
Yao CL, Trinh T, Wong GTC, Irwin MG. Anaesthesia for high intensity focused ultrasound (HIFU) therapy. Anaesthesia 2008; 63:865-72. [DOI: 10.1111/j.1365-2044.2008.05562.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|