1
|
Monzer A, Ghamlouche F, Wakimian K, Ballout F, Al Bitar S, Yehya A, Kanso M, Saheb N, Tawil A, Doughan S, Hussein M, Mukherji D, Faraj W, Allen JE, Prabhu VV, Abou-Antoun T, Gali-Muhtasib H, Abou-Kheir W. ONC206, an imipridone derivative, demonstrates anti-colorectal cancer activity against stem/progenitor cells in 3D cell cultures and in patient-derived organoids. Pharmacol Rep 2024:10.1007/s43440-024-00676-4. [PMID: 39551911 DOI: 10.1007/s43440-024-00676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) remains one of the most frequently diagnosed and life-threatening malignancies worldwide. CRC's high recurrence rates and drug resistance have been correlated with a subpopulation of dormant slowly dividing cells termed CRC stem cells (CCSCs). Consequently, there is a pressing need to identify novel therapeutics that can effectively and specifically target CCSCs. Imipridones are promising structurally related anticancer molecules that showed efficacy in several solid and hematological preclinical models and phase I/II/III clinical trials. This study mainly aimed to assess the potential anticancer effects of ONC206, an imipridone derivative, on CRC three-dimensional in vitro culture systems using HCT116 and HT29 cells. Importantly, the study aimed at using CRC patient-derived organoids (PDOs) to test the potential therapeutic effect of ONC206. METHODS Two-dimensional cell proliferation, viability, migration, and invasion assays were used to assess the effects of ONC206 on two colorectal cancer cell lines, HCT116 and HT29, in vitro. Immunofluorescence imaging, flow cytometry, and western blot analysis were also performed to investigate the mechanism of action of this drug. Sphere formation assay and CRC PDOs were employed to evaluate the effect of ONC206 on CRC cells in a 3D setting and specifically its potency in targeting the CRC stem/progenitor subpopulation of cells. RESULTS Our results showed that ONC206 was more potent than its parental molecule ONC201 in inhibiting the proliferation and viability of HCT116 and HT29 cells. Moreover, ONC206 significantly reduced the migration and invasion indices of CRC cells. These effects were accompanied by an increase in reactive oxygen species (ROS) production, sub-G1 phase accumulation, and apoptosis in HCT116 and HT29 cells. Furthermore, ONC206 significantly inhibited the 3D colonospheres growth and self-renewal ability of CCSCs more potently than ONC201, which was associated with a decrease in the expression of CSC-related markers. Lastly, ONC206 significantly reduced the growth of organoids derived from CRC patients. CONCLUSION Collectively, our findings demonstrate that ONC206 is an effective anticancer molecule capable of targeting CCSCs, which may represent a novel therapeutic strategy that can overcome CRC resistance and recurrence.
Collapse
Affiliation(s)
- Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Fatima Ghamlouche
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Kevork Wakimian
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Farah Ballout
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Mariam Kanso
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Nour Saheb
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Maher Hussein
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Walid Faraj
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | | | | | - Tamara Abou-Antoun
- Pediatric Hematology-Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110-101, USA
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon.
| |
Collapse
|
2
|
Kang Q, Hu X, Chen Z, Liang X, Xiang S, Wang Z. The METTL3/TRAP1 axis as a key regulator of 5-fluorouracil chemosensitivity in colorectal cancer. Mol Cell Biochem 2024:10.1007/s11010-024-05116-8. [PMID: 39287889 DOI: 10.1007/s11010-024-05116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Colorectal cancer (CRC) remains a significant clinical challenge, with 5-Fluorouracil (5-FU) being the frontline chemotherapy. However, chemoresistance remains a major obstacle to effective treatment. METTL3, a key methyltransferase involved in RNA methylation processes, has been implicated in CRC carcinogenesis. However, its role in modulating CRC sensitivity to 5-FU remains elusive. In this study, we aimed to investigate the role and mechanisms of METTL3 in regulating 5-FU chemosensitivity in CRC cells. Initially, we observed that 5-FU treatment inhibited cell viability and induced apoptosis, accompanied by a reduction in METTL3 expression in HCT-116 and HCT-8 cells. Subsequent assays including drug sensitivity, EdU, colony formation, TUNEL staining, and flow cytometry revealed that METTL3 depletion enhanced 5-FU sensitivity and increased apoptosis induction both in vitro and in vivo. Conversely, METTL3 overexpression conferred resistance to 5-FU in both cell lines. Moreover, knockdown of METTL3 in 5-FU-resistant CRC cell lines HCT-116/FU and HCT-15/FU significantly decreased 5-FU tolerance and induced apoptosis upon 5-FU treatment. Mechanistically, we found that METTL3 regulated 5-FU sensitivity and apoptosis induction by modulating TRAP1 expression. Further investigations using m6A colorimetric ELISA, dot blot, MeRIP-qPCR and RNA stability assays demonstrated that METTL3 regulated TRAP1 mRNA stability in an m6A-dependent manner. Additionally, overexpression of TRAP1 mitigated the cytotoxic effects of 5-FU on CRC cells. In summary, our study uncovers the pivotal role of the METTL3/TRAP1 axis in modulating 5-FU chemosensitivity in CRC. These findings provide new insights into the mechanisms underlying CRC resistance to 5-FU and may offer potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Qingjie Kang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoyu Hu
- Chongqing Medical University, Chongqing, 400016, China
| | - Zhenzhou Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Song Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
3
|
Jasim SA, Farber IM, Noraldeen SAM, Bansal P, Alsaab HO, Abdullaev B, Alkhafaji AT, Alawadi AH, Hamzah HF, Mohammed BA. Incorporation of immunotherapies and nanomedicine to better normalize angiogenesis-based cancer treatment. Microvasc Res 2024; 154:104691. [PMID: 38703993 DOI: 10.1016/j.mvr.2024.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Neoadjuvant targeting of tumor angiogenesis has been developed and approved for the treatment of malignant tumors. However, vascular disruption leads to tumor hypoxia, which exacerbates the treatment process and causes drug resistance. In addition, successful delivery of therapeutic agents and efficacy of radiotherapy require normal vascular networks and sufficient oxygen, which complete tumor vasculopathy hinders their efficacy. In view of this controversy, an optimal dose of FDA-approved anti-angiogenic agents and combination with other therapies, such as immunotherapy and the use of nanocarrier-mediated targeted therapy, could improve therapeutic regimens, reduce the need for administration of high doses of chemotherapeutic agents and subsequently reduce side effects. Here, we review the mechanism of anti-angiogenic agents, highlight the challenges of existing therapies, and present how the combination of immunotherapies and nanomedicine could improve angiogenesis-based tumor treatment.
Collapse
Affiliation(s)
| | - Irina M Farber
- Department of children's diseases of the F. Filatov clinical institute of children's health, I. M. Sechenov First Moscow State Medical University of Health of Russian Federation (Sechenov University), Moscow, Russia
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan; Department of Oncology, School of Medicine, Central Asian University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan..
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Qadisiyyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
4
|
Gao Q, Li Y, Zhu L. Ascending colon cancer metastasized to the right testicle: a case report. J Med Case Rep 2024; 18:305. [PMID: 38926771 PMCID: PMC11210146 DOI: 10.1186/s13256-024-04587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Testicular metastasis from malignant solid tumors is extremely rare. It is usually found by chance during autopsy or pathological examination of testicular specimens. Therefore, we consider it necessary to report our patient's case of testicular metastasis from colon cancer. CASE PRESENTATION We report a 61-year-old Han Chinese male patient who presented to our clinic with progressive painless swelling of the right testicle for 2 years. Positron emission tomography-computed tomography scans showed increased 18F-fluorodeoxyglucose metabolism in the right testicle, possibly owing to distant metastasis. His previous medical history suggested that he had undergone laparoscopic-assisted right hemicolectomy for ascending colon cancer 4 years ago. Considering the ascending colon cancer metastasis to the right testicle, we performed a right radical testicular resection through an inguinal approach. Postoperative histological examination showed intestinal metastatic adenocarcinoma. CONCLUSION Colon cancer metastasis to the testes is uncommon. The clinical and imaging manifestations of this tumor are nonspecific, so the diagnosis relies on postoperative pathology. If testicular metastasis is found, treatment principles for advanced colon cancer should be followed.
Collapse
Affiliation(s)
- Qingqiang Gao
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanzhi Li
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road No. 321, Nanjing, Jiangsu, 210008, China.
| | - Leilei Zhu
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Qingyang Road No. 299, 214000, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Dianat-Moghadam H, Nedaeinia R, Keshavarz M, Azizi M, Kazemi M, Salehi R. Immunotherapies targeting tumor vasculature: challenges and opportunities. Front Immunol 2023; 14:1226360. [PMID: 37727791 PMCID: PMC10506263 DOI: 10.3389/fimmu.2023.1226360] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Angiogenesis is a hallmark of cancer biology, and neoadjuvant therapies targeting either tumor vasculature or VEGF signaling have been developed to treat solid malignant tumors. However, these therapies induce complete vascular depletion leading to hypoxic niche, drug resistance, and tumor recurrence rate or leading to impaired delivery of chemo drugs and immune cell infiltration at the tumor site. Achieving a balance between oxygenation and tumor growth inhibition requires determining vascular normalization after treatment with a low dose of antiangiogenic agents. However, monotherapy within the approved antiangiogenic agents' benefits only some tumors and their efficacy improvement could be achieved using immunotherapy and emerging nanocarriers as a clinical tool to optimize subsequent therapeutic regimens and reduce the need for a high dosage of chemo agents. More importantly, combined immunotherapies and nano-based delivery systems can prolong the normalization window while providing the advantages to address the current treatment challenges within antiangiogenic agents. This review summarizes the approved therapies targeting tumor angiogenesis, highlights the challenges and limitations of current therapies, and discusses how vascular normalization, immunotherapies, and nanomedicine could introduce the theranostic potentials to improve tumor management in future clinical settings.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Al Bitar S, El-Sabban M, Doughan S, Abou-Kheir W. Molecular mechanisms targeting drug-resistance and metastasis in colorectal cancer: Updates and beyond. World J Gastroenterol 2023; 29:1395-1426. [PMID: 36998426 PMCID: PMC10044855 DOI: 10.3748/wjg.v29.i9.1395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 03/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and a major leading cause of cancer-related deaths worldwide. Despite advances in therapeutic regimens, the number of patients presenting with metastatic CRC (mCRC) is increasing due to resistance to therapy, conferred by a small population of cancer cells, known as cancer stem cells. Targeted therapies have been highly successful in prolonging the overall survival of patients with mCRC. Agents are being developed to target key molecules involved in drug-resistance and metastasis of CRC, and these include vascular endothelial growth factor, epidermal growth factor receptor, human epidermal growth factor receptor-2, mitogen-activated extracellular signal-regulated kinase, in addition to immune checkpoints. Currently, there are several ongoing clinical trials of newly developed targeted agents, which have shown considerable clinical efficacy and have improved the prognosis of patients who do not benefit from conventional chemotherapy. In this review, we highlight recent developments in the use of existing and novel targeted agents against drug-resistant CRC and mCRC. Furthermore, we discuss limitations and challenges associated with targeted therapy and strategies to combat intrinsic and acquired resistance to these therapies, in addition to the importance of implementing better preclinical models and the application of personalized therapy based on predictive biomarkers for treatment selection.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
7
|
Immunotherapeutic Approaches in Ovarian Cancer. Curr Issues Mol Biol 2023; 45:1233-1249. [PMID: 36826026 PMCID: PMC9955550 DOI: 10.3390/cimb45020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) is gynecological cancer, and diagnosis and treatment are continuously advancing. Next-generation sequencing (NGS)-based diagnoses have emerged as novel methods for identifying molecules and pathways in cancer research. The NGS-based applications have expanded in OC research for early detection and identification of aberrant genes and dysregulation pathways, demonstrating comprehensive views of the entire transcriptome, such as fusion genes, genetic mutations, and gene expression profiling. Coinciding with advances in NGS-based diagnosis, treatment strategies for OC, such as molecular targeted therapy and immunotherapy, have also advanced. Immunotherapy is effective against many other cancers, and its efficacy against OC has also been demonstrated at the clinical phase. In this review, we describe several NGS-based applications for therapeutic targets of OC, and introduce current immunotherapeutic strategies, including vaccines, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cell transplantation, for effective diagnosis and treatment of OC.
Collapse
|
8
|
Tsai HY, Bronner MP, March JK, Valentine JF, Shroyer NF, Lai LA, Brentnall TA, Pan S, Chen R. Metabolic targeting of NRF2 potentiates the efficacy of the TRAP1 inhibitor G-TPP through reduction of ROS detoxification in colorectal cancer. Cancer Lett 2022; 549:215915. [PMID: 36113636 PMCID: PMC11262000 DOI: 10.1016/j.canlet.2022.215915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial homolog of HSP90 chaperones. It plays an important role in protection against oxidative stress and apoptosis by regulating reactive oxidative species (ROS). To further elucidate the mechanistic role of TRAP1 in regulating tumor cell survival, we used gamitrinib-triphenylphosphonium (G-TPP) to inhibit TRAP1 signaling pathways in colon cancer. Inhibition of TRAP1 by G-TPP disrupted redox homeostasis and induced cell death. However, colon cancers show a wide range of responses to G-TPP treatment through the induction of variable ER stress responses and ROS accumulation. Interestingly, a strong inverse correlation was observed between the expression of TRAP1 and antioxidant genes in colon tumor tissues using the GSE106582 database. Using a luciferase reporter assay, we detected increased transcriptional activation of antioxidant response elements (AREs) in G-TPP-treated DLD1 and RKO cells but not in SW48 cells. We found that G-TPP induced upregulation of GRP78, CHOP and PARP cleavage in G-TPP-sensitive cells (SW48). In contrast, G-TPP treatment of G-TPP-resistant cells (DLD1 and RKO) resulted in excessive activation of the antioxidant gene NRF2, leading to ROS detoxification and improved cell survival. The NRF2 target genes HO1 and NQO1 were upregulated in G-TPP-treated DLD1 cells, making the cells more resistant to G-TPP treatment. Furthermore, treatment with both a NRF2 inhibitor and a TRAP1 inhibitor led to excessive ROS production and exacerbated G-TPP-induced cell death in G-TPP-resistant cells. Taken together, dual targeting of TRAP1 and NRF2 may potentially overcome colon cancer resistance by raising cellular ROS levels above the cytotoxic threshold.
Collapse
Affiliation(s)
- Hong-Yuan Tsai
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Mary P Bronner
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jordon K March
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - John F Valentine
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Lisa A Lai
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Sheng Pan
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ru Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Ge P, Reyila A, Li XY, Liu SY, Jiang YX, Yang YJ, Li XL, Bian Y. Efficacy and safety of aflibercept plus chemotherapy in metastatic colorectal cancer: A systematic review and PRISMA-Compliant single-arm Meta-Analysis of noncomparative clinical studies and randomized controlled trials. J Clin Pharm Ther 2022; 47:798-808. [PMID: 35229901 DOI: 10.1111/jcpt.13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Aflibercept, a recombinant protein designed to suppress the vascular endothelial growth factor (VEGF) signalling pathway, has been used in patients with metastatic colorectal cancer (mCRC). We conducted the first meta-analysis to systematically review the efficacy and safety of aflibercept in mCRC. METHODS PubMed Central/Medline, Embase and cochrane library were systematically searched for randomized controlled trials and single-arm clinical trials on aflibercept plus chemotherapy for the treatment of mCRC through 9 September 2021. RESULTS Ten studies comprising 2049 patients met the inclusion criteria. The pooled estimate rates were 16.0% for 12mPFS, 64.4% for 12mOS, 32.5% for ORR, 83.5% for DCR, while the rates of III/IV AEs rate were 80.2% respectively. The pooled estimate rates were 16.8% for III/IV diarrhoea, 22.3% for III/IV hypertension, 29.5% for III/IV neutropenia, 7.3% for III/IV proteinuria and 8.6% for III/IV oral mucositis. CONCLUSIONS Analysis of data from randomized controlled trials(RCT) and single-arm clinical trials confirmed the good efficacy of aflibercept plus chemotherapy in mCRC, while the safety of the treatment is concerning.
Collapse
Affiliation(s)
- Pu Ge
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China.,Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, China
| | | | - Xin-Yi Li
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Si-Yu Liu
- Stomatology College of Shandong University, Jinan, China
| | - Yi-Xuan Jiang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China.,Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ya-Jie Yang
- School of Nursing, Peking University Health Science Center, Beijing, China
| | - Xia-Lei Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ying Bian
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China.,Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
10
|
Chen Y, Zhang F, Du Z, Xie J, Xia L, Hou X, Hao E, Deng J. Proteome Analysis of Camellia nitidissima Chi Revealed Its Role in Colon Cancer Through the Apoptosis and Ferroptosis Pathway. Front Oncol 2021; 11:727130. [PMID: 34858814 PMCID: PMC8630681 DOI: 10.3389/fonc.2021.727130] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] Open
Abstract
Colon cancer is the third most common cancer in the world with a high mortality rate. At present, surgery combined with radiotherapy and chemotherapy is the primary treatment, but patient prognosis remains poor. Traditional Chinese medicine (TCM) has become a complementary and alternative source of anti-cancer drugs. Camellia nitidissima Chi (CNC) is a TCM used to treat a variety of cancers. However, the role of CNC in cancer remains elusive, and its effect and mechanism on colon cancer have not been reported. Here, we show that CNC exerts an excellent inhibitory effect on colon cancer proliferation and apoptosis induction in vitro and in vivo. We performed label free-based quantitative proteomic analysis to evaluate the HCT116 cells treated with CNC. Our data revealed a total of 363 differentially expressed proteins, of which 157 were up-regulated and 206 down-regulated. Gene Ontology enrichment analysis showed that these proteins were involved in tumor occurrence and development through multiple biological processes such as cell proliferation, cell apoptosis, cell cycle, and cell death. Interestingly, we also found significant changes in ferroptosis pathways. The role of essential proteins glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HMOX1) were verified. CNC decreased the expression of GPX4 and increased the expression of HMOX1 at the mRNA and protein levels in vivo and in vitro. Collectively, these findings reveal that CNC regulates colon cancer progression via the ferroptosis pathway and could be an attractive treatment for colon cancer.
Collapse
Affiliation(s)
- Yiwei Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.,Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.,Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.,Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China.,Postdoctoral Workstation, Guangxi Institute of Medicinal Plants, Nanning, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.,Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
| | - Lei Xia
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.,Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.,Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China.,Postdoctoral Workstation, Guangxi Institute of Medicinal Plants, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.,Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China.,Postdoctoral Workstation, Guangxi Institute of Medicinal Plants, Nanning, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.,Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China.,Postdoctoral Workstation, Guangxi Institute of Medicinal Plants, Nanning, China
| |
Collapse
|
11
|
Despotovic J, Dragicevic S, Nikolic A. Effects of Chemotherapy for Metastatic Colorectal Cancer on the TGF-β Signaling and Related miRNAs hsa-miR-17-5p, hsa-miR-21-5p and hsa-miR-93-5p. Cell Biochem Biophys 2021; 79:757-767. [PMID: 33826035 DOI: 10.1007/s12013-021-00980-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 01/22/2023]
Abstract
Metastatic colorectal cancer (mCRC) patients are treated with standard chemotherapeutic drugs in the form of FOLFOX and FOLFIRI regimens. There are no reliable markers that could predict response to chemotherapy for mCRC. TGF-β signaling which interacts with microRNA (miRNA) network has important roles in tumor progression and chemotherapy resistance, thus the interplay between TGF-β signaling and miRNAs could be crucial for treatment response. The aim of this study was to analyze the effect of chemotherapy for mCRC on TGF-β signaling and related miRNAs. Hsa-miR-17-5p, hsa-miR-21-5p and hsa-miR-93-5p were selected out of 316 miRNAs with multiple targets within the TGF-β signaling by in silico analysis. SW620 cells were treated with chemotherapeutic drugs for mCRC for 1, 3 and 6 days and expression of selected miRNAs, PAI-1, CDH1 and VIM was measured. Expression of TGF-β signaling-related hsa-miR-17-5p, hsa-miR-21-5p and hsa-miR-93-5p was time-dependently altered in SW620 cells treated with chemotherapeutics for mCRC. The expression of hsa-miR-93-5p remained downregulated after 6 days under combined treatments FOX and FIRI as well as the hsa-miR-17-5p expression under FIRI. Chemotherapy regimens for mCRC increased expression of a major TGF-β signaling target gene PAI-1, independently of the selected miRNAs expression. These treatments also increased the expression of epithelial-mesenchymal transition (EMT) markers CDH1 and VIM on day 3 resulting in decrease of mesenchymal-like characteristics. However, their expression returned close to basal level on day 6. In conclusion, after initial response to chemotherapeutic drugs SW620 cells start to return close to the basal mesenchymal state while the long-term downregulated expression pattern of hsa-miR-93-5p and hsa-miR-17-5p makes them candidates worth testing as biomarkers for monitoring combined chemotherapeutic treatments therapy response in mCRC patients.
Collapse
Affiliation(s)
- Jovana Despotovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Sandra Dragicevic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Nikolic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Deng L, Jiang N, Zeng J, Wang Y, Cui H. The Versatile Roles of Cancer-Associated Fibroblasts in Colorectal Cancer and Therapeutic Implications. Front Cell Dev Biol 2021; 9:733270. [PMID: 34660589 PMCID: PMC8517274 DOI: 10.3389/fcell.2021.733270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
The tumor microenvironment (TME) is populated by abundant cancer-associated fibroblasts (CAFs) that radically influence the disease progression across many cancers, including the colorectal cancer (CRC). In theory, targeting CAFs holds great potential in optimizing CRC treatment. However, attempts to translate the therapeutic benefit of CAFs into clinic practice face many obstacles, largely due to our limited understanding of the heterogeneity in their origins, functions, and mechanisms. In recent years, accumulating evidence has uncovered some cellular precursors and molecular markers of CAFs and also revealed their versatility in impacting various hallmarks of CRC, together helping us to better define the population of CAFs and also paving the way toward their future therapeutic targeting for CRC treatment. In this review, we outline the emerging concept of CAFs in CRC, with an emphasis on their origins, biomarkers, prognostic significance, as well as their functional roles and underlying mechanisms in CRC biology. At last, we discuss the prospect of harnessing CAFs as promising therapeutic targets for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Nianfen Jiang
- Health Management Center, Southwest University Hospital, Chongqing, China
| | - Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yi Wang
- Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Soluble SIGLEC5: A New Prognosis Marker in Colorectal Cancer Patients. Cancers (Basel) 2021; 13:cancers13153896. [PMID: 34359797 PMCID: PMC8345516 DOI: 10.3390/cancers13153896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Amongst colorectal cancers, there is significant heterogeneity, which hinders the search for a single disease detection approach. Clinical prognostic markers are urgently needed. The aim of our prospective study was to analyse the possible role of pre-operative soluble SIGLEC5 plasma levels in patient prognosis and evolution. In a cohort of 114 patients with colorectal cancer, our data confirmed the relevance of soluble SIGLEC5 levels as a prognosis marker and exitus predictor. Altogether, our data indicate that levels of this protein could be a novel and promising biomarker for patients with colorectal cancer. Abstract Colorectal cancer (CRC) is the second most deadly and third most commonly diagnosed cancer worldwide. There is significant heterogeneity among patients with CRC, which hinders the search for a standard approach for the detection of this disease. Therefore, the identification of robust prognostic markers for patients with CRC represents an urgent clinical need. In search of such biomarkers, a total of 114 patients with colorectal cancer and 67 healthy participants were studied. Soluble SIGLEC5 (sSIGLEC5) levels were higher in plasma from patients with CRC compared with healthy volunteers. Additionally, sSIGLEC5 levels were higher in exitus than in survivors, and the receiver operating characteristic curve analysis revealed sSIGLEC5 to be an exitus predictor (area under the curve 0.853; cut-off > 412.6 ng/mL) in these patients. A Kaplan–Meier analysis showed that patients with high levels of sSIGLEC5 had significantly shorter overall survival (hazard ratio 15.68; 95% CI 4.571–53.81; p ≤ 0.0001) than those with lower sSIGLEC5 levels. Our study suggests that sSIGLEC5 is a soluble prognosis marker and exitus predictor in CRC.
Collapse
|
14
|
Malkomes P, Lunger I, Oppermann E, Abou-El-Ardat K, Oellerich T, Günther S, Canbulat C, Bothur S, Schnütgen F, Yu W, Wingert S, Haetscher N, Catapano C, Dietz MS, Heilemann M, Kvasnicka HM, Holzer K, Serve H, Bechstein WO, Rieger MA. Transglutaminase 2 promotes tumorigenicity of colon cancer cells by inactivation of the tumor suppressor p53. Oncogene 2021; 40:4352-4367. [PMID: 34103685 PMCID: PMC8225513 DOI: 10.1038/s41388-021-01847-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Despite a high clinical need for the treatment of colorectal carcinoma (CRC) as the second leading cause of cancer-related deaths, targeted therapies are still limited. The multifunctional enzyme Transglutaminase 2 (TGM2), which harbors transamidation and GTPase activity, has been implicated in the development and progression of different types of human cancers. However, the mechanism and role of TGM2 in colorectal cancer are poorly understood. Here, we present TGM2 as a promising drug target.In primary patient material of CRC patients, we detected an increased expression and enzymatic activity of TGM2 in colon cancer tissue in comparison to matched normal colon mucosa cells. The genetic ablation of TGM2 in CRC cell lines using shRNAs or CRISPR/Cas9 inhibited cell expansion and tumorsphere formation. In vivo, tumor initiation and growth were reduced upon genetic knockdown of TGM2 in xenotransplantations. TGM2 ablation led to the induction of Caspase-3-driven apoptosis in CRC cells. Functional rescue experiments with TGM2 variants revealed that the transamidation activity is critical for the pro-survival function of TGM2. Transcriptomic and protein-protein interaction analyses applying various methods including super-resolution and time-lapse microscopy showed that TGM2 directly binds to the tumor suppressor p53, leading to its inactivation and escape of apoptosis induction.We demonstrate here that TGM2 is an essential survival factor in CRC, highlighting the therapeutic potential of TGM2 inhibitors in CRC patients with high TGM2 expression. The inactivation of p53 by TGM2 binding indicates a general anti-apoptotic function, which may be relevant in cancers beyond CRC.
Collapse
Affiliation(s)
- Patrizia Malkomes
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Ilaria Lunger
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Elsie Oppermann
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Khalil Abou-El-Ardat
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Oellerich
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Department I Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Can Canbulat
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Sabrina Bothur
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Weijia Yu
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Susanne Wingert
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Nadine Haetscher
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Claudia Catapano
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mike Heilemann
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hans-Michael Kvasnicka
- Goethe University Frankfurt, Senckenberg Institute for Pathology, Frankfurt am Main, Germany
| | - Katharina Holzer
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
- Philipps University of Marburg, Department of Visceral-, Thoracic- and Vascular Surgery, Marburg, Germany
| | - Hubert Serve
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Wolf Otto Bechstein
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Michael A Rieger
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Avolio M, Trusolino L. Rational Treatment of Metastatic Colorectal Cancer: A Reverse Tale of Men, Mice, and Culture Dishes. Cancer Discov 2021; 11:1644-1660. [PMID: 33820776 DOI: 10.1158/2159-8290.cd-20-1531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Stratification of colorectal cancer into subgroups with different response to therapy was initially guided by descriptive associations between specific biomarkers and treatment outcome. Recently, preclinical models based on propagatable patient-derived tumor samples have yielded an improved understanding of disease biology, which has facilitated the functional validation of correlative information and the discovery of novel response determinants, therapeutic targets, and mechanisms of tumor adaptation and drug resistance. We review the contribution of patient-derived models to advancing colorectal cancer characterization, discuss their influence on clinical decision-making, and highlight emerging challenges in the interpretation and clinical transferability of results obtainable with such approaches. SIGNIFICANCE: Association studies in patients with colorectal cancer have led to the identification of response biomarkers, some of which have been implemented as companion diagnostics for therapeutic decisions. By enabling biological investigation in a clinically relevant experimental context, patient-derived colorectal cancer models have proved useful to examine the causal role of such biomarkers in dictating drug sensitivity and are providing fresh knowledge on new actionable targets, dynamics of tumor evolution and adaptation, and mechanisms of drug resistance.
Collapse
Affiliation(s)
- Marco Avolio
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Candiolo, Torino, Italy. .,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
16
|
Hervieu C, Christou N, Battu S, Mathonnet M. The Role of Cancer Stem Cells in Colorectal Cancer: From the Basics to Novel Clinical Trials. Cancers (Basel) 2021; 13:1092. [PMID: 33806312 PMCID: PMC7961892 DOI: 10.3390/cancers13051092] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
The treatment options available for colorectal cancer (CRC) have increased over the years and have significantly improved the overall survival of CRC patients. However, the response rate for CRC patients with metastatic disease remains low and decreases with subsequent lines of therapy. The clinical management of patients with metastatic CRC (mCRC) presents a unique challenge in balancing the benefits and harms while considering disease progression, treatment-related toxicities, drug resistance and the patient's overall quality of life. Despite the initial success of therapy, the development of drug resistance can lead to therapy failure and relapse in cancer patients, which can be attributed to the cancer stem cells (CSCs). Thus, colorectal CSCs (CCSCs) contribute to therapy resistance but also to tumor initiation and metastasis development, making them attractive potential targets for the treatment of CRC. This review presents the available CCSC isolation methods, the clinical relevance of these CCSCs, the mechanisms of drug resistance associated with CCSCs and the ongoing clinical trials targeting these CCSCs. Novel therapeutic strategies are needed to effectively eradicate both tumor growth and metastasis, while taking into account the tumor microenvironment (TME) which plays a key role in tumor cell plasticity.
Collapse
Affiliation(s)
- Céline Hervieu
- EA 3842 CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, Genomics, Environment, Immunity, Health and Therapeutics (GEIST) Institute, University of Limoges, 87025 Limoges CEDEX, France; (C.H.); (N.C.); (S.B.)
| | - Niki Christou
- EA 3842 CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, Genomics, Environment, Immunity, Health and Therapeutics (GEIST) Institute, University of Limoges, 87025 Limoges CEDEX, France; (C.H.); (N.C.); (S.B.)
- Department of General, Endocrine and Digestive Surgery, University Hospital of Limoges, 87025 Limoges CEDEX, France
| | - Serge Battu
- EA 3842 CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, Genomics, Environment, Immunity, Health and Therapeutics (GEIST) Institute, University of Limoges, 87025 Limoges CEDEX, France; (C.H.); (N.C.); (S.B.)
| | - Muriel Mathonnet
- EA 3842 CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, Genomics, Environment, Immunity, Health and Therapeutics (GEIST) Institute, University of Limoges, 87025 Limoges CEDEX, France; (C.H.); (N.C.); (S.B.)
- Department of General, Endocrine and Digestive Surgery, University Hospital of Limoges, 87025 Limoges CEDEX, France
| |
Collapse
|
17
|
Lisby AN, Flickinger JC, Bashir B, Weindorfer M, Shelukar S, Crutcher M, Snook AE, Waldman SA. GUCY2C as a biomarker to target precision therapies for patients with colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:117-129. [PMID: 34027103 DOI: 10.1080/23808993.2021.1876518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. Areas covered We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. Expert opinion The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.
Collapse
Affiliation(s)
- Amanda N Lisby
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Babar Bashir
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Megan Weindorfer
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sanjna Shelukar
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Madison Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
18
|
Inhibition of Autophagy Amplifies Baicalein-Induced Apoptosis in Human Colorectal Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:1-7. [PMID: 33024814 PMCID: PMC7522588 DOI: 10.1016/j.omto.2020.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Baicalein is a Chinese herbal compound extracted from Scutellaria baicalensis that has anti-tumor properties. The aim of this study was to elucidate the mechanisms of action of baicalein against human colorectal cancer cell lines and to assess whether the anti-proliferative effects of baicalein may be amplified with autophagy inhibition. Human colon cancer cell lines (HT-29, HCT-116, SW480, and SW620) were treated with baicalein alone and in combination with the autophagy inhibitor chloroquine (CQ). Baicalein reduced cell viability in all four colon cancer lines in a dose-dependent fashion. Combination treatment of baicalein and the autophagy inhibitor CQ significantly decreased cell viability compared with baicalein alone in HT-29 and HCT-116 cell lines. Western blot analysis of the HCT-116 cell line treated with both baicalein and CQ demonstrated increased expression of LC3-II, a component of autophagy. The combination of baicalein with CQ culminated in activation of caspase-3-mediated apoptosis. These findings demonstrate that inhibition of autophagy enhanced apoptotic cell death induced by baicalein treatment in colon cancer cell lines. Future work will assess other targetable apoptotic pathways activated by baicalein and autophagy inhibition.
Collapse
|
19
|
Grzmil M, Qin Y, Schleuniger C, Frank S, Imobersteg S, Blanc A, Spillmann M, Berger P, Schibli R, Behe M. Pharmacological inhibition of mTORC1 increases CCKBR-specific tumor uptake of radiolabeled minigastrin analogue [ 177Lu]Lu-PP-F11N. Am J Cancer Res 2020; 10:10861-10873. [PMID: 33042258 PMCID: PMC7532663 DOI: 10.7150/thno.45440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: A high tumor-to-healthy-tissue uptake ratio of radiolabeled ligands is an essential prerequisite for safe and effective peptide receptor radionuclide therapy (PRRT). In the present study, we searched for novel opportunities to increase tumor-specific uptake of the radiolabeled minigastrin analogue [177Lu]Lu-DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2 ([177Lu]Lu-PP-F11N), that targets the cholecystokinin B receptor (CCKBR) in human cancers. Methods: A kinase inhibitor library screen followed by proliferation and internalization assays were employed to identify compounds which can increase uptake of [177Lu]Lu-PP-F11N in CCKBR-transfected human epidermoid carcinoma A431 cells and natural CCKBR-expressing rat pancreatic acinar AR42J cells. Western blot (WB) analysis verified the inhibition of the signaling pathways and the CCKBR level, whereas the cell-based assay analyzed arrestin recruitment. Biodistribution and SPECT imaging of the A431/CCKBR xenograft mouse model as well as histological analysis of the dissected tumors were used for in vivo validation. Results: Our screen identified the inhibitors of mammalian target of rapamycin complex 1 (mTORC1), which increased cell uptake of [177Lu]Lu-PP-F11N. Pharmacological mTORC1 inhibition by RAD001 and metformin increased internalization of [177Lu]Lu-PP-F11N in A431/CCKBR and in AR42J cells. Analysis of protein lysates from RAD001-treated cells revealed increased levels of CCKBR (2.2-fold) and inhibition of S6 phosphorylation. PP-F11N induced recruitment of β-arrestin1/2 and ERK1/2 phosphorylation. In A431/CCKBR-tumor bearing nude mice, 3 or 5 days of RAD001 pretreatment significantly enhanced tumor-specific uptake of [177Lu]Lu-PP-F11N (ratio [RAD001/Control] of 1.56 or 1.79, respectively), whereas metformin treatment did not show a significant difference. Quantification of SPECT/CT images confirmed higher uptake of [177Lu]Lu-PP-F11N in RAD001-treated tumors with ratios [RAD001/Control] of average and maximum concentration reaching 3.11 and 3.17, respectively. HE staining and IHC of RAD001-treated tumors showed a significant increase in necrosis (1.4% control vs.10.6% of necrotic area) and the reduction of proliferative (80% control vs. 61% of Ki67 positive cells) and mitotically active cells (1.08% control vs. 0.75% of mitotic figures). No significant difference in the tumor vascularization was observed after five-day RAD001 or metformin treatment. Conclusions: Our data demonstrates, that increased CCKBR protein level by RAD001 pretreatment has the potential to improve tumor uptake of [177Lu]Lu-PP-F11N and provides proof-of-concept for the development of molecular strategies aimed at enhancing the level of the targeted receptor, to increase the efficacy of PRRT and nuclear imaging.
Collapse
|
20
|
Sur D, Burz C, Sabarimurugan S, Irimie A. Diagnostic and Prognostic Significance of MiR-150 in Colorectal Cancer: A Systematic Review and Meta-Analysis. J Pers Med 2020; 10:E99. [PMID: 32847098 PMCID: PMC7563128 DOI: 10.3390/jpm10030099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Although treatment options have improved, the survival and quality of life of colorectal cancer (CRC) patients remain dismal. Therefore, significant biomarker prediction may help to improve colorectal cancer patient's prognosis profile. MiRNAs have come as an option because of their essential role in cancer initiation and progression by regulating several molecular processes. MiR-150 has different roles in cancer, but its function in CRC is still ambiguous. We undertook a systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) research criteria by interrogating several databases in order to assess the diagnostic accuracy and prognostic value of miR-150. Additionally, clinicalgov.org was scanned for possible trials. The literature was screened from inception to February 2020. A total of 12 out of 70 full-text articles were included in the meta-analysis. Among these, nine studies were included for diagnostic accuracy, and the remaining three were considered for prognostic significance of miR-150. With our results, miR-150 is an appropriate diagnostic biomarker, especially in serum and plasma, while the prognostic value of miR-150 was not statistically significant. The present study findings suggest that miR-150 has high specificity and sensitivity values as a potential diagnostic biomarker in colorectal cancer patients.
Collapse
Affiliation(s)
- Daniel Sur
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania
| | - Shanthi Sabarimurugan
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Gu L, Liu Y, Jiang C, Sun L, Zhou H. Identification and clinical validation of metastasis-associated biomarkers based on large-scale samples in colon-adenocarcinoma. Pharmacol Res 2020; 160:105087. [PMID: 32683036 DOI: 10.1016/j.phrs.2020.105087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/14/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
AIM Distant metastasis is the main cause of death in patients with colon-adenocarcinoma(COAD). Due to the lack of effective molecular markers and treatment, the prognosis of patients with metastatic colon cancer is still rather poor. METHODS Metastatic related signature (MRS) of stage I and stage IV in colon cancer were identified from different cohorts. Univariate cox regression is used to analyze the relationship between MRS and the overall survival. L1000FWD and DGIdb databases are used to identify molecular drugs. Expression and functional experimental validation of the hub MRS were carried out. RESULTS 16 MRS were identified, of which 14 MRS was significantly correlated with overall survival. Further functional enrichment analysis showed that MRS was significantly involved with important biological functions such as cell migration, and apoptosis. As important metastatic related genes, GSR, FAS and CYP1B1 have significant interaction with drug molecules. Further studies have confirmed that the expression of FAS and GSR is low, and inhibition of its expression can promote the metastasis of COAD. CYP1B1 expression is highly expressed, and inhibition of its expression can attenuate the malignant biological behavior of colon cancer. CONCLUSION Our research could increase the understanding of the mechanism of colon cancer metastasis and provide theoretical basis for the treatment of metastatic colon cancer.
Collapse
Affiliation(s)
- Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Longci Sun
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Hong Zhou
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
| |
Collapse
|
22
|
Ju M, Cheng H, Qu K, Lu X. Efficacy and safety of ramucirumab treatment in patients with advanced colorectal cancer: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e20618. [PMID: 32541497 PMCID: PMC7302601 DOI: 10.1097/md.0000000000020618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND vascular endothelial growth factor receptor 2 (VEGFR-2) has an important role in colorectal cancer pathogenesis and progression. The aim of our study is to provide a protocol for assessing the efficacy and safety of ramucirumab (a monoclonal antibody VEGFR-2 antagonist) for the treatment of advanced colorectal cancer. METHODS The systematic review will be reported according to the preferred reporting items for systematic reviews and meta-analyses protocols. Relevant randomized controlled trials were searched from PubMed, Cochrane Library, Web of Science, Excerpt Medica Database, China National Knowledge Infrastructure, and Wanfang Database. Papers in English or Chinese published from their inception to February 2020 will be included without any restrictions.Study selection and data extraction will be performed independently by 2 investigators. The clinical outcomes including overall response rate, complete response rate (disease control rate), overall survival, progression-free survival, quality of life, immune function, and adverse events, were systematically evaluated. Review Manager 5.3 and Stata 14.0 were used for data analysis, and a fixed or random-effect model of meta-analysis will be used depending upon the heterogeneity observed between studies. Subgroup analysis will be carried out depending on the availability of sufficient clinical data. RESULTS AND CONCLUSION The findings of this systematic review and meta-analysis will be published in a peer-reviewed journal, and provide more evidence-based guidance in clinical practice. PROSPERO REGISTRATION NUMBER CRD42020165683.
Collapse
Affiliation(s)
- Man Ju
- Department of Anus & Intestine Surgery
| | - Honggang Cheng
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province
| | - Xiangqian Lu
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| |
Collapse
|
23
|
Qin L, Zeng J, Shi N, Chen L, Wang L. Application of weighted gene co‑expression network analysis to explore the potential diagnostic biomarkers for colorectal cancer. Mol Med Rep 2020; 21:2533-2543. [PMID: 32323816 PMCID: PMC7185270 DOI: 10.3892/mmr.2020.11047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant diseases in the world. Although mechanistic studies have been conducted on the pathogenesis of CRC, the molecular mechanism of CRC tumorigenesis remains unclear. In the present study, the weighted gene co-expression network analysis was performed for the Gene Expression Omnibus (GEO) dataset GSE87211, in order to analyze the key modules involved in the pathogenesis of CRC. Next, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on the key module genes to analyze the functional pathways involved. The hub genes were screened using the Cytoscape platform and verified by a second GEO dataset, GSE21510. Finally, 10 hub genes were identified in 2 key modules (the green and brown modules) as the genes most significantly associated with the tumorigenesis of CRC. The 5 hub genes from the green module included collagen type I α1 chain, collagen type XII α1 chain, collagen triple helix repeat containing 1, inhibin subunit βa (INHBA) and chromobox 2 (CBX2), while the 5 hub genes from the brown module included bestrophin 2 (BEST2), carbonic anhydrase 2, glucagon, solute carrier family 4 member 4 and gliomedin. The 2 key modules with the 10 hub genes identified may regulate the occurrence and development of CRC through the extracellular matrix pathway, PI3K-Akt and chemokine signaling pathways, thus providing a reference for understanding the complex mechanism of tumorigenesis in CRC. Of note, few studies have reported the pathogenesis of CRC with the 3 identified hub genes, INHBA, CBX2 and BEST2. Further investigation of the molecular mechanism of these genes in CRC is recommended.
Collapse
Affiliation(s)
- Liping Qin
- Molecular Laboratory, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Jianping Zeng
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 311121, P.R. China
| | - Nannan Shi
- Molecular Laboratory, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Liu Chen
- Molecular Laboratory, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Li Wang
- Molecular Laboratory, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| |
Collapse
|
24
|
Preston JL, Stiffler N. Epigenetic loss of heterozygosity of Apc and an inflammation-associated mutational signature detected in Lrig1 +/--driven murine colonic adenomas. BMC Cancer 2020; 20:126. [PMID: 32059662 PMCID: PMC7023705 DOI: 10.1186/s12885-020-6616-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The loss of a single copy of adenomatous polyposis coli (Apc) in leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1)-expressing colonic progenitor cells induces rapid growth of adenomas in mice with high penetrance and multiplicity. The tumors lack functional APC, and a genetic loss of heterozygosity of Apc was previously observed. METHODS To identify genomic features of early tumorigenesis, and to profile intertumoral genetic heterogeneity, tumor exome DNA (n = 9 tumors) and mRNA (n = 5 tumors) sequences were compared with matched nontumoral colon tissue. Putative somatic mutations were called after stringent variant filtering. Somatic signatures of mutational processes were determined and splicing patterns were observed. RESULTS The adenomas were found to be genetically heterogeneous and unexpectedly hypermutated, displaying a strong bias toward G:C > A:T mutations. A genetic loss of heterozygosity of Apc was not observed, however, an epigenetic loss of heterozygosity was apparent in the tumor transcriptomes. Complex splicing patterns characterized by a loss of intron retention were observed uniformly across tumors. CONCLUSION This study demonstrates that early tumors originating from intestinal stem cells with reduced Lrig1 and Apc expression are highly mutated and genetically heterogeneous, with an inflammation-associated mutational signature and complex splicing patterns that are uniform across tumors.
Collapse
Affiliation(s)
- Jessica L Preston
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA.
| | - Nicholas Stiffler
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
25
|
Sur D, Havasi A, Cainap C, Samasca G, Burz C, Balacescu O, Lupan I, Deleanu D, Irimie A. Chimeric Antigen Receptor T-Cell Therapy for Colorectal Cancer. J Clin Med 2020; 9:jcm9010182. [PMID: 31936611 PMCID: PMC7019711 DOI: 10.3390/jcm9010182] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a new genetically engineered method of immunotherapy for cancer. The patient’s T-cells are modified to express a specific receptor that sticks to the tumor antigen. This modified cell is then reintroduced into the patient’s body to fight the resilient cancer cells. After exhibiting positive results in hematological malignancies, this therapy is being proposed for solid tumors like colorectal cancer. The clinical data of CAR T-cell therapy in colorectal cancer is rather scarce. In this review, we summarize the current state of knowledge, challenges, and future perspectives of CAR T-cell therapy in colorectal cancer. A total of 22 articles were included in this review. Eligible studies were selected and reviewed by two researchers from 49 articles found on Pubmed, Web of Science, and clinicaltrials.gov. This therapy, at the moment, provides modest benefits in solid tumors. Not taking into consideration the high manufacturing and retail prices, there are still limitations like increased toxicities, relapses, and unfavorable tumor microenvironment for CAR T-cell therapy in colorectal cancer.
Collapse
Affiliation(s)
- Daniel Sur
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Andrei Havasi
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Calin Cainap
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Gabriel Samasca
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
- Correspondence:
| | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Iulia Lupan
- Department of Molecular Biology and Biotehnology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Diana Deleanu
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, “IuliuHatieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Rawla P, Barsouk A, Hadjinicolaou AV, Barsouk A. Immunotherapies and Targeted Therapies in the Treatment of Metastatic Colorectal Cancer. Med Sci (Basel) 2019; 7:E83. [PMID: 31366129 PMCID: PMC6723550 DOI: 10.3390/medsci7080083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer deaths, and while mortality has largely improved in the developed world, five-year survival for metastatic disease remains dismally low at only 15%. Fortunately, nearly a dozen targeted therapies and immunotherapies have been FDA approved in the past decade for certain patient profiles with metastatic CRC (mCRC), and many others are under development. Checkpoint inhibitors such as pembrolizumab have proven effective at extending survival for mismatch repair (MMR)-deficient and high microsatellite instability (MSI) mCRC patients. In combination with chemotherapy in first- and second-line treatment, antiangiogenic (anti-vascular endothelial growth factor (anti-VGEF)) agent bevacizumab has been shown to increase mCRC survival. Anti-epidermal growth factor receptor (anti-EGFR) agents panitumumab and cetuximab, in combination with chemotherapy, have also prolonged survival among KRAS and all RAS wild-type mCRC patients. Among these patients, anti-EGFR therapy has been found to be more efficacious than bevacizumab. Improved selectivity has allowed small-molecule receptor tyrosine kinase (RTK) inhibitors to target VEGF and EGFR with greater efficacy and tolerability. Combinations of immunotherapies, RTKs, monoclonal antibodies, and cytotoxic drugs are being investigated to provide broad-spectrum protection against relapse by simultaneously targeting many cancer hallmarks. Lastly, human epidermal growth factor receptor 2 (HER2) therapy has shown promise for HER2-positive mCRC patients, though larger clinical trials are required to secure FDA approval.
Collapse
Affiliation(s)
- Prashanth Rawla
- Department of Medicine, Sovah Health, Martinsville, VA 24112, USA.
| | - Adam Barsouk
- Hillman Cancer Center, University of Pittsburgh, PA 15232, USA
| | - Andreas V Hadjinicolaou
- Academic Clinical Post-doctoral Fellow and Gastroenterology Resident, MRC Cancer Unit and Department of Gastroenterology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Alexander Barsouk
- Hematologist-Oncologist, Allegheny Health Network, Pittsburgh, PA 15212, USA
| |
Collapse
|
27
|
Melstrom LG, Tzeng CWD. Metastatic colorectal cancer: The reality of the present and the optimism of the future. J Surg Oncol 2019; 119:547-548. [PMID: 30806484 DOI: 10.1002/jso.25427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 11/08/2022]
|